
Linear-Time Estimation with Tree Assumed Density Filtering
and Low-Rank Approximation

Duy-Nguyen Ta and Frank Dellaert

Abstract— We present two fast and memory-efficient ap-
proximate estimation methods, targeting obstacle avoidance
applications on small robot platforms. Our methods avoid
a main bottleneck of traditional filtering techniques, which
creates densely correlated cliques of landmarks, leading to
expensive time and space complexity. We introduce a novel
technique to avoid the dense cliques by sparsifying them into a
tree structure and maintain that tree structure efficiently over
time. Unlike other edge removal graph sparsification methods,
our methods sparsify the landmark cliques by introducing new
variables to de-correlate them. The first method projects the
current density onto a tree rooted at the same variable at
each step. The second method improves upon the first one
by carefully choosing a new low-dimensional root variable at
each step to replace such that the independence and conditional
densities of the landmarks given the trajectory are optimally
preserved. Our experiments show a significant improvement in
time and space complexity of the methods compared to other
standard filtering techniques in worst-case scenarios, with small
trade-offs in accuracy due to low-rank approximation errors.

I. INTRODUCTION

In the domain of real-time simultaneous localization and
map-building (SLAM), filtering [1], [2] and incremental
smoothing [3], [4] methods are among the most popular
techniques. While filtering methods marginalize out old robot
poses to keep the problem size manageable in the long
run, incremental smoothing techniques focus the computation
only on the variables of interests.

One of the longest-lasting and most challenging bottle-
necks of these methods is that marginalizing out old poses
results in dense correlations among all landmarks, which
correspond to dense fill-in of matrices and lead to expensive
computational complexity [2]. For example, the worst-case
time complexity of information filters is almost cubic O(m3)
with respect to the number of landmarks m, due to inversion
of a dense information matrix [5]. Similarly, the iSAM2
incremental smoothing method also takes cubic time in
worst-case scenarios [4]. On the other hand, the Extended
Kalman Filter is quadratic O(m2) in time due to matrix
multiplication [5]. Hence, these methods are still unsuitable
for small robots with limited memory and processing capa-
bilities, especially in environments with many landmarks.

State-of-the-art research has attempted to eliminate this
bottleneck, but not without trade-offs in either inconsistent
estimates or non-real-time operations. For example, graph
sparsification techniques try to sparsify the dense correlations
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as much as possible to keep the problem solvable in constant
time [8], [9], [6], [7], [10], [11]. However, many of these
methods produce inconsistent and over-confident estimates,
since they simply remove weak edges by zeroing out small
entries in the information matrix [7]. Recent work employs
different optimization techniques to search for consistent
sparse approximations of the problem [12], [13], [14], or
maintains the exact solution by solving for the approximation
error with iterative methods [15], [16], [17]. Unfortunately,
these methods are not yet ready for real-time applications.
Moreover, various re-parameterization schemes have also
been proposed to speed up the system [18], [19], [20], [21].
Especially, [22] achieves a constant time update on large
graphs using an incremental pose representation, but it is
still expensive for real-time purposes.

We present two fast and memory-efficient approximate
estimation methods suitable for small and fast maneuvering
robot platforms with limited memory and processing power.
We favor filtering-based methods, which maintain small
memory footprints by marginalizing out old robot poses, over
smoothing-based approaches [23], [4], because past poses
are unnecessary for high-level controllers and planners to
compute an obstacle avoidance policy. Typically, only the
pairwise relative geometric relationships between the current
robot and each object in the environment at the current time
are needed for trajectory planning and execution tasks.

Instead of removing edges, our methods sparsify the dense
connections of landmarks by introducing new latent variables
to de-correlate them into a tree structure and updating this
tree structure incrementally at every step. Intuitively, this is
the inverse of the marginalization process: while marginal-
izing out a variable results in a dense correlation among
other variables connected to it, re-introducing a new variable
can de-correlate them. By maintaining a tree structure over
time, our methods can compute the solution in O(m) time
in worst-case scenarios, the best time complexity we can
achieve for solving this problem in theory. Furthermore,
since trees are the sparsest graph structure, they are memory-
efficient and suitable for small robots with limited memory.

Our first method, in Section III, uses techniques from
assumed density filtering [24], [25], [26] and tree-dependent
component analysis [27] to “project” the current density onto
a tree rooted at the same variable at each step. This projection
step is efficient; however, similar to other edge removal
techniques, it is an inconsistent and lossy approximation.

