
Optical Flow Templates for Superpixel Labeling
in Autonomous Robot Navigation

Richard Roberts and Frank Dellaert
Georgia Institute of Technology

Abstract— Instantaneous image motion in a camera on-board
a mobile robot contains rich information about the structure
of the environment. We present a new framework, optical flow
templates, for capturing this information and an experimental
proof-of-concept that labels superpixels using them. Optical
flow templates encode the possible optical flow fields due to
egomotion for a specific environment shape and robot attitude.
We label optical flow in superpixels with the environment shape
they image according to how consistent they are with each
template. Specifically, in this paper we employ templates highly
relevant to mobile robot navigation. Image regions consistent
with ground plane and distant structure templates likely indicate
free and traversable space, while image regions consistent with
neither of these are likely to be nearby objects that are obstacles.
We evaluate our method qualitatively and quantitatively in an
urban driving scenario, labeling the ground plane, and obstacles
such as passing cars, lamp posts, and parked cars. One key
advantage of this framework is low computational complexity,
and we demonstrate per-frame computation times of 20ms,
excluding optical flow and superpixel calculation.

I. INTRODUCTION

For a camera attached to a mobile robot, instantaneous
image motion contains rich information about the robot’s
egomotion and the structure of the environment. In this paper,
our contribution is to present a new framework for capturing
this information, in which we attempt to address some
shortcomings of previous work, and present an experimental
proof-of-concept of this framework.

This framework, which we call optical flow templates,

Each template is a probabilistic optical flow subspace with a
basis flow for each velocity component. Linear combination
by each component predicts the flow field from egomotion.

Template 1 (k = 1)
ground plane

Template 2 (k = 2)
distant structure

Input: Platform
attitude

θ

Observed frame and
optical flow superpixels

ωx, ωy, ωz,
vx, vy, vz

ωx ωy ωz

vx vy vz

ωx ωy ωz

vx vy vz

Superpixel
labeling

Estimated
velocity

Iteratively refine labeling and velocity so observed
flow agrees with flow predicted by templates.

InputInference Obstacle — not
explained by templates

Fig. 1: Optical flow templates for superpixel labeling. Optical flow templates W k (θ), one for each structure class ground
plane (k = 1) and distant structure (k = 2), predict optical flow ui at each ith image location, given a platform velocity
estimate ξ = [ωx, ωy, ωz, vx, vy, vz]

T and attitude estimate θ ∈ SO (3). Each template consists of 6 flow fields that combine
linearly for each velocity component. For the optical flow color code, see Figure 3. Using observed optical flow, alternatively
refine the labeling ki for each ith superpixel and the estimated velocity ξ. The special class k = 0 indicates optical flow
pixels that cannot be explained by any template, which we label as obstacle.

illustrated in Figure 1, permits semantically labeling image
regions according to their observed optical flow and the
predicted optical flow of several templates. Optical flow
templates predict the optical flow due to robot egomotion,
for a given robot velocity and attitude, and for a particular
type of environment structure.

In this work, we use templates for ground plane and
distant structure, and label regions that are not consistent
with any other template as possible obstacles. Ground plane
labels are likely to indicate fairly flat ground that can be
driven upon. Far-away objects “at infinity” indicate line-
of-sight directions that are likely free of obstacles. Image
regions that are not consistent with either of these are likely
to be nearby objects or other moving objects to be considered
as obstacles.

The work to date towards using image motion for au-
tonomous navigation has several drawbacks that limit its
usefulness. While our framework does not completely solve
the problem, it is a new way of looking at the problem that
addresses some of the drawbacks.

In Section II we review related work and our position
with respect to it, in Sections III and IV we explain optical
flow templates and a method for labeling superpixels using
them, and in Section V evaluate the method qualitatively,
quantitatively, and in computational efficiency, in an urban
driving scenario.

II. RELATED WORK

In autonomous driving, the current standard is to compute
a 2D traversability map for path planning using information
from 3D laser range scans, stereo correspondences, and
structure from motion; for examples see [1], [2]. Becker
et al. [3] accumulate optical flow information over short
spans of time to infer a dense 3D reconstruction of the
scene in front of the robot. The main drawback of these
methods is the expensive computation required to calculate
and then analyze large point clouds accumulated over many
frames, both optimization problems with many variables. In
comparison, our method uses very little computation because
it directly estimates labels from optical flow data between
pairs of frames, a single optimization problem with many
fewer variables.

