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Abstract
We present a novel algorithm for topological mapping, which is the problem of finding the graph structure of an
environment from a sequence of measurements. Our algorithm, called Online Probabilistic Topological Mapping
(OPTM), systematically addresses the problem by constructing the posterior on the space of all possible topologies given
measurements. With each successive measurement, the posterior is updated incrementally using a Rao–Blackwellized
particle filter. We present efficient sampling mechanisms using data-driven proposals and prior distributions on topologies
that further enable OPTM’s operation in an online manner. OPTM can incorporate various sensors seamlessly, as is
demonstrated by our use of appearance, laser, and odometry measurements. OPTM is the first topological mapping
algorithm that is theoretically accurate, systematic, sensor independent, and online, and thus advances the state of the art
significantly. We evaluate the algorithm on a robot in diverse environments.

Keywords

1. Introduction

Topological mapping is the problem of computing a graphi-
cal structure of the environment from sensor measurements.
In general, the nodes of the topological graph represent
landmarks or significant places while the edges denote con-
nectivity between the landmarks. This is a more abstracted
representation than the commonly used metric maps, which
show space to scale. For this reason, topological maps are
more scalable, in that they do not require as much stor-
age as equivalent metric maps. Further, topological maps
are also more intuitive, and there are indications that topo-
logical representations are used by humans for navigation
(Lynch 1971).

Owing to their abstractness, the construction of topolog-
ical maps is arguably more complicated than the construc-
tion of metric maps. The problem involves the transforma-
tion of sensor measurements such as laser scans and odom-
etry, most of which are metric in nature, into topological
quantities. Further, the two component problems of topo-
logical detection, i.e. the first of determining which places
are significant enough to be declared as nodes in the graph,
and second of finding the correspondence between nodes of
the topological graph and measurements, are hard problems
in themselves. A systematic algorithm for the construction
of topological maps has proved elusive.

In this paper, we address the correspondence problem,
or the loop-closing problem, in the context of topological
mapping. This involves matching sensor measurements to
previously seen places, or being able to identify whether the
measurement comes from a previously unseen place. These
matches lead to identification of the global structure of the
environment, which is nothing but the topological map. The
problem is made difficult due to the fact that the same place
may appear different at different times due to changes in
lighting and viewpoint, among other things. At the same
time, different places may also appear similar leading to
perceptual aliasing. Current mapping algorithms mostly
solve loop closing in an ad-hoc manner by matching low-
level sensor-specific features. Even then, since exhaustive
matching is intractable, heuristics such as nearest-neighbor
matching are used, which make the solution even more
brittle.
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A systematic solution to the loop-closing problem in
topological space needs to consider and evaluate all possible
loop closures. This is because any solution that makes irre-
versible loop-closing decisions at any point in time can lead
to a wrong solution, as a loop closure that appears correct
now may be invalidated by future measurements. Hence,
only by considering all possibilities can an algorithm gain
the robustness that is not achievable through heuristics such
as nearest-neighbor matching. This poses a computational
problem since the space of all possible loop closings is com-
binatorial in nature and grows hyper-exponentially with the
number of measurements.

We describe a topological mapping algorithm, called
Online Probabilistic Topological Mapping (OPTM), first
proposed by us in Ranganathan and Dellaert (2006). Our
topological mapping algorithm is unique in that it is based
on Bayesian inference in the space of all possible loop clos-
ings or, equivalently, all possible topologies. The algorithm
is based on our previously presented Probabilistic Topo-
logical Maps (PTM) framework (Ranganathan et al. 2006),
but improves it significantly with a new inference mech-
anism that enables online performance. This was impos-
sible with the original PTM algorithm due to runtime
constraints.

