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Abstract

Objects are rich information sources about the
environment. A 3D model of the objects, together
with their semantic labels, can be used for camera
localization as well as for cognitive reasoning about
the environment. However, traditional frameworks
for scene reconstruction usually map a cloud of
points using structure-from-motion techniques, but
do not provide objects representation. On the other
side, robotics object-based mapping mainly focus
on adding cognitive representations to a metric or
topologic map built using traditional SLAM tech-
niques. In this work we propose a framework for
environment modeling by representing the objects in
the scene, detected by an object recognition and seg-
mentation technique. The key idea is to incorporate
the resulting image segments and labels into a global
inference engine in order to build simple geometric
models for the objects. For now, we consider the
perfect object recognition case, where we know the
exact object identities, testing our approach using
coarsely hand-annotated images captured by a robot
carrying an omnidirectional camera. We found that
the resultant object locations and sizes are fully
compatible with what is expected, and the inferred
robot trajectory is improved when compared to that
recovered using odometry only.

1. Introduction

Mixed geometric and semantic 3D models of the
environment are useful either for human visualiza-
tion or as a map for autonomous visual systems
that must localize themselves and reason about
the surrounding environment. When these systems
interact with human beings, like in Augmented
Reality (AR) applications or service robots, their
world representation should share symbols with
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Figure 1. Example of a simple 3D model of the objects
in a living room, showing their heights and average
widths, as well as class labels.

that of humans. Furthermore, there are evidences
that people themselves use objects to represent
indoors spaces [1]. In this context, object-based 3D
models of the environment, like the one depicted
in Fig. 1, are very suitable for providing landmarks
for camera localization as well as cognitive entities
for reasoning, while containing important elements
for place visualization systems to build on.

In this work, we build simple object-based 3D
models of the environment from an image sequence
captured by a camera placed on a mobile robot,
and also recover its trajectory. This is done by
integrating the output of an object recognition
and segmentation algorithm into a usual structure-
from-motion (SFM) inference engine. In this sense,
this work is different from traditional object-based
semantic mapping approaches in robotics, since
they tend to concentrate on the cognitive envi-
ronment modeling problem [1][2]. In those works,
the geometric aspect of the objects modeling is
then simplified to informing positions in a certain
reference frame, discarding the information about
object sizes and other visual information, not used
in the mapping process.

This work also differs from traditional visual
SLAM approaches, which map only some interest
points in the environment [3][4][5], without pro-



viding objects representation. Our goal is to build
light-weight 3D models of objects in the environ-
ment, together with a semantic label indicating
their class (e. g., clock, TV set, table, etc.) and
identity, provided by object recognition. Slightly
closer to our approach, [6] also incorporates some
higher-level entities in the map, corresponding to
recognized planar patches. However, these patches
only indicate that certain points in the map belongs
to a specific structure, making their associations
throughout images more reliable due to this addi-
tional patch-level of matching test. Our work im-
proves on that by using apparent size information
rather than just image point positions.
The main idea we explore is that, if we roughly

know the average real-world size of the objects
belonging to a certain class, the apparent size of
an instance in the image leads to a coarse range
estimate from the camera to the object. Moreover,
if we can also make assumptions about the object
location, e. g., that a coach is more likely to be
on the floor plane then onto a table, the detected
object image also gives us clues about the camera
pose. Figure 2 illustrates how it works. This idea
was also used by Hoiem and others [7] to recover the
camera viewpoint and the position of determined
objects on the floor plane from single images, while
performing object recognition using a third-party
technique. However, here we relax the restrictions
on the object locations and recover larger scale
models using image sequences.
In this work, we focus on the scene modeling

and camera pose estimation problem, which is
solved by a traditional efficient inference method
used in SFM. The problem is first modeled as a
sparse linearized least-squares (LS) one, and then
efficiently solved by means of QR factorization [8].
This method has been recently extended to the
robot SLAM domain [9], [10], replacing many filter-
ing approaches with great advantage. Although the
general framework presented can assume different
assumptions about the confidence on the object
recognition technique used, we consider the perfect
object recognition case, making use of an annotated
image sequence database to test our approach.
The paper is organized as follows. In section 2 we

present a general framework for our approach, from
which we derive the specific model we use in this
work. In section 3 we give details about the spe-
cific probabilistic models and inference algorithm
we adopted. Experimental results are presented in
section 4, while the conclusions of this work are
discussed in section 5.
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Figure 2. Illustration of how knowledge about the
object size can be used to estimate the relative
distance from the camera. a) The decreasing size
of the wooden box in the images combined with
prior knowledge about the size of wooden boxes
informs about its increasing distance to the camera. b)
Graphical probabilistic model illustrating the depen-
dencies among object position and size, and camera
pose (unknowns, represented by ellipses) given object
recognition output (rectangles).