Instead of this standard method of measuring or computing
3D point clouds, other lines of research semantically label
image regions using image appearance and machine learn-
ing [4], [5]. With applications outside of robotics as well,
Hoiem et al. [6] also uses monocular features and machine
learning to estimate 3D structure from single images. Our
method, which uses optical flow information, is complemen-
tary to these methods that use image appearance. In this
paper, our goal is to evaluate the utility of optical flow
information alone, and to combine it with the appearance
cues of this related work in future work.

Several lines of research combine 3D or image motion
information with image appearance information using ma-
chine learning methods both to estimate semantic image
labels and high-level semantic 3D structure. Brostow et
al. [7] segment images into relevant regions such as street,
sidewalk, car, etc. using structure-from-motion cues. Sturgess
et al. [8] estimate similar segmentations using motion appear-
ance and structure-from-motion information. These methods
work well but require much labeled training data, and here
we suggest that there is in fact a lot of information to be
extracted from optical flow before having to use hand-labeled
training data.

Geiger et al. [9] infer 3D street and traffic patterns from
video from a moving platform, combining information from
vehicle tracking, vanishing points, and image appearance.
The information extracted is very rich, but comes at a
high computational cost that makes it infeasible for small
platforms.

Perhaps most closely related in method to this paper is that
of Giachetti et al. [10], who use the differences between the
observed optical flow and the flow predicted given motion
on a ground plane to segment out other cars in the road.
Additionally, Nourani-Vatani et al. [11] use optical flow for
environment shape recognition with a discriminative learning
method, matching flow fields to a database of locations using
the flow field spatial statistics.

In contrast to planning over dense 2D or 3D maps, in
which interpretation can be very difficult and computation-
ally expensive, many researchers have investigated mobile
robot control directly from optical flow. Inspired by research

into the role of optical flow in animal and human naviga-
tion [12], [13], Duchon et al. [14] evaluate control laws
for chasing, escaping, and other behaviors. Srinivasan et al.
review a number of other bio-inspired optical flow control
strategies, developed both by their group and others [15]. The
main drawback of these methods is that they use heuristics,
such as left-right flow balancing, that make their behavior
difficult to predict and result in systematic errors. For that
reason, we explicitly leverage a geometric model.

Conroy et al. [16] and Hyslop and Humbert [17] develop
methods for autonomous robot control using “wide-field
optic flow integration”, which takes inner-products of the
observed flow fields with a set of template flow fields.
Using knowledge of possible coarse scene geometries such as
walls and corridors, they develop templates and control laws.
Our goal is different in that instead of inferring this coarse
structure, we label finer structures and individual obstacles.

III. OPTICAL FLOW TEMPLATES

An optical flow template encodes the space of possible
optical flow fields corresponding to a certain environment
structure, invariant to the platform velocity. In turn, optical
flow templates also specify a linear mapping from platform
velocity ξ = [ωx, ωy, ωz, vx, vy, vz]

T to optical flow, for a
given robot attitude, and for a particular environment struc-
ture class. Shown in Figure 1, in this paper we specifically
work with 3 possible classes: ground plane, distant structure,
and obstacle. Let W k (θ) ∈ R2wh×q be the optical flow
template for environment structure class k, where w and
h are the image width and height, and q is the velocity
dimension (in this paper q = 6). Optical flow templates
are nonlinear functions of the platform attitude θ. Thus they
predict a flow field for structure class k as uk = W k (θ) ξ.