Inference in the space of all topologies is performed
using an online Monte Carlo algorithm based on particle
filtering to compute the Bayesian posterior. Such a sam-
pling algorithm is necessary since the space of all topolo-
gies is combinatorial, as we will demonstrate, and exact
inference is impossible. Particle filtering includes one mea-
surement at a time into the inference procedure to update
the posterior, and hence can be used in an online man-
ner, which is of practical importance for use on a robot.
Further, our Bayesian approach makes the inclusion of mul-
tiple types of sensors possible, as the posterior can be
computed using all available measurements. A data-driven
proposal algorithm is presented for making the algorithm
efficient.

We extend our work in Ranganathan and Dellaert (2006)
by introducing a novel appearance model for computing
vision-based topological maps. The appearance model we
use is the multivariate Polya distribution, a bag of words
model. The model is based on scale-invariant feature trans-
form (SIFT) features detected on images. We demonstrate
the working of the OPTM algorithm using extensive exper-
iments on a physical robot in diverse environments, includ-
ing those not presented previously. The use of odometry,
vision, and laser sensors attest to the sensor-independence
of the framework. Since we are not concerned with land-
mark detection, the experiments involve manual landmark
detection, as well as scenarios with landmarks placed at
equidistant intervals and automatically detected landmarks,
that validate the robustness of the algorithm. The experi-
ments also include standard datasets that are popular for
evaluation in the simultaneous localization and mapping
(SLAM) community.

In the next section, we provide some background and
related work followed by an exposition of the PTM frame-
work. Subsequently, the OPTM algorithm is explained,
including a description of the various sensor models used
to integrate measurements. After this, some techniques for
improving efficiency, such as the use of data-driven propos-
als, are presented followed by experiments and results.

2. Background and related work

PTMs were first introduced in Ranganathan and Dellaert
(2004), where Markov chain Monte Carlo (MCMC) was
used for inference in the space of topologies. The OPTM
algorithm presented here was proposed in Ranganathan and
Dellaert (2006), and this paper significantly improves upon
that work by introducing a powerful appearance model and
evaluating the system through new and extensive experi-
ments.

In addition to topological mapping, our work relates to
the area of loop closing in robotic mapping. In the following
we review relevant prior research in these areas starting with
topological mapping.

2.1. Topological mapping

A topological map consists of a graph containing nodes
and edges. In this work, we use the standard definition of
a topological map (Kuipers and Byun 1991; Choset and
Nagatani 2001; Remolina and Kuipers 2004), wherein the
nodes represent landmarks and the edges connecting them
denote traversibility. The landmarks, in turn, are defined as
distinct places in the environment, where the characteristics
of the environment change significantly, such as at corridor
junctions and doorways.

Topological mapping involves the important sub-
problem of deciding whether a landmark has been previ-
ously visited by the robot and, if so, when. This is also
known as the correspondence problem in topological map-
ping. Solving the correspondence problem is made diffi-
cult due to perceptual aliasing in the environment, whereby
many distinct landmarks appear to be similar to the robot’s
sensors. Thus, the robot has trouble labeling the landmark
correctly and, consequently, in inferring the correct topol-
ogy. Solving the correspondence problem has been a major
area of research since solutions would also be applicable to
the loop-closing problem in metric mapping (Thrun et al.
1998b).

Most existing techniques approach the mapping prob-
lem in a maximum-likelihood framework with the aim of
finding the topology that minimizes some error function.
The pioneering work in this regard is by Shatkay and Kael-
bling (1997) that uses the Baum–Welch algorithm, a variant
of the expectation–maximization (EM) algorithm used in
the context of hidden Markov models (HMMs), to solve
the aliasing problem for topological mapping. Other exam-
ples of HMM-based work include Kaelbling et al. (1996),
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Gutierrez-Osuna and Luo (1996) and Aycard et al. (1997)
where a second-order HMM is used to model the environ-
ment. A variation from the maximum-likelihood methods
is the topological mapping system given by Goedemé et
al. (2007) that uses image clustering to define regions of
space as nodes in the topology. Loop closing and corre-
spondence are performed using Dempster–Shafer decision
theory, but again the decision is binding once taken. For all
of the above methods that rely on picking the most likely
topology, the most likely topology can frequently be wrong
in the presence of aliasing. In addition, the error function to
be optimized may have local minima which also results in
an incorrect map.