Our second method, in Section IV, improves upon the first
by carefully choosing a new variable at each step such that



approximately all landmarks are conditionally independent of
each other given this new variable. Because the landmarks
are completely independent given the full robot trajectory,
the new variables should contain enough information of the
trajectory to approximate the landmark conditionals properly.

Instead of finding a low-rank approximation of the full tra-
jectory as done in [28], we directly find new low-dimensional
representations of the trajectory that best preserve the land-
marks’ conditional densities at each step. Under an assump-
tion that the conditional means of nearby landmarks given
the trajectory lie on a low-dimensional linear subspace, we
propose a fast low-rank approximation scheme to efficiently
find the constraints for the new low-dimensional variables to
approximate that subspace.

Our approximation scheme is different in nature than
other graph sparsification methods. While other methods
result in inevitable information loss due to the explicit
removal of graph edges or the zeroing out of small entries
in the information matrices, our method loses information
through the low-rank approximation and the linear subspace
assumption. Consequently, as will be shown in Section V, if
the problem possesses the low-rank property, our method can
provide a lossless solution, while other graph sparsification
methods cannot. On the other hand, it might suffer from
large approximation errors if the low-rank assumption is
poorly satisfied. We note that the linear-time algorithm in
[29] also uses a low-rank approximation for the Kalman
gain matrix. However, it involves computing the eigenvectors
using the Power method, which might be inaccurate with a
fixed number of iterations [30].

II. PROBLEM FORMULATION

As a standard in the literature [1], [23], SLAM is formu-
lated as finding the maximum a posterior (MAP) estimate
of the unknown robot poses X = {xi}ni=1 and landmarks
L = {lj}mj=1, given the set of all measurements Z = {zij},
with zij the measurement of the landmark lj viewed from
the pose xi, and the set of all odometry measurements
U = {ui}, with ui the odometry measurement between the
camera poses i− 1 and i:

X∗, L∗ = argmax
X,L

p(X,L,Z, U) (1)

= argmax
X,L

p(x1)

m∏
i=2

p(xi|xi−1, ui)
∏
i,j

p(zij |xi, lj)

In the following, since Z,U are constant measurements, we
will omit them for clarity whenever their existence is clear
from the context.

We are interested in filtering-based SLAM methods which
marginalize out past poses to keep the problem size manage-
able, since we target robot platforms with limited memory
and past poses are unnecessary for high-level planners and
controllers. Specifically, we are concerning with the follow-
ing joint density of the last pose and the landmarks:

p(xt, L) =

ˆ
X1:t−1

p(X,L)

l1 . . . lm

x1

(a) t = 1

l1

x1 x2

. . . lm

(b) t = 2

Fig. 1: The tree structure at t = 1, and the graph at t = 2
with odometry (x1, x2) and new measurements from x2

Graph representations of SLAM as well as the connections
between optimization methods and graph inference tech-
niques have been thoroughly discussed [9], [7], [31], [23].
Basically, the variable elimination method factorizes the joint
density into a conditional and a new factor on the remaining
variables: p(X,L) = p(X1:t−1|L, xt)p(L, xt). Marginaliza-
tion is essentially a by-product of a variable elimination,
which retains only the new factor and ignores the condi-
tional:

´
X1:t−1

p(X,L) =
´
X1:t−1

p(X1:t−1|L, xt)p(L, xt) =

p(L, xt). In this view, information filtering methods [5] are
special cases of incremental smoothing techniques [3], [4]
with a special variable elimination ordering which eliminates
all the past poses first.

Eliminating past poses produces the new factor p(xt, L)
that links all landmarks together. This is essentially the
large clique that leads to O(m3) time complexity for naïve
implementations of information filters [6] and iSAM2 [4].
As discussed in Section I, much work focuses on avoiding
this large clique by removing edges in the graph, or zeroing
out small entries in the information matrix, but they are not
yet ready for real-time applications.