A. Optical Flow as a Gaussian Mixture of Templates

Because each pixel may be generated from any template,
we model the optical flow ui at each pixel i as a Gaussian
mixture of the flow predicted ûki by each template,

p (ui |Λi, ξ) = N
(
0, Σ0

)Λ0
i

κ∏
k=1

N
(
ûki (ξ) , Σ

)Λk
i , (1)

where Λki ∈ {0, 1} is a binary indicator of 1 if pixel i takes
the discrete label k, and 0 otherwise. Σ is the covariance of
the Gaussian noise on the optical flow consistent with the
template, and Σ0 is the covariance of zero-mean Gaussian
noise on optical flow that is not consistent with any template,
i.e. is labeled as obstacle. ûki (v) = W k

i (θ) ξ is the optical
flow predicted by template k at pixel i, and we assume that
the platform attitude θ is known, as explained in Section III-B
where we calculate the templates. The notation W k

i selects
the pair of rows corresponding to pixel i from the optical
flow template W k. As is typical with notation in Gaussian
mixtures, raising each term to the power of the indicator
variable effectively makes only one term active for a given
labeling.

Because the optical flow templates result in a linear rela-
tionship between velocity and optical flow, the measurement

likelihood in Eq. 1 is Gaussian, allowing inference to be fast
and guaranteeing convergence. Each optical flow template is
one instance of the optical flow subspace model introduced
in our previous work [18].

B. Calculating Optical Flow Templates

The optical flow field in a calibrated projective camera is
(see e.g. [19] for derivation)

ui =

[
yi

xiyi
f −f − x2

i

f
xi

zi

−f
zi

0

−xi f +
y2
i

f
−xiyi
f

yi
zi

0 −f
zi

]
ξ, (2)

where xi and yi are the horizontal and vertical image
coordinates (with the origin at the image center) at pixel i, zi
is the depth at pixel i, and f is the focal length. The matrix
is arranged such that ξ = [ωx, ωy, ωz, vx, vy, vz]

T is the
rotational and translational velocity in “robot coordinates”,
where the x-axis points forwards and the z-axis points down.

For a flow field u comprised of the concatenated flow
vectors ui ∈ R2, the optical flow template W k (θ) is thus
formed by stacking all of the matrices in Eq. 2. The depth
zi at each pixel depends on both the scene structure and
the platform attitude θ. In this paper, we consider templates
corresponding to ground plane and distant structure. For
ground plane, we compute zi using plane-line intersection
geometry. For brevity, we omit the derivation which is a
straightforward application of the tools in Chapter 2 of [20].
For distant structure, we use zi = ∞ everywhere. In
Figure 1, the ground plane template shows the camera is
pitched slightly down – the boundary between the black and
the colorful regions is the horizon.

In this paper, we assume the platform attitude θ is known.
In our experiments, we obtain it from an attitude/heading
reference system (AHRS). On autonomous ground vehicles
and aircraft, this is common equipment, and is typically
implemented using measurements from an accelerometer and
gyroscope [21].

IV. SUPERPIXEL LABELING

Our method assigns a probability that each superpixel
of optical flow in a frame of video belongs to each class,
with each class represented by an optical flow template.
Inference is a matter of labeling superpixels such that all
superpixels assigned to the same template exhibit consistent
optical flow within that template, and that all superpixels
across all templates predict a consistent platform velocity.
To simplify notation, we do not include frame numbers or
time steps, but each frame is labeled independently.

Let λj ∈ Rκ be the vector of probabilities that superpixel
j belongs to each class, and λkj ∈ R be the kth element,
i.e. the probability that superpixel j belongs to class k. Let
k ∈ {0, 1, 2}, where the special class k = 0 corresponds to
obstacle, and κ = 3 is the number of classes (including
obstacle). Both the superpixel labels λj and the velocity
estimate ξ are alternatively refined, but for simplicity we
omit iteration numbers from the notation.

A. Superpixel Labeling Given a Velocity Estimate
Our end goal is to label superpixels according to which

optical flow template they are consistent with. This requires
knowing the optical flow templates themselves (as obtained
in Section III-B). Although each optical flow template en-
codes an optical flow subspace that is invariant to platform
velocity, we want to enforce that all superpixels predict
a consistent platform velocity. Thus, we will iteratively
estimate the platform velocity (as explained in Section IV-B),
and in this section, take the current velocity estimate ξ.

While in the previous Section III we defined the density of
optical flow at a pixel i predicted by an optical flow template,
we now switch to superpixels. All of the inference here may
equally be performed at the pixel level, but using superpixels
greatly reduces the computational expense. We use the index
j to denote a superpixel, and use uj and Λj to denote the flow
and labeling of a superpixel, and W k

j (θ) to denote the pair
of rows corresponding to the pixel at the center of superpixel
j.