Kuipers and Beeson (2002) apply a clustering algorithm
to the measurements to identify distinctive places. This
reduces perceptual variability but not perceptual aliasing,
which is subsequently handled using logic-based hypothesis
testing through further exploration. While this can work in
many cases, no amount of exploration is guaranteed to elim-
inate ambiguity, nor does the method quantify ambiguity in
usable terms.

Many existing algorithms use low-level characteristics
specific to particular sensing modalities such as obstacle
distances from laser scanners to characterize landmarks.
These methods cannot be retargeted to other sensors. An
example is Valgren et al. (2006) who perform topologi-
cal mapping using an omnidirectional camera and model
places using SIFT histograms. Ambiguity is solved using
maximum-likelihood matching of SIFT features, by com-
puting an affinity matrix of the images, and thus involves
binding decisions at each step. Spectral clustering using
the affinity matrix is also performed by Newman et al.
(2006), albeit for the loop-closing problem in the context
of metric maps. Cummins and Newman (2008) also pro-
vide an appearance-based technique for loop closing based
on generative-modeling of bag-of-words models of location
images. However, the decision of whether to close a loop
is based on a maximum-likelihood computation. Dedeoglu
et al. (1999) provide a mapping technique that uses spe-
cific features of the environment such as open doors and
orthogonal walls, and identifies them using low-level char-
acteristics of laser scans. Dudek and Jugessur (2000) use
Fourier transforms of feature patches detected using atten-
tion operators for recognizing landmarks and overcoming
ambiguity.

A common way of overcoming perceptual aliasing
involves exploration by the robot until a distinct landmark is
observed that localizes the robot. Examples of this approach
include Choset’s Generalized Voronoi Graphs (Choset and
Nagatani 2001) and Kuipers’ Spatial Semantic Hierarchy
(Kuipers and Byun 1991). Other approaches that involve
behavior-based control for exploration-based topological
mapping are also fairly common. Matarić (1990) uses
boundary-following and goal-directed navigation behav-
iors in combination with qualitative landmark identifica-
tion to find a topological map of the environment. A com-
plete behavior-based learning system based on the Spatial

Semantic Hierarchy that learns at many levels starting from
low-level sensorimotor control to topological and metric
maps is described in Pierce and Kuipers (1997). Yamauchi
and Beer (1996); Yamauchi and Langley (1997) use a reac-
tive controller in conjunction with an adaptive place net-
work that detects and identifies special places in the envi-
ronment. These locations are subsequently placed in a net-
work denoting spatial adjacency. While the use of control
is a valid approach, it can be wasteful in terms of time and
energy. Our work, in contrast, attempts to extract the max-
imum information possible from available data, although it
is also general enough to incorporate an active localization
approach if needed.

Although more robust approaches that track multiple
topological hypotheses when encountering ambiguity exist,
these are limited in the sense that the whole space of
hypotheses is not explored due to its combinatorial nature.
For instance, Thrun et al. (1998b) use the EM algorithm
to solve the correspondence problem while building a topo-
logical map. The computed correspondence is subsequently
used in constructing a metric map. Another recent approach
gives an algorithm to build a tree of all possible topo-
logical maps that conform to the measurements, but in
a non-probabilistic manner (Remolina and Kuipers 2004;
Savelli and Kuipers 2004). This has been integrated into the
Hybrid Spatial Semantic Hierarchy (Hybrid SSH) model
that integrates metric and topological mapping at differ-
ent scales to provide a comprehensive mapping framework
(Kuipers et al. 2004). Dudek et al. (1993) have also given a
technique that maintains multiple hypotheses regarding the
topological structure of the environment in the form of an
exploration tree.

