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Abstract

Most of the work in head-pose tracking has concentrated
on single-camera systems with a relatively small field of
view which have limited accuracy because features are only
observed in a single viewing direction. We present a multi-
camera pose tracker that handles an arbitrary configuration
of cameras rigidly fixed to the observer’s head. By using
multiple cameras, we increase the robustness and accuracy
by which a 6-DOF pose is tracked. However, in a multi-
camera rig setting, earlier methods for determining the un-
known pose from three world-to-camera correspondences
are no longer applicable. We present a RANSAC [2] based
method that handles multi-camera rigs by using a fast non-
linear minimization step in each RANSAC round.

1 Multi-Camera Pose Tracking

In a multi-camera rig setting, earlier methods for deter-
mining the unknown pose from three world-to-camera cor-
respondences are no longer applicable, as they all assume
a common center of projection [2, 5, 4].

We assume a model whereby n landmarks {P;}]_, are
observed by a multi-camera rig consisting of m cameras
with calibration matrices Kz e {(Ki,Ri,1;) Y1, as illus-
trated in Figure 1, yielding n measurements {(i;,p;)}}_;-
Hence, given the global pose (R,t) of the entire rig in a
given reference frame, we obtain the following measure-
ment equations for each 3D to 2D correspondence (P, i, p):

p =IL(K;,Ri(R(P— 1) — ;) +n;
where n; is a 2D noise vector, and the projection IT is
([X,Y,2)") = [fx+sy+uo, fyy+vo]"

Given a list of n correspondences {(P},i;,p;)}}_;, we es-
timate the rig pose (R,¢) by maximum a posteriori (MAP)
estimation:

(R,t)* = argmax {P(R,t)IEIP(R,-,i.,-,pﬂR,t)}(1)

Ryt j=1
where we applied Bayes law and assumed conditional inde-
pendence of all measurements p; given the rig pose. The
prior P(R,1) can be derived from the previous time step.

Figure 1. Multi-camera rig example.

In the common case of assumed Gaussian noise, (1) be-
comes the following non-linear minimization problem

1 n

(R,t)* = argmin {E Z J(Pjij,pj)— logP(R,t)} 2)
Ryt j=1

where J(Pj ij,p;) is the objective function contribution re-

sulting from the j correspondence, given by

J(Pi,p) = |lp— (K, RiR(P—1) =)}, (3)

Here ||z — x||% in (3) is the squared Mahalanobis distance.
In our implementation, minimizing the objective function
(2) is implemented using sparse Levenberg-Marquardt.

In a tracking context, we then use RANSAC to obtain a
robust pose estimate using the machinery in Section 1 as a
subroutine. At each step, we assume that a number of puta-
tive 3D to 2D correspondences {(Pj,i;, p j)}ljyz | can be ob-
tained, with N >> 3. In Section 2 below we present one way
to do this, but any method will do. We then use RANSAC
[2] to obtain a set of inlier correspondences. Briefly, we ran-
domly select minimal sets of 3 correspondences, obtain the
MAP pose using (2), and check for support among the other
inliers. We use an adaptive threshold version of RANSAC



to automatically determine the number of RANSAC rounds
needed, see e.g. Hartley and Zisserman [3] for a thorough
exposition. As a final step, the basis set of correspondences
with the highest support is then used with its inlier support
to refine the MAP pose estimate.

2 A Markerless Multi-Camera Tracker

Based on this method we implemented a markerless
tracking system using affine invariant features [1]. We im-
plemented the entire run-time pipeline from images to pose,
but were not yet able to test the system in real environments.

In the surveying phase we detect affine invariant features
in the environment using the method outlined in [1] and log
them in a database. The location estimation for the features
can be done using structure from motion approaches [3]. To
compress the database and enable faster comparisons be-
tween features we perform principal component analysis on
the descriptors, keeping only the first 20 eigenvectors.

In tracking we estimate at each frame the absolute pose
of the rig relative to the environment. To estimate the pose
we first detect affine invariant features in the images from
the rig and then project them into the eigenspace of the
database. Putative correspondences between the current
affine invariant features and those in the database are com-
puted by finding for each feature in the current images the
closest feature in the database. All correspondences with an
error larger than a predefined threshold are discarded.

3 Results and Discussion

To demonstrate the quality of the proposed system we
conducted experiments in a synthetic environment consist-
ing of texture mapped planes. We used real human motion
capture data captured at a rate of 120 frames per second.
All experiments were done on an Intel Pentium 4 machine
running at 2.80 GHz. Below we present results from one
of the sequences, SS1, a large sequence (3386 frames) with
complicated motion and relatively large out of plane rota-
tions.

In Figure 2 we show the translational and rotational av-
erage absolute errors of the estimated path from the ground
truth graphically. Both translational and rotational errors
decrease substantially as the number of cameras is in-
creased, and this happened consistently in all our exper-
iments using various types of of mocap sequences. Fig-
ure 3 (a) and (b) plot a section of the time-series of both
translation along the X-axis and the tilt, for 1 camera and 4
cameras, respectively. From the figures one can see that a
considerable number of catastrophic failures occur with just
one camera. These results convincingly demonstrate the ad-
vantage of using a multi-camera rig tracker over a single,
limited field of view camera.
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Figure 2. Average deviation from ground truth
for a varying number of cameras
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Figure 3. Real and estimated translations
along x and real and estimated tilt.

In conclusion, we have shown that, in the context of
the markerless tracking system we developed, our system
outperforms single-camera systems by a wide margin. We
tested the system in software on realistic image sequences,
using motion capture data to guarantee realistic motion. To
validate in real-time on real image sequences we are devel-
oping a FPGA-based miniature camera rig that will be able
to perform the detection of affine invariant features in real
time.
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