We avoid the large clique of landmarks and achieve linear-
time estimation by always keeping a tree structure at time
t rooted at a new variable yt as shown in the Bayes net in
Fig. 2a. The Bayes net encodes the tree factorization of the
following joint density:

q(L, xt, yt) = q(yt)q(xt|yt)
m∏
j=1

q(lj |yt)

The new variable yt and its related densities must be chosen
such that the joint density q(L, xt), after yt is marginalized
out from q(L, xt, yt), matches the original joint density
p(L, xt) that we want to estimate:

q(L, xt) =

ˆ
yt

q(L, xt, yt) ≈ p(L, xt) (2)

Fortunately, it turns out that if we can find an efficient
tree update scheme at every step, this condition (2) will
be inductively satisfied by construction. This is because we
always start out with a tree structure at time t = 1 where
y1 = x1 (Fig. 1a), and the problem of finding the tree
structure at time t = 2 with the first odometry and the second
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Fig. 2: Our general tree filtering scheme: (a) The tree at
time t. (b) New measurements at time t + 1 break the tree
structure. (c) Marginalizing out xt is efficient and does not
produce the dense clique of landmarks. (d) The new tree we
want to find at time t+ 1.

set of landmark measurements (Fig. 1b), is the same problem
of finding the tree structure at time t+1 after we marginalize
out xt at any future time step (Fig. 2c).

Our general tree filtering scheme is as follows (Fig. 2).
Assuming we already have a tree structure at time t (Fig.
2a), the new odometry and landmark measurements from
xt+1 break this tree structure as shown in Fig. 2b. After
marginalizing out xt, we obtain the new graph in Fig. 2c,
which has the same structure with the graph at time t = 2
(Fig. 1b). We note that due to the tree structure at time t,
marginalizing out xt is efficient and does not result in a dense
clique of landmarks as what happen with other standard
filtering methods. Our goal is to find a new tree at time
t+ 1 as in Fig. 2d that approximates the density in Fig. 2c.

The rest of this paper will focus on efficient methods to
turn a graph in Fig. 2c into a tree in Fig. 2d with a new
variable yt+1 that approximately satisfies the condition in
Eq. (2) at time t+ 1. We present two methods to find such
trees. The first method, based on assumed density filtering
“projects” the new density onto the same tree propagated
from the previous step after the previous pose is marginalized
out. This method is simple and fast, but suffers from infor-
mation loss and leads to inconsistent estimates, similar to
other edge removal graph sparsification techniques [7]. The
second method improves upon the first one with different
new variables which better satisfy (2) at every step.
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Fig. 3: Tree Assumed Density Filtering scheme reusing the
root of the previous step: (a) Elimination process to compute
the root and conditional marginals for the new tree. Ellipses
denote the three-variable cliques to compute the pairwise
marginals p(lj , yt) efficiently. (b) The new tree is bolded;
dash lines are edges from the original graph (Fig. 2c).

III. TREE ASSUMED DENSITY FILTERING

An immediate solution for a tree at time t + 1 is to
reuse the tree of the previous time t. After marginaliz-
ing out the previous pose xt, we use an idea similar to
Assumed Density Filtering (ADF) technique [25], [26] to
approximately “project” the current density onto the same
tree structure T of the previous step, rooted at the same
variable yt+1 ≡ yt, as highlighted in Fig. 3b. In general,
ADF and the related Expectation Propagation technique find
an approximate density q(x) of the original distribution p(x).
In our case, the approximate density q(x) is limited to be in
the family DT of densities encoded by the tree T .

The best tree approximation pT (x) ∈ DT of p(x) that
minimizes the KL-divergence KL(p||q) over all q ∈ DT

has been derived in the context of tree-dependent component
analysis in [27]. The optimal tree approximation pT (x) of
an arbitrary density p(x) is factorized as follows:

q(x) = pT (x) =
∏

u,v∈E

p(xu, xv)

p(xu)p(xv)

∏
u∈V

p(xu)

= p(x0)
∏

u,v∈E
p(xv|xu)

where V and E are the set of vertices and edges of our tree,
rooted at x0, and xv is a child of xu in the tree.

Hence, the new root prior q(x0) is simply the marginal
p(x0), and the new conditionals q(xv|xu) are the “marginal”
conditionals p(xv|xu) = p(xv, xu)/p(xu), which can be
computed from the marginals p(xu) and the pairwise
marginals p(xv, xu) easily.

In our case, we would like to approximate the density
p(yt, xt+1, L) at time t+ 1 in Fig. 3a with a tree Bayes net
rooted at the same yt in Fig. 3b:

q(yt, xt+1, L) = q(yt)q(xt+1| yt)
∏
j

q(lj | yt)

≈ p(yt, xt+1, L)



Using the above result, we need to compute the marginal
p(yt) = q(yt), and the conditionals p(xt+1| yt) and p(lj | yt),
which might be obtained from the pairwise marginals
p(xt+1, yt) and p(lj , yt).