An approach that is closer to our ideal in the sense
of maintaining a multi-hypothesis space over correspon-
dences, is given by Tomatis et al. (2002) and also uses
partially observable Markov decision processes (POMDPs)
to solve the correspondence problem. However, in their case
the multi-hypothesis space is used only to detect the points
where the probability mass splits into two. Also, like a lot of
others, this work uses specific qualities of the indoor envi-
ronment such as doors and corridor junctions, and hence
is not generally applicable to any environment. Similarly,
Tapus (2005) proposes the use of POMDPs for disambigua-
tion. The distinguishing features of this work is however, the
use of ‘fingerprints of places’ that incorporate various dif-
ferent features such as edges, lines, and color histograms,
and help in resolving ambiguity to a significant extent.
Work by Modayil et al. (2004) generates an ensemble of
topological maps and uses them to construct a global metric
map. However, they do not provide a probabilistic ordering
to their ensemble of maps as the posterior on topologies
constructed by our algorithm does.

Recent work by Blanco et al. (2008) describes a compre-
hensive method called HMT-SLAM for constructing hybrid
metric–topological maps wherein the global map struc-
ture is topological, but is represented locally using metric
submaps. The formalism for computing the loop-closing
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hypothesis in the topology is similar to ours and is bor-
rowed from our previous work in Ranganathan and Dellaert
(2006). Normalized cuts, based on the partition of measure-
ments by the topology, are used to compute the likelihood
of each topology (Blanco et al. 2006).

2.2. Loop closing

Loop closing in metric maps implies identifying correspon-
dences between measurements and physical locations. This
problem in its general form is combinatorial and, hence,
most solutions use heuristics to reduce the search space.
However, reverting to a specific correspondence assignment
using any heuristic involves the danger of choosing a wrong
correspondence, often leading to catastrophic failure of the
mapping system. Common mapping approaches assume
known correspondences, or use a maximum-likelihood
assignment, for instance using the EM algorithm (Thrun et
al. 1998a; Burgard et al. 1999). Maximum-likelihood data
association using the uncertainty covariance on the robot
poses to eliminate unlikely matches is also common (Gut-
mann and Konolige 2000). Pradeep et al. (2009) describe
a method similar to Blanco et al. (2008) in that a hybrid
metric–topological map is built. Bundle adjustment is used
to obtain the local metric submaps while a loop closing test
based on feature matching is used to get the global topology.

A robust way of dealing with unknown correspondences
is to generate a set of candidate assignments, and then prune
inconsistent ones. This is typically done using random sam-
ple consensus (RANSAC) by Bolles and Fischler (1981), a
probabilistic algorithm that repeatedly selects a minimum
number of candidates needed to constrain the given prob-
lem, and determines the support from the remaining candi-
dates. It is frequently used in visual SLAM (Se et al. 2005;
Williams et al. 2007).

A more direct way of dealing with unknown correspon-
dences is to maintain multiple likely hypotheses simultane-
ously. This provides a computational compromise between
picking the most likely solution and dealing with the com-
plete space of loop closings. Particle filters, where each
particle maintains a map based on its own set of correspon-
dences, have been popular (Eliazar and Parr 2003; Hähnel
et al. 2003a; Montemerlo and Thrun 2003), in spite of the
use of importance sampling in such high-dimensional con-
tinuous spaces being theoretically unjustified, and practi-
cally problematic. The joint compatibility branch and bound
algorithm by Neira and Tardos (2001) has also proven
successful (Thrun et al. 2005; Bailey and Durrant-Whyte
2006).

A systematic approach, closely related to our own, that
avoids the combinatorial nature of the problem samples
from probability distributions over correspondences (Del-
laert 2001; Dellaert et al. 2003) in a batch structure from
motion context, and has also been adapted to SLAM (Kaess
and Dellaert 2005). However, these methods are computa-
tionally quite expensive. A recent method that uses a simple

but fast bag-of-words model for vision-based loop closing
is that of Angeli et al. (2008). The probability of loop clos-
ing is maintained and a high probability location is checked
through epipolar geometry, which can be computationally
expensive. Moreover, loop-closing decision once taken can-
not be reversed and, hence, the management of loop closing
itself is not probabilistic.