2. General Framework for Object-
based SLAM

Our objective is to perform Maximum a Pos-
teriori (MAP) inference to obtain a 3D model
θ of the environment objects, using measurement
data Z provided by object recognition in an image
sequence. The MAP estimate θ∗ is defined as

θ∗ = arg max
θ

P (θ|Z) (1)

We propose to take an approach where object
classes, locations, and associated geometries are in-
ferred together with the camera trajectory and ori-
entations, tightly coupling these variables. In this
case, θ = (X,M) [9], where X is the sequence of
camera poses and M is the model, which includes,
in addition to object locations L, their geometry
G and their class labels C. Thus, let us define
M

∆= {oj}Nj=1, where each object oj
∆= (lj , gj , cj)

is described by an object location lj , the geometry
gj , and the class label cj .

The data Z = {zk}Kk=1 provided by the object
recognition system is assumed to comprise the ap-
parent contour and position of the objects detected
in the image sequence I = {Ii}Ti=0. Hence, we
assume we always have

zk = (uk, sk, c̄k) (2)



where each object detection zk provides a 2D lo-
cation uk, the respective apparent shape sk, and
the detected class c̄k. We can also define the cor-
respondence variable, J ∆= {(ik, jk)}Kk=1, which is
a mapping from measurement indices k to image
indices i and object indices j, such that ojk is
the object detected in image Iik giving raise to
the measurement zk. Depending on the set up,
odometer readings about the camera movement,
V = {vi}Ti=1, may also be available. This is the
case in our experiments.
Depending on the confidence we have in the

object recognition algorithm, there are several pos-
sible assumptions we can make regarding whether
real object class labels C and correspondence J is
known or not. The different choices are:
1) correspondence J known, class labels C

known
2) correspondence J known, class labels C un-

known
3) correspondence J unknown, class labels C

known
4) correspondence J unknown, class labels C

unknown
In the case correspondence is known, it is implied
that we know the number of objects N . However,
if correspondence is unknown, N itself becomes an
object of inference.
If the object recognition technique used is reliable

enough, we may assume that each object detected
is uniquely identified, and also that its class label is
recognized perfectly. This is the case where choice
1 applies, since object identities give raise to the
correspondence J . In this work we investigate only
the first situation, where both correspondence and
class labels are known.

2.1. Known Correspondence and Class
Labels
Assuming that we know the object classes and

respective identities, as we stated above, we can
adopt a similar approach used in traditional SFM,
but now our structure include also object geometry.
The posterior (1) can be expressed by:

P (θ|Z;J) ∝ P (Z,θ|J) = P (X,M|J)P (Z|X,M ;J) (3)

where P (X,M |J) is a prior density on trajectory
and object models, which might include odometer
information, if available. P (Z|X,M ; J) is the mea-
surements likelihood.
At this point, we have to explicit the assumed

variables and measurements relationships in order
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Figure 3. Fragment of the Bayesian Network that rep-
resents the probabilistic model for object-based SLAM
when class labels and correspondence are known. The
rectangles represent known variables, and the circles
represent the unknowns. We basically assume that
objects class give a rough idea about its geometry,
and may give clues about its possible locations. We
also assume that the apparent shape is independent
of the object location in image given the unknowns.
This model does not admit occlusion among objects,
neither moving objects.

to define our model. These relationships are repre-
sented in Fig. 3. Basically, we assume that object
classes influence their geometry, and possibly their
locations. Since the model M comprises the set of
object locations L, 3D geometry G, and the known
objects class labels C, hence the prior density can
be written as

P (X,M |J) = P (X)P (L|C)P (G|C)

= P (X)
N∏
j=1
{P (lj |cj)P (gj |cj)}(4)

If odometer information V is available, the prior on
the camera poses is given by

P (X) = P (x0)
T∏
i=1

P (xi|xi−1, vi) (5)

The first camera pose x0 can be given any value,
since all other variables are estimated with relation
to it, and is clamped to the origin in general.