We estimate the probability λkj of each jth superpixel
belonging to each class. These probabilities define a multi-
nomial distribution p (Λj = ek) = λkj over the labels (where
ek ∈ Rκ is a vector with 1 in position k and 0 elsewhere,
i.e. an assignment of the discrete indicator variables). Each
assignment probability λkj is the normalized likelihood that
the superpixel is consistent with template k,

λkj =
l (Λj = ek | ũj , ξ)∑
k̄ l (Λj = ek̄ | ũj , ξ)

, (3)

where l (·) ∝ p (·) denotes a likelihood and ũj is the average
measured optical flow in superpixel j. We calculate the
likelihoods here using Bayes’ law,

l (Λj | ũj , ξ) = p (ũj |Λj , ξ) p (Λj) , (4)

where the measurement likelihood p (ũj |Λj , ξ) is as in
Eq. 1, except that the predicted flow ûki (ξ) is calculated
by choosing pixel i to be at the center of superpixel j.
p (Λj) is the class prior, which in our experiments is a simple
multinomial distribution.

In the next section, we describe refining the velocity
estimate ξ given the labeling estimated with Eq. 3 above. As
mentioned before, the velocity and labeling are alternatingly
refined until convergence.

B. Refining the Velocity Estimate Given the Labeling
To refine the velocity ξ, we treat the labeling Λj as a

hidden variable and update the velocity using expectation-
maximization (EM),

ξ ← arg max
ξ
〈L (ξ | ũ,Λ)〉 , (5)

where L (·) = log l (·) denotes a log-likelihood, ũ and Λ are
the collections of optical flow vectors and indicator vectors
for all superpixels, and the expectation 〈·〉 is with respect
to p (Λ | ũ, ξ). Using Bayes’ law and the linearity of the
expectation, we have

〈L (ξ | ũ,Λ)〉 = L (ξ) +
∑
j

〈L (ũj |Λj , ξ)〉 , (6)

where the expectation is now with respect to p (Λj | ũj , ξ).
To compute the expected log measurement likelihood
〈L (ũj |Λj , ξ)〉, we note that the class probabilities λkj calcu-
lated in the previous section comprise the sufficient statistics
for this EM algorithm, giving everything we need to calculate

〈L (ũj |Λj , ξ)〉 =
∑
k

λkjL (ũj |Λj = ek, ξ) , (7)

where the the log measurement likelihood is the log of Eq. 1.
Note that the velocity ξ used in Eq. 1 is in fact the variable
being optimized for in this section, and is not fixed here as
it was in Section IV-A.

Because the measurement likelihood is Gaussian, the
expected log-likelihood is a quadratic, and thus refining
the velocity estimate with the maximization in Eq. 5 is a
linear least-squares problem that is easily solved using direct
methods.

C. Summary and Implementation of Method

Given each of the components we have introduced in this
section, we now summarize the steps that take place for each
incoming video frame here in Algorithm 1:

Algorithm 1: Superpixel labeling for each frame.
Input: Current and previous video frames.
Input: Platform attitude θ (e.g. from AHRS).
Result: Class label probabilities λkj for each superpixel

j and class k.

1 For current frame, compute SLIC superpixels [22].
2 For previous and current frames, compute TV-L1 [23],

[24] optical flow ũ and average flow ũj in each
superpixel.

3 Compute basis flows W k
j (θ), at image locations

corresponding to superpixel centers.
4 Initialize class label probabilities uniformly, λkj = 1

κ .
5 while change in 〈L (ξ | ũ,Λ)〉 is greater than

convergence threshold1 ε do
Update ξ ← arg maxξ 〈L (ξ | ũ,Λ)〉 (Sec. IV-B)
Update λkj ←

l(Λj=ek | ũj ,ξ)∑
k̄ l(Λj=ek̄ | ũj ,ξ)

(Sec. IV-A)
end

6 return λkj

V. EXPERIMENTS

Our experimental platform is a car equipped with a Point
Grey Flea3 (gigabit ethernet version) camera running at
1380×480 at 10Hz, and a MicroStrain 3DM-GX3-45 inertial
navigation system (INS), from which we use only the AHRS
attitude estimate. Both were connected to an Intel Core i7
laptop for data logging, and the computations described in
this paper were performed on the logged data.