3. Probabilistic topological maps

We begin by giving an overview of the PTM framework,
which solves the aliasing problem in a systematic manner
by computing the posterior over the space of topologies.
The set of all possible correspondences between measure-
ments and the physical locations from which the measure-
ments are taken, is exactly the set of all possible topologies.
By inferring the posterior on this set, whereby each topol-
ogy is assigned a probability, it is possible to locate the more
probable topologies without committing to a specific cor-
respondence at any point in time, thus providing the most
general solution to the aliasing problem. Even in patholog-
ical environments, where almost all current algorithms fail,
PTMs provides a quantification of uncertainty by pegging
a probability of correctness to each topology. On the other
hand, current techniques simply return a wrong topological
map without any indication of error or ambiguity.

However, before we can perform inference in the space of
topologies, we need to understand the nature of this space.
Consider a scenario where a robot moves around an envi-
ronment and visits six locations that are deemed to be land-
marks. It is required that the robot identify the topology of
the environment from these six observations. Consider two
specific cases (note that these are not the only two possible):
one in which each of the landmarks is unique and the second
in which the second and the last measurements come from
the same landmark. We can illustrate these two scenarios as
shown in Figure 1. It can be seen that the measurements cor-
responding to the same landmark can be grouped into a set,
and this grouping then defines a set partition on the set of
measurements. Each set partition, in turn, is equivalent to
a topology of the environment. As an additional example,
the space of topologies containing 15 possible topologies
for the case of four measurements is shown in Figure 2.

The key idea behind inference in the space of topologies
is this equivalence between topologies of an environment
and set partitions of landmark measurements. The set par-
tition corresponding to the topology can also be viewed
as a label sequence as shown in Figure 3. Each set in the
partition corresponds to a distinct label, which in turn, cor-
responds to a unique landmark. More formally, associating
a label with each landmark, we can represent the topology
by a label sequence Ln = L1:n, where Li is the label of the
ith landmark. Further the number of unique labels in this
sequence is equal to the number of observed unique land-
marks in the environments. The posterior on the space of
topologies that we seek can then be written as p (Ln|Z).
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Fig. 1. Two topologies with six observations, each corresponding
to set partitions (a) with six landmarks ({0}, {1}, {2}, {3}, {4}, {5})
and (b) with five landmarks ({0}, {1, 5}, {2}, {3}, {4}), illustrate the
equivalence between topologies and set partitions.

Fig. 2. There are 15 possible topologies for the case of four mea-
surements. The set partitions corresponding to the topologies are
given below each topology.

Fig. 3. An example of topologies as label sequences (bottom),
with each label shaded (colored) differently. Each label sequence
corresponds to a set partition.

It can be seen that the labels induce a set partition of the
measurements, which results in the above-mentioned iso-
morphism between topologies and set partitions. The num-
ber of possible topologies for a given environment is thus
equal to the number of set partitions of the set of measure-
ments. This number is called the Bell number (Nijenhuis
and Wilf 1978), and grows hyper-exponentially with the
number of measurements.

A PTM is simply the posterior on the space of topologies.
It is thus a set of topologies with their associated posterior
probabilities. However, naive computation of the PTM by
simple enumeration of the topologies is not possible due

Fig. 4. Even though the space of topologies is combinatorial,
topologies with non-negligible probabilities are relatively few and
localized. A portion of the space of topologies obtained with ten
observed landmarks is shown. The groundtruth is the topology
with the highest probability

to the combinatorial nature of the space. Instead, we com-
pute a sample-based approximation of the posterior. This
is possible since, in almost all practical scenarios, most of
the topologies have a posterior probability close to zero and
need not be evaluated. Only a small set of similar topolo-
gies that agree with the measurements have non-negligible
probabilities, as shown in Figure 4, and can be represented
efficiently using sample-based inference.