In our measurements likelihood, we consider that
the object position in image depends on the relative
displacement between camera and object, and also
on the camera orientation. The object shape is as-
sumed independent of its position in image. Finally,
we consider that the actual class labels C perfectly
generates the detected ones C̄, so that:

P (Z|X,M ; J) =
K∏
k=1
{P (uk|xik , ljk)P (sk|xik , ljk , gjk)}



δθ∗ = arg min
δθ

{
N∑
j=1

[
||δlj + l0j − γ(cj)||2Γ(cj) +

1
2
||δgj + g0j − ς(cj)||

2
Σ(cj)

]
+

T∑
i=1

||Fxi δxi−1 − δxi + fi(x0
i−1, vi)− x

0
i ||

2
Qi

+

K∑
k=1

[
||Uxk δxik + U lkδljk + huk(x0

ik
, l0jk )− uk||2Rk + ||Sxk δxik + Slkδljk + Sg

k
δgjk + hsk(x0

ik
, l0jk , g

0
jk

)− sk||2Wk
]}

Table 1. Linear LS problem yielded by assuming linearized models for the odometers and the measurements.
The superscript 0 indicates the linearization point of the respective variables, and δx means the variation of the

variable x around its linearization point x0, so that x = x0 + δx. The decorated capital letters represent the
Jacobians of the model functions: F xi is the Jacobian of fi(x, v) w.r.t x, Uxk and U lk are, respectively, the
Jacobians of huk(x, l) w.r.t. x and l, and Sxk , Slk, and Sgkare the Jacobians of hsk(x, l, g) w.r.t. x, l, and g,

respectively. The notation ||a||2Σ is used to indicate the squared Mahalanobis norm of a with respect to Σ, given
by aTΣ−1a. Note that the variables subject to inference become δθ(δX, δL, δG), where δX = {δxi}Ti=1,

δL = {δlj}Nj=1, and δG = {δgj}Nj=1.

As a result, the posterior in (1) is given by the
generative model

P (X,M |Z;J)=P (x0)
∏T
i=1P (xi|xi−1, vi)

×
∏N
j=1 {P (lj |cj)P (gj |cj)}

×
∏K
k=1 {P (uk|xik , ljk)P (sk|xik , ljk , gjk)}

(6)

2.2. Assuming Simple Geometry: Size
Only
In this work, we take gj to be simply the object

3D bounding dimensions, and sk the apparent size
measurements. Although the generative model of
the objects shape in images can be very complex,
this simplifications can yield fairly approximated
models under certain assumptions. The most im-
portant ones are that the camera keeps a certain
distance from the objects, and that their apparent
sizes do not change significantly from different
viewpoints at the same distance.
The interesting difference with point-based vi-

sual SLAM or SFM is that apparent size now yields
range to objects even by a single sighting. After
several sightings both object dimensions and posi-
tion will be sharply determined by triangulation,
obsoleting the coarse priors.

3. Inference using QR decomposition

As inference technique, we adopt the same in-
ference engine as many traditional SFM works. As
usual in this literature, we factorize the posterior
in (6) as product of Gaussian probabilities, which
naturally leads (1) to be formulated as a linearized
LS problem. In more complex 3D reconstruction
(e. g., [11]), solving the linearized problem is part
of an iteractive non-linear optimization strategy,
like Levenberg-Marquardt. Here, we focus only the
linear part.

3.1. Using linearized Gaussian models
To assure the posterior (6) is expressed as a

product of Gaussians we define our model consider-
ing that all measurements and prior knowledge are
normally distributed. Thus, the prior over objects
location and size are given by

lj = γ(cj) + elj , elj ∼ N(0,Γ(cj))
gj = ς(cj) + egj , egj ∼ N(0,Σ(cj)) (7)

where elj and egj are the errors on the priors over
objects location and size, respectively. Odometry
and measurements are also disturbed by white
noise, so we can write:
xi = fi(xi−1, vi) + exi , exi ∼ N(0, Qi)
uk = huk(xik , ljk) + euk , euk ∼ N(0, Rk) (8)
sk = hsk(xik , ljk , gjk) + esk, esk ∼ N(0,W k)

where exi , euk and esk are, respectively, the odometry
error, and the errors in the object position and size
in image.