1This convergence criteria relies on the likelihood normalization constant
remaining constant during optimization. To accomplish this, it is sufficient
to include in the likelihood calcaulations the normalization constants from
all Gaussians involving the velocity v.

We operated the car in an urban environment. In collecting
the dataset, we took care not to follow any car in front too
closely. We did not make any other special considerations in
driving style while collecting the dataset.

The parameters Σ = diag (7.0) and Σ0 = diag (15.0)
were used for the noise covariances. These values were se-
lected empirically: Too tight covariance causes too many su-
perpixels to be labeled as obstacle due to slight noise in opti-
cal flow measurements, while too loose covariance causes all
superpixels to be labeled only ground plane or distant struc-
ture. For the label priors, we used p (Λ = ground plane) =
0.4 and p (Λ = distant structure) = 0.4 for superpixels
below the horizon, and p (Λ = ground plane) = 0 and
p (Λ = distant structure) = 2/3 above the horizon (in each
case the remaining probability is for obstacle). These values
were chosen by manual estimation of the image portion
occupied by each class in several typical frames, although
the algorithm is not very sensitive to this prior.

Our implementation of the algorithms is in C++ using
the GTSAM factor graph library [25]. The C++ classes
are wrapped in MATLAB using the wrap utility included
in GTSAM, and we perform data loading, scripting, and
visualization in MATLAB. All source code and datasets will
be made available online on the authors’ web site by the
time of publication (link will be provided in camera-ready
version).

A. Qualitative Analysis

In Figure 2, we present examples of the labeling produced
by our method that we consider successful. These examples
are successful because the information they contain is useful
for autonomous navigation. For the most part the major
structure above the ground plane and close to the camera
is labeled as “obstacle” (red), and the ground plane (green)
and distant structure (blue) are mostly correctly labeled.
The obstacle structure above the ground plane is often
obstacles, road boundaries, or independently-moving objects.
Such structure could be avoided by a navigation method or
passed on to higher-detail vision processing.

Sometimes the labeling produced by our method contains
errors. One type of error arises because the optical flow
estimate is incorrect. Most frequently, this occurs in regions
with smooth or repetitive texture, as shown in Figure 4a.
This type of error points us towards future work because the
root cause of this problem is computing optical flow as an
input that is unaware of the global optical flow constraints
provided by our optical flow templates. We expand on this in
the discussion. Another type of error occurs when the differ-
ences between the predicted optical flow from two templates
becomes too small to distinguish from noise, as shown in
Figure 4b. In this case, superpixels on the ground plane may
be be labeled with 50% probability of belonging to either
the ground plane or distant structure classes, indicated in
the figure by the green/blue or turquoise blended color; also,
ground plane superpixels may be labeled as distant structure
if small error in the velocity estimate of our method causes

(a) Car crossing perpendicularly
while platform stationary

(b) Passing lamps on right side
while driving forwards

(c) Passing cars parked on both
sides while driving forwards

(d) Encountering pedestrians during
a right turn

Fig. 2: Example video frames, superpixel optical flow fields, and superpixel labels by our method.

Fig. 3: The optical flow color code, as in [26]. Flow fields
(e.g. Figure 1) are displayed with a color at each pixel. The
hue indicates the direction of the flow and the saturation its
magnitude. Here, the center of the black cross (color white)
is zero flow. Yellow is downwards flow, red rightwards, etc.

(a) Error in labeling the ground as
obstacle due to optical flow errors
caused by smooth texture.

(b) Error in labeling ground plane
as distant structure due to similarity
between rotational and translational
basis flows.

Fig. 4: Examples demonstrating errors in labeling by our
method.

the optical flow on the ground plane to agree more closely
with rotational flow than with translational flow.