With our special tree structure at time t, these marginals,
conditionals and pairwise marginals can be computed effi-
ciently. As shown in Fig. 3a, we first eliminate all landmark
variables lj before eliminating xt+1 to obtain a Bayes net

p(yt, xt+1, L) = p(yt)p(xt+1|yt)
∏
j

p(lj |yt, xt+1). (3)

As results of the elimination, the root marginal p(yt)
and the conditional p(xt+1|yt) is ready from the Bayes
net. The other pairwise marginals p(lj , yt) can be ob-
tained by marginalizing out xt+1 from the three-variable
clique of yt, xt+1, and lj (red ellipses in Fig. 3a):
p(lj , yt) =

´
¬{lj ,yt} p(yt)p(xt+1|yt)

∏
k p(lk|yt, xt+1) =´

xt+1
p(yt)p(xt+1|yt)p(lj |yt, xt+1) . We then compute the

conditionals p(lj |yt) from p(lj , yt) and the marginal p(yt).
Although this tree assumed density filtering scheme is

efficient to compute, it incurs inevitable information loss.
This is because it removes the conditional links between
xt+1 and ljs, which is, similar to other graph sparsifica-
tion techniques, equivalent to zeroing out the corresponding
(xt+1, lj) entries in the information matrix. However, we
found approximation errors are small in our experiments.
Furthermore, the algorithm has O(m) time complexity, since
it only loops over the landmarks to compute the marginals.

IV. INCREMENTAL TREE FILTERING

To derive a better tree approximation for the new density
at time t+ 1 satisfying the condition (2), we base ourselves
on the fact that all landmarks are conditionally independent
given the full trajectory X1:t+1. In fact, in the full SLAM
formulation (1), if instead of the poses we eliminate the land-
mark variables first, we obtain the following factorization:
p(X1:t+1, L) = p(X1:t, xt+1)

∏
j p(lj |X1:t+1), meaning that

lj are conditionally independent given the full trajectory
X1:t+1. Hence, a trivial choice for yt+1 that exactly satisfies
(2) is X1:t+1, but is too expensive a choice, naturally.

An immediate solution is to find a low-rank approximation
of the full trajectory, as done in [28]. Unfortunately, this
technique does not fit in the context of filtering-based SLAM,
because it requires knowledge of all the past poses. Fur-
thermore, a low-rank approximation of the trajectory is not
our main interest, since the conditional independence of the
landmarks might not be guaranteed given this approximation.

A more direct goal is to find a low-dimensional re-
placement yt+1 for the full trajectory X1:t+1 such that the
landmark conditional densities are optimally approximated,
i.e. p(lj | yt+1) ≈ p(lj |X1:t+1), ∀j. In a filtering context,
{yt, xt+1} plays the same role as the full trajectory X1:t+1

in smoothing, in the sense that, at time t+ 1, all landmarks
are conditionally independent given these two variables (Fig.
3a): p(L, yt, xt+1) = p(yt, xt+1)

∏
j p(lj |yt, xt+1).

Equivalently, in filtering, we would like to find a
low-dimensional variable yt+1 as a re-parameterization of
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Fig. 4: Incremental Tree Filtering scheme. We find a new
low-dimensional variable yt+1 as a reparameterization of
{yt, xt+1} such that the conditional densities of landmarks
given the new variable in the new tree (b) best approximate
the original conditional densities given {yt, xt+1} in (a).

{yt, xt+1}, such that it can “replace” {yt, xt+1} in the con-
ditionals p(lj |yt, xt+1), and approximately generate the same
conditional densities on ljs as {yt, xt+1} do. As discussed
above, the trivial re-parameterization yt+1 = {yt, xt+1} will
not gain us any computational benefits, because the dimen-
sion of the new variables will quickly increase, incorporating
all information of the full trajectory into a high dimensional
vector yt+1 at each step.