Since the functions fi(.), huk(.) and hsk(.) are,
in general, non-linear, linearized versions of them
are used to assure a Gaussian posterior density.
Replacing the densities yielded by (7) and by the
linearized version of (8) in (6) yelds our posterior,
so that taking the negative natural log of the max-
imizing term in (1) results in a linear LS problem,
stated in table 1.
3.2. QR factorization

The resulting LS problem can be efficiently
solved using a sparse Choleski factorization, like
QR, by rewritting it in the matricial form:

δθ∗ = arg min
δΘ
||Aδθ − b||2P (9)

where each block-line in A and b correspond to
one of the summand terms in Table 1, and P is
a block-diagonal matrix with the covariances that
weigh the summands.
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Figure 4. Illustration of the data and object model used in our experiments. a) Example of annotated data
available from the data set. Objects are marked with bounding polygons, and are given a label. c) Detected
objects sizes in image, corresponding to a "bounding slice" of the object, extracted from the annotation polygon.
They comprise the radial size, which is a projection of the object height, and the angular width. d) Model adopted
to represent the objects, comprising their height, average width, and base point position. e) Exemple of the built
3D environment model, showing also the inferred trajectory.

Due to the sparseness of A, QR factorization is
an efficient way to solve (9) [12]. QR factorization
represents an m × n matrix A, with m ≥ n, by
a multiplication of other two matrices [8], A =
Q

[
R
0

]
, where Q is anm×m orthonormal matrix,

and R is the n×n upper-triangular Cholesky factor
of ATA. Let us rewrite (9) as a minimization of an
Euclidean distance by incorporating the covariance
matrix into the other terms:

||Aδθ − b||2P = ||Āδθ − b̄||2

where Ā = P−
1
2A, b̄ = P−

1
2 b, and P− 1

2 is the
Cholesky factor of P−1. The QR factorization of Ā
allows us to rewrite (9) in the form

δθ∗ = arg min
δΘ
||Q
[
R
0

]
δθ − b̄||2

= arg min
δΘ
||Q
([

R
0

]
δθ −

[
c
r

])
)||2

Once R̄ is upper-triangular square, and full-rank
since Ā poses an over-determined linear system, the
solution for the problem is obvious: it is given by
the solution of Rδθ = c, leaving ||r||2 as the total
squared residual.

4. Experimental results
The presented approach was tested using a real-

world annotated data set, obtained on line from the
project From Sensors to Human Spatial Concept
[13] website. The image sequence was captured
by an omnidirectional camera using a hyperbolic
mirror at 7.5 fps. However, only the odd numbered

images were annotated, so we use images grabbed
at half of this frame rate. We assume that the
objects in the scene could be roughly represented by
cylinders, using the 3D position of their base point
to represent their locations, as depicted in Fig. 4.
The measured sizes correspond to the angular slice
bounding the annotated object. We clearly benefit
from using an omnidirectional camera, once we can
get several sights of an object without concerning
about actively focusing it in the image. For the
camera movement, we assumed a 3DOF planar mo-
tion model, using odometer information to predict
the camera pose from a frame to the other.

The linearization value of the object parameters
were initialized by projecting their a priori height
in the world using the radial size measurement. Ob-
tained results are showed in Figs. 4(d) and 5. Our
approach showed an improvement of the recovered
camera path w.r.t. the a priori odometer-based
one. As a ground truth for our experiments, we used
the trajectory obtained by a SLAM algorithm using
laser scans data provided in toolbox that came with
the data set.

5. Conclusion and future work
We presented a novel approach for acquiring

simple 3D object-based models of the environment
from a single moving camera. The results presented
corroborate the idea of using object recognition
output in a simple and fast 3D model builder of the
objects in the scene. More elaborated models would
require view-point dependent modeling, leading to
inference on a hybrid discrete/continuous model,
which are more costly to infer.
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Figure 5. Results obtained with object-based SLAM.
a) Comparison among trajectories. The inferred tra-
jectory is closer to the ground truth. b) Bird-eye
view of the built objects model. The black-dotted line
represents the inferred trajectory, while the green line
is the trajectory obtained by laser-based SLAM, which
we consider as our ground truth. The house blueprint
was extracted from [13].
Although we require objects to be recognized

perfectly for now, state-of-the art object recogni-
tion techniques show very low error rates, so that a
quasi-ideal condition could be achieved indoors, by
focusing on very prominent obstacles, and tuning
the detector to minimize fake positives. However,
for future work we are working on augmenting our
model to include discrete unknowns, namely the
correspondence J , the class labels C, and possi-
bly viewpoint selection. More specifically, we are
investigating sampling techniques over the discrete
parameter space, each sample corresponding to a
different linear system. In this case, we will in-
vestigate incremental QR update techniques, so
that small changes in the discrete variables can be
rapidly processed, leading to vary fast estimates.
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