B. Quantitative Analysis

We hand-evaluated 200 frames of video and labels pro-
duced by our method, the results of which are shown in
Figure 5. In each frame, we determined the number of
objects or regions of environment structure mislabeled by our
method. “Extra obstacles” are image regions that our method
labels in the obstacle class, yet there is no structure above

0 20 40 60 80 100 120 140 160 180 200

0

1

2

Frame number

N
u

m
b

e
r

o
f

o
b

je
c
ts

 m
is

la
b

e
le

d

0 20 40 60 80 100 120 140 160 180 200

0

0.02

0.04

ω
z
 y

a
w

−
ra

te
 e

s
ti
m

a
ti
o

n
 e

rr
o

r,
 r

a
d

/sExtra obstacles

Missed obstacles

Yaw−rate estimation error

Fig. 5: Number of objects mislabeled by our method, evalu-
ated by hand-inspecting 200 frames labeled by our method.
We counted “extra obstacles”, which are image regions
detected by our method as the obstacle class when no nearby
structure was in fact present, and “missed obstacles”, where
nearby structure was present but not detected.

the ground plane near the camera in that region. “Missed
obstacles” are image regions containing structure above the
ground plane near the camera but that our method does not
label as obstacle. For example, in Figure 4a we would count
the region mislabeled on the ground plane as one “extra
obstacle”, and a missed car or pedestrian would count as one
“missed obstacle”. In hand-labeling, we took into account the
smoothing inherent in the optical flow calculation, so several
objects close together, for example poles on the side of the
road, are only counted as one object.

Because our method estimates superpixel labels jointly
with platform velocity, we test whether errors in superpixel
labels are coupled with errors in yaw-rate estimation. Fig-
ure 5 plots the yaw-rate error of our method as compared
with the vehicle’s gyroscope. While gross yaw errors would
certainly be coupled with many incorrect superpixel labels,
the comparison demonstrates that there is no correlation
between small yaw errors and errors in superpixel labeling.

C. Timing

Our research implementation is single-threaded, and takes
approximately 20 ms per frame (±2 ms) to infer superpixel
labels and velocity, already having the optical flow and

superpixel segmentation available as input. For each frame,
the combined time to calculate TV-L1 optical flow and
SLIC superpixels on the CPU is 500 ms per frame, however,
there are GPU versions available of both algorithms that
achieve real-time performance using CUDA. All timings
were measured on an Intel Core i7 3.4 GHz desktop. The
nature of the linear least-squares problem makes it adaptable
to parallelization and GPU implementation.

VI. SUMMARY AND FUTURE WORK

We have presented a new framework for interpreting
optical flow observed by a mobile robot, called optical flow
templates. Using templates for ground plane and distant
structure, our method labels image regions whose flow is
consistent with these templates, as well as labeling flow
inconsistent with either as obstacle. This latter class com-
prises objects that occupy space above the ground plane near
to the robot, and may be passed on for more detailed and
computationally intensive processing.

The key aspects of the superpixel labeling method using
this framework, in relation to previous work, include that
computational complexity is very low, and geometric models
of optical flow remove the need for hand-labeled training data
or heuristics. We present an experimental proof-of-concept,
labeling video in an urban driving scenario.

One direction of future work is to jointly infer optical
flow along with the velocity and superpixel labels. We have
observed, as shown in Section V-A, that many of the errors
made by our method come from errors in optical flow esti-
mation. These errors especially occur in regions of smooth
texture, where the task of optical flow is underconstrained
and ill-posed without a global optical flow model. Our
optical flow templates in fact provide such a model, so joint
inference should make much more accurate labels possible.
Another benefit of joint inference will be sharper image
segmentations of objects and boundaries between classes,
which are currently blurred due to the smoothness terms
necessary to compute dense optical flow.

REFERENCES

[1] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural
terrain classification using three-dimensional ladar data for ground
robot mobility,” Journal of Field Robotics, vol. 23, no. 10, pp.
839–861, Oct. 2006.

[2] A. Huertas, L. Matthies, and A. Rankin, “Stereo-Based Tree
Traversability Analysis for Autonomous Off-Road Navigation,” 2005
Seventh IEEE Workshops on Applications of Computer Vision
(WACV/MOTION’05) - Volume 1, pp. 210–217, Jan. 2005.

[3] F. Becker and F. Lenzen, “Variational recursive joint estimation of
dense scene structure and camera motion from monocular high speed
traffic sequences,” International Conference on Computer Vision,
2011.