Using the moment-matching and low-rank approximation
techniques, detailed in Section IV-A and IV-B, we find the
best low-dimensional re-parameterization yt+1 of the original
variables {yt, xt+1}, represented as a hard equality constraint
among these three variables. The constraint guarantees that
the conditional densities p(lj | yt, xt+1) are best approxi-
mated by p(lj |yt+1) for all j, and given yt+1, all ljs are
approximately independent of each other: p(L|yt, xt+1) =∏

j p(lj |yt, xt+1) ≈ p(L|yt+1) =
∏

j p(lj |yt+1).
To find the new tree, we first add a constrained factor rep-

resenting the found constraint between yt+1 and {yt, xt+1}
to the original graph (Fig. 4a), then apply the tree assumed
density filtering technique in Section III to project the
original density onto the new tree rooted at yt+1, as shown
in Fig. 4b. This procedure guarantees our original condition
(2) to be satisfied at time t + 1, i.e. after marginalizing
out yt+1 from the new density q(L, yt, xt+1, yt+1) with
the hard constraint included, we obtain the same original
density on {L, yt, xt+1} as before. This is because intuitively
a hard constraint can be seen as a delta distribution with
zero information on the constrained variables; hence, adding
it to the graph will not add more information nor change
the density of the original variables. Furthermore, since
yt+1 is specially chosen to approximate {yt, xt+1} in the
conditionals p(lj |yt, xt+1), the tree assumed density filtering
step will not incur much information loss, depending on how
well p(lj |yt+1) can approximate p(lj |yt, xt+1) in our low-
rank approximation scheme. We note that due to our previous
tree structure at time t, the marginals and pairwise marginals
needed for our new tree can also be computed efficiently in
O(m) time as already discussed in Section III.



A. Moment-Matching of Gaussian Conditionals

As discussed above, we would like to find a new vari-
able yt+1 such that the conditional p(lj |yt, xt+1) can be
approximated by p(lj |yt). Assuming Gaussian densities, this
is a special case of a more general “Gaussian conditional
matching” problem as follows.

Gaussian Conditional Matching Problem: What are
the conditions on x and y such that the Gaussian condi-
tional densities p(l|x) and q(l|y) match with each other, i.e.
p(l|x) = q(l|y)?

We assume the Gaussian conditionals p and q have the
following forms:

p(l|x) ∝ exp−1

2
‖Rl − Sx− d‖2 , and

q(l|y) ∝ exp−1

2
‖Pl − Ty − e‖2 ,

which satisfy the properties of Gaussian conditional distri-
butions – their means are linear functions on the conditioned
variables, and their information matrices are independent of
these variables [32, pg. 90-91]. For example, the mean of
p(l|x) in this form is (R−1Sx+R−1d), a linear function on
x, and its information matrix, RTR, is independent of x.

The necessary conditions for these two conditionals to
match are R = P , Sx = Ty and d = e. This is
because for every pair of x and y generating the same
conditional densities on l, we must have ‖Rl − Sx− d‖2 =
‖Pl − Ty − e‖2 , ∀l, and the conditions follow.

Since setting P = R and e = d is trivial, we will focus
on the other condition Sx = Ty. The condition Sx = Ty
must be satisfied for all possible pairs of x and y, such that
the linear subspace generated by Ty must be the same as
the linear subspace generated by Sx. Intuitively, this means
that the linear space of all possible conditional means of the
distribution q(l|y), generated by all realizations of y, must
be the same as that of the original distribution p(l|x).

B. Low-rank Approximation

Applying the conditional matching results to our problem
with l = L, x = {yt, xt+1}, and y = yt+1, we would like to
find a new variable yt+1 such that the two conditionals

p(L|yt, xt+1) ∝ exp−1

2

∥∥∥∥RL− S

[
yt

xt+1

]
− d

∥∥∥∥2 , and

q(L|yt+1) ∝ exp−1

2
‖RL− Tyt+1 − d ‖2

match with each other. Using the above result for matching
Gaussian conditionals, we need to choose T and y such
that Ty can generate the same linear subspace as Sx does.
The condition Sx = Ty gives us a hard equality constraint
between x = {yt, xt+1} and y = yt+1:

Tyt+1 − S1yt − S2xt+1 = 0. (4)

where S1 and S2 are columns of S corresponding to yt and
xt+1 respectively. As discussed above, the trivial choice y =
x, i.e. yt+1 = {yt, xt+1} and T = S, increases the size

of the new variables yt+1 at each step and is expensive for
computation. Hence, we want yt+1 to be low-dimensional.

To maintain the low computational complexity, we enforce
the dimensions of the new variables to be the same at every
step, i.e. r = dim(yt) = dim(yt+1). Let h = dim(lj), k =
dim(xt+1), the size of S is mh×(r+k), and of T is mh×r,
and we assume that mh� r.