The above assumption is violated only when the envi-
ronment is highly perceptually aliased. In these cases, the
algorithm is no longer efficient but is still capable of quanti-
fying the ambiguity since many topologies will have almost
similar probabilities in the posterior. Existing algorithms
are incapable of this and fail silently in such cases.

Sample-based inference using particle filtering is
explained in the next section.

4. Online topological mapping using
Rao–Blackwellized particle filters

We now describe the OPTM algorithm. For ease of exposi-
tion of the algorithm, a summary of all of the notation used
is given in Table 1. To reiterate the conclusion of the discus-
sion above, the posterior on topologies that we seek is the
distribution of label sequences P( Ln|zn, an).

In our case, the measurements consist of appear-
ance measurements derived from camera images an =
{a1, a2, . . . , an}, laser range scans sn = {s1, s2, . . . , sn},
and odometry measurements between landmarks on =
{o1, o2, . . . , on−1}. The posterior on topologies that we seek
is represented as p( Ln|an, sn, on). Applying Bayes law on
the required posterior to obtain the measurement likelihood
and prior, we obtain

p( Ln|zn, an) ∝ p( Ln|zn−1) p( an, sn, on−1|Ln, zn−1) , (1)
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Table 1. Notation used in the explanation of the algorithm.

Symbol Meaning

n Total number of landmarks observed
m Number of distinct landmarks observed
on The n − 1 odometry measurements
sn Range scan measurements around the n landmarks
an Appearance measurements from the n landmarks
zn Combined set of metric measurements zn = {sn, on}
Ln Topology represented as a label sequence
X n Landmark locations for the topology Ln

αn (X n) Analytic distribution on the landmark locations

where the metric measurements up to the nth landmark
have been represented as zn = {sn, on}, and the likelihood
of the measurements from the nth observed landmark is
p( an, sn, on|Ln, zn−1). The appearance measurement likeli-
hood is evaluated in batch due to the nature of the appear-
ance model as will be shown in Section 4.3. The prior
p( Ln|zn−1) can be further factorized to give an incremental
prior on the label in the current (nth) time step

p( Ln|zn−1) = p( Ln|Ln−1, zn−1) p( Ln−1|zn−1) , (2)

where p( Ln|Ln−1, zn−1) is the prior (proposal) distribution
for the label on the nth observed landmark and p( Ln−1|zn−1)
is the posterior from the previous step containing n−1 mea-
surements. The prior gives a distribution on which of the
distinct landmarks we are likely to see next, including the
possibility of the next landmark being a previously unvis-
ited one. It can be seen that Equations (1) and (2) together
give a recursive formulation for the posterior on topologies
that is amenable for performing particle filtering.

Evaluation of the odometry and laser likelihoods can
be done independently of the appearance likelihood, and
requires metric information since these measurements
relate to metric quantities in the environment. In this case,
the sufficient statistic in metric space for evaluating these
likelihoods is the location of the landmarks. Hence, we
marginalize over the landmark locations to compute the
likelihood

p( sn, on|Ln, zn−1) =
∫

X n
p( sn, on−1|Ln, X n, zn−1)

× p( X n|Ln, zn−1) , (3)

where X n is the vector of landmark locations of length n
and we have used the chain rule in the integrand. Note that
the prior on landmark locations p( X n|Ln, zn−1) can be fur-
ther factorized into a predictive prior on the location of the
current (nth) landmark and the posterior on locations from
the previous step

p( X n|Ln, zn−1) =p( Xn|Ln, X n−1, zn−1)

× p( X n−1|Ln−1, zn−1) , (4)

where Xn is the location of the nth landmark and
p( X n−1|Ln−1, zn−1) is the posterior on landmark locations

from the previous step. Furthermore, the integrand of (3)
is equal to the posterior on X n up to a normalization con-
stant. Hence, we also have a recursive formulation for the
posterior on landmark locations p( X n|Ln, sn, on−1).