[4] J. Michels, A. Saxena, and A. Y. Ng, “High speed obstacle avoidance
using monocular vision and reinforcement learning,” in Proceedings
of the 22nd international conference on Machine learning - ICML
’05. New York, New York, USA: ACM Press, 2005, pp. 593–600.

[5] Y. N. Khan, P. Komma, and A. Zell, “High resolution visual terrain
classification for outdoor robots,” pp. 1014–1021, 2011.

[6] D. Hoiem, A. A. Efros, and M. Hebert, “Recovering Surface Layout
from an Image,” International Journal of Computer Vision, vol. 75,
no. 1, pp. 151–172, Feb. 2007.

[7] G. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla, “Segmentation
and recognition using structure from motion point clouds,” European
Conference on Computer Vision, 2008.

[8] P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr, “Combining
Appearance and Structure from Motion Features for Road Scene
Understanding,” Procedings of the British Machine Vision Conference
2009, pp. 62.1–62.11, 2009.

[9] A. Geiger, M. Lauer, and R. Urtasun, “A generative model for
3D urban scene understanding from movable platforms,” in IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition. Ieee, Jun. 2011, pp. 1945–1952.

[10] A. Giachetti, M. Campani, and V. Torre, “The use of optical flow for
road navigation,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 1, pp. 34–48, 1998.

[11] N. Nourani-Vatani, P. V. K. Borges, J. M. Roberts, and M. V.
Srinivasan, “Topological localization using optical flow descriptors,”
2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops), pp. 1030–1037, Nov. 2011.

[12] J. J. Gibson, “Visually controlled locomotion and visual orientation
in animals.” British journal of psychology, vol. 49, pp. 182–194, Apr.
1958.

[13] M. Lehrer, M. V. Srinivasan, S. W. Zhang, and G. A. Horridge,
“Motion cues provide the bee’s visual world with a third dimension,”
Nature, vol. 332, no. 6162, pp. 356–357, Mar. 1988.

[14] A. Duchon, W. H. Warren, and L. P. Kaelbling, “Ecological
Robotics: Controlling Behavior with Optic Flow,” in International
Joint Conference on Artificial Intelligence, 1995.

[15] M. Srinivasan, S. Thurrowgood, and D. Soccol, “Competent Vision
and Navigation Systems,” IEEE Robotics & Automation Magazine,
vol. 16, no. 3, pp. 59–71, Sep. 2009.

[16] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert,
“Implementation of wide-field integration of optic flow for
autonomous quadrotor navigation,” Autonomous Robots, vol. 27,
no. 3, pp. 189–198, Aug. 2009.

[17] A. M. Hyslop and J. S. Humbert, “Autonomous Navigation in Three-
Dimensional Urban Environments Using Wide-Field Integration of
Optic Flow,” Journal of Guidance, Control, and Dynamics, vol. 33,
no. 1, pp. 147–159, Jan. 2010.

[18] R. Roberts, C. Potthast, and F. Dellaert, “Learning general optical flow
subspaces for egomotion estimation and detection of motion anoma-
lies,” in IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2009.

[19] D. Heeger and A. Jepson, “Visual Perception of Three-Dimensional
Motion,” Neural Computation, vol. 2, pp. 127–137, 1990.

[20] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision. Cambridge University Press, 2000.

[21] J. Farrell, Aided Navigation: GPS with High Rate Sensors. McGraw-
Hill, 2008.

[22] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods.”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 34, no. 11, pp. 2274–82, Nov. 2012.

[23] C. Zach, T. Pock, and H. Bischof, “A duality based approach for
realtime TV-L 1 optical flow,” Ann. Symp. German Association Patt.
Recogn, 2007.

[24] J. Sánchez, E. Meinhardt-Llopis, and G. Facciolo, “TV-L1 Optical
Flow Estimation,” Image Processing On Line, 2012.

[25] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep. GT-RIM-CP&R-2012-
002, 2012.

[26] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and
R. Szeliski, “A Database and Evaluation Methodology for Optical
Flow,” International Journal of Computer Vision, vol. 92, no. 1, pp.
1–31, Nov. 2010.