The condition for Sx and Ty to generate the same
subspace can only hold if both S and T have the same
rank. As Sx and Ty are the linear combinations of S’s
and T ’s columns respectively, the r columns of T must be
independent vectors in the r-dimensional subspace spanned
by columns of S.

We can choose T by doing a low-rank approximation
on S using SVD decomposition: S = UDV T , and T can
be chosen from the r columns of U corresponding to the
r largest singular values in D. This well-known technique
guarantees the best low-rank approximation for S. The SVD
decomposition of S, with size mh× (r+ k), can be done in
O(mh(r+k)2) time [30, Lecture 31], and because h(r+k)2

is a constant, it is linear in the number of features m.
We also experiment with a much faster approximation

for T by simply choosing r independent columns from S
to be the columns of T . If S has exactly rank-r, these r-
independent columns will generate the whole subspace for
Sx exactly, and Ty will generate the same subspace as Sx
does. Otherwise, Ty will generate an approximate subspace
of Sx. Although this is not the best subspace approximation
for Sx, we found it is good enough in our experiments. A
better subspace approximation might be found by carefully
ranking S’s columns according to their pairwise dot products
and choosing the columns that maximize them.

We finally select only r independent rows of T and
S to form the constraint in (4), instead of using all mh
rows, which is expensive since it depends on the number
of landmarks. If S is not exactly rank-r, the full mh rows of
the above equality constraint cannot all be satisfied, leading
to an overdetermined system. On the other hand, if S is
exactly rank-r, only the first r independent rows is enough
to constrain the whole system.

V. EXPERIMENTS

A. Simulated datasets

We first study the performance of our two proposed algo-
rithms, the simple Tree Assumed Density Filtering (TADF)
algorithm in Section III and the better low-rank approxima-
tion Incremental Tree Filtering (ITF) algorithm in Section
IV, on simulated datasets reflecting the worst-case scenarios
for SLAM in obstacle avoidance context.

Our datasets simulate a robot moving in 2D and observing
an object with many features that it needs to avoid. A worst-
case scenario in SLAM happens when the robot observes
all features of the object at every time step. In this case,
the full graph is densely connected, and there is no variable
elimination order exists that can avoid the O(m3) time
complexity for information filters and iSAM2. We note that
this scenario is common in practice, for example, when



Fig. 5: Results of our tree filtering schemes compared
with the optimal solution for the noise-free (top) and noisy
(bottom) datasets. Three landmarks are at the top, while the
robot is moving in a straight line.

a robot uses a laser-scanner to obtain a large number of
data point observations at every step, or when it observes
a textured object with many visual features by cameras.

We use a simple measurement model in our experiments,
where we assume that the robot can observe the relative 2D
position of the landmarks in its coordinate frame. Many other
measurement models, for example, bearing-range sensors, or
stereo cameras, can be easily transformed into this form.

We first study the accuracy of our algorithms by compar-
ing their results with the best optimal solution obtained from
solving the full graph at the last time step. We experiment
with two sets of measurements, an ideal noise-free set to
study the theoretical amount of information loss, and a noisy
set corrupted with additive Gaussian noise. The noise-free
measurement set satisfies our low-rank assumption exactly,
whereas the noisy set is approximately low-rank.

Fig. 5 shows the estimation results of the two methods,
TADF and ITF, compared with the optimal solutions in a
simple case with three landmarks for both types of noise-
free and noisy datasets. As expected, TADF estimates are
inconsistent and overconfident with smaller marginal covari-
ance ellipses over time. On the other hand, ITF achieves the
exact results in the noise-free dataset, and approximates very
well with the optimal solutions in the noisy one.

To better understand their performances, we compare the
KL-divergence of the approximate densities estimated by our
methods with the optimal densities. Fig. 6 plots the KL-
divergence results. ITF achieves the exact densities with zero
KL-divergence in the noise-free dataset, so we only report
results in the noisy case. Whereas TADF accumulates its

Fig. 6: Comparing the KL-divergences of TADF (green) and
ITF (blue) with respect to the optimal densities over time.

Fig. 7: Timing comparison among iSAM2, TADF and ITF.

approximation errors, ITF’s errors are very small and do not
increase over time.

To study the time complexity of TADF and ITF, we
compare their speeds with iSAM2 [4] using a series of
datasets with 100 poses and increasing numbers of landmark
features from 30 to 300. As clearly shown in Fig. 7, the
processing time of our methods is linear, whereas iSAM2’s
processing time grows in a polynomial order with respect
to the number of landmarks. Especially, with 300 features
every frame, our methods are 10 time faster than iSAM2.