Since storing the posterior on landmark locations at each
step aides in the computation of the measurement likeli-
hood, we add this information to each of the particles. How-
ever, this is a large continuous space and joint sampling
of this space with the space of topologies is not possi-
ble. Instead, the posterior is stored in an analytical form, a
Gaussian distribution in our case, and updated at each step.

A Rao–Blackwellized particle filter (RBPF) maintains
the joint posterior over two disparate spaces by represent-
ing part of it analytically and sampling over the remain-
ing part of the space. Hence, our motivation for using a
RBPF in our algorithm is clear. The RBPF maintains the
posterior p( Ln, X n|sn, on) on the joint space of landmark
locations and topologies but in a hybrid discrete-continuous
form. This posterior can be denoted by a set of hybrid
weighted samples containing a topology and an analytical
marginal posterior on the landmark locations conditioned
on the sample value

Sn = {
Ln,(i), w(i)

n ,αn (X
n)

}N

i=1
, (5)

where w(i)
n is the weight on the ith particle and α(i)

n ( X n)
�=

p( X n|Ln,(i), sn, on) is the analytic form of the landmark loca-
tion posterior. An example of a joint sample from the RBPF
is shown in Figure 5.

The two components required to perform filtering are
the proposal distribution and a method for computing the
importance weights. These are explained in the following
sections.

4.1. The proposal distribution

We use the predictive prior distribution on the current
landmark label p( Ln|Ln−1, zn−1), given in Equation (2), as
our proposal distribution. Using the sample notation of
Equation (5), the proposal distribution can be written as

L(i)
n ∼ p

(
Ln|Ln−1,(i), zn−1

)
. (6)

This is a discrete probability distribution on a vector of size
p+1, where p is the number of distinct landmarks observed
up to the ( n − 1)th step. The distribution (6) encodes
our expectation of the robot revisiting one of the previ-
ously observed landmarks or visiting a completely new one.
While a uniform distribution can be used for this purpose,
it does not capture all of the characteristics of the problem.
For example, with a uniform distribution, the probability of
a robot visiting a new landmark remains constant with time.
However, we can reasonably expect the robot to visit fewer
new landmarks as its run progresses. Similarly, landmarks
that have been visited frequently in the past should be bet-
ter candidates for revisitations. This is especially true for
indoor environments where lobbies and corridor junctions
are visited more frequently than other locations.
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Fig. 5. A sample from the RBPF that contains (a) a topology and
(b) an analytical distribution on the landmark locations in the form
of a Gaussian. The points (denoted by crosses) in (b) are the mean
landmark locations while the ellipses denote marginal covariances.

A distribution that models these problem characteristics
well is the Dirichlet process prior (Blackwell and Mac-
Queen 1973; Ferguson 1973). The Dirichlet process is an
extension of the standard Dirichlet distribution to infinite
mixture models, i.e. it also includes a probability of observ-
ing previously unobserved measurement classes, in our case
landmarks. The prior on the nth landmark label using the
Dirichlet process is given as

p
(
L(i)

n |Ln−1,(i)
) =

{
n(L

(i)
j )

n+c 1 ≤ j ≤ p,
c

n+c j = p + 1,
(7)

where p is the number of distinct landmarks observed up
to the ( n − 1)th step as before, and n( L(i)

j ) is the num-
ber of occurrences of the label j in the label sequence
corresponding to the topology.

The parameter c encodes our belief in the number of
distinct landmarks in the environment. A large value of c

increases the probability of observing a new landmark at
every step and, consequently, the number of distinct land-
marks in the topology. Note that the probability of observ-
ing a new landmark decreases as n increases, although it
never goes down to zero. Also, the probability of revisit-
ing a landmark is proportional to the number of times it has
been visited before, given by n( L).