The memory requirements for our methods are much
cheaper compared to iSAM2. For the same dataset with
100 poses and 300 landmarks, our implementation requires
only around 13MB for ITF and 9MB for TADF, whereas
iSAM2 needs almost 500MB. We notice that this is a bias
comparison, however, since iSAM2 retains the full graph
with all the past poses in the memory whereas our filtering
schemes marginalize them out. Nevertheless, this reflects the
fact that our methods are more ready than iSAM2 for small
robots with limited memory capacity.

We also test our methods in more challenging scenarios.
As shown in Fig. 8, we replicate a real RC-car racing track



Fig. 8: A simulated RC car (red) and different 3D objects

−100 −50 0 50 100 150 200 250
−50

0

50

100

150

200

250

 

 

ISAM2

Tree Assumed Density Filtering

Incremental Tree Filtering

Fig. 10: Results on Victoria Park dataset

(~30m×16m) in simulation, and consider three types of
3D objects with different structures: planar panels, cylinder
barrels and transparent spheres, each of which has 100
randomly generated features. In the experiments in Fig. 9, we
consider only one object at a specific location, and assume
the car can measure the relative 3D position of each feature
in its local coordinate frame. We also conduct experiments
for both noise-free and noisy measurements, assuming zero
mean Gaussian noise with 0.1m standard deviation in all x,y
and z. In the noise-free experiments, ITF has no information
loss. Hence, we only report results for the noisy cases in
Fig. 9. Each column of Fig. 9 shows the top view of the test
scenarios with the trajectory and the tested object, and plots
the KL-divergence results of TADF and ITF. As can be seen,
ITF is has less information loss than TADF in these cases.

B. Victoria Park dataset

We next study the performance of our methods on the
well-known SLAM Victoria Park dataset. This dataset does
not reflect the scenarios we assume in this paper, i.e. for
short term obstacle avoidance applications instead of exact
map building. However, the results of our filtering methods
still approximate well with the full optimal solution obtained
from iSAM2 as shown in Fig. 10. Moreover, whereas we
assume a dense graph with many landmark observations on
the same object at each time step, Victoria Park dataset is
very sparse with only a few landmark measurements, one per
object, at each time. This sparsity also breaks the low-rank

assumption of our ITF method that all landmarks should be
observed from each robot pose in the same way, because at
each pose, only a few landmarks are observed and the rest
are not. Consequently, a good low-rank approximation of the
trajectory to generate the space of the landmark conditional
means does not exist. In those cases, the results of ITF are
similar to TADF’s as shown in Fig. 10.

VI. CONCLUSION

We have presented two tree filtering methods which sig-
nificantly improve upon the speed of the traditional filtering
schemes in worst-case scenarios. Our methods achieve linear-
time complexity O(m) with respect to the number of land-
marks m, whereas traditional methods EKF and information
filters take O(m2) and O(m3) time respectively, due to the
dense correlations of landmarks resulted from marginalizing
out old robot poses. Hence, our methods are suitable for
small robots with limited memory and processing power.

Our key idea to avoid the problem of dense cliques in
filtering-based SLAM is to maintain an approximate tree
structure of the full density at every time step by finding new
low-dimensional variables to de-correlate them. Intuitively,
these new variables capture the essential information of the
entire robot trajectory such that given them the landmarks are
conditionally independent of each other and the conditional
densities of the landmarks are best approximated. We use
techniques from tree assumed density filtering and low-rank
approximation to keep the size of the new variables small
and achieve linear-time updates at every step.

There are several important questions that need to be
further addressed in our future work to gain more insights
about the methods. First, our low-rank approximation scheme
is based on the assumption that the conditional means of
landmarks given the trajectory lie in a low-dimensional
subspace. Although our experiments show cases where this
assumption is valid, further studies need to be done to
understand when this assumption can be applied. Obviously,
it depends on the object structure as well as the measurement
models of the sensors. Another related questions are how
good the approximation is when this low-rank assumption is
violated and what the optimal choice for the dimension of
the new variables is to capture enough essential information.
This parameter is a trade-off between performance and accu-
racy. Our future work will also focus on implementing and
studying these tree filtering schemes on real robot platforms
with different sensors and measurement models, and further
improving on limitations of the low-rank assumption.
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