4.2. Importance weight computation

The importance sampling weights for the particle filter are
defined as ratio of the target distribution to the proposal
distribution, so that

w(i)
n = Target distribution

Proposal distribution
w(i)

n−1 (8)

∝ p( an, sn, on|Ln,(i), zn−1) w(i)
n−1 (9)

where we have used the target distribution from (1) and
proposal from (2).

The appearance measurement is assumed conditionally
independent of the scan and odometry measurement given
the topology so that measurement likelihood can be written
as

p( an, sn, on|Ln,(i), zn−1) =p( an|Ln,(i), zn−1)

× p( sn, on|Ln,(i), zn−1) . (10)

A bag-of-words model based on SIFT features is used for
the appearance measurements. For the laser measurements,
range scans are used to construct local map patches around
landmark locations that the robot visits. These map patches
are subsequently matched using scan matching techniques
to provide a likelihood of their being from the same phys-
ical location. This gives us a sensor model for laser scans
obtained at the landmark locations. We describe the eval-
uation of these measurement likelihoods in the following
sections

4.3. Appearance modeling using ‘bag-of-words’
models

Recently, SIFT (Lowe 2004) descriptors of features have
gained greatly in popularity due to their ability to convert
many types of features into a standard, reproducible vector
space. Furthermore, SIFT descriptors of features detected
on an image can be quantized and the quantized features
can be considered to be the analogue of words in a docu-
ment. Thus, the image becomes a sequence of ‘appearance
words’, making document analysis methods applicable to
images. In keeping with the text processing community,
methods that model images by converting SIFT features
into appearance words are called ‘bag-of-words’ models
(Sivic et al. 2005) since they do not consider the sequence of
the words themselves, but only their occurrence frequency.

Appearance words are learned in an offline phase
wherein the 128-dimensional SIFT space is vector quan-
tized. SIFT features extracted from training images
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obtained from the environment are used for this purpose.
The number of bins in the vector quantization, which cor-
responds to the number of words in a text document, is
a parameter. Vector quantization is performed using the
K-means algorithm, which clusters the features detected
on the training image set. During runtime, each image is
transformed into a histogram of word counts in each of
the bins. Thus, the representation of an image in a bag-of-
words model is a vector of word counts, which comprise
a histogram. In practice, we use a set of images obtained
from the test environment for learning the visual words,
though any other images not too dissimilar from the test
environment could be used.

4.4. The multivariate Polya model

The aim of using the image histograms is to identify land-
marks that are physically the same. However, since we have
an appearance model that is conditioned on the topology,
all that is needed is to evaluate the correspondence that is
implied by the topology.

We model all of the images arising from a landmark as
having the same underlying global characteristics. Since the
measurements are histograms of word counts, they are mod-
eled using a multinomial distribution having its dimensions
equal to the number of appearance words. Further the prior
over the multinomial parameter is the conjugate Dirichlet
distribution (not to be confused with the Dirichlet process
introduced above) to aid in ease of computation

P( an|Ln) =
∏
ξ∈Ln

∫
θξ

P( θξ |αξ )
∏
a∈ξ

P( a|θξ ) , (11)

where {a} is the set of measurements indexed by set ξ , and
θξ = [θξ1, θξ2, . . . , θξW ] and αξ = [αξ1,αξ2, . . . ,αξW ] are
the multinomial parameter and Dirichlet prior, respectively.
Note that ξ indexes the sets in the set partition correspond-
ing to the topology Ln as was explained in Section 3. The
number of distinct appearance words is denoted as W . Let
the total number of features in an image be denoted N
and the number of features in each visual word be denoted
as N1, N2, . . . , NW . Then, the distributions in the integrand
above are

p( a|θξ ) = N!

N1!N2! . . .NW !
θ

n1
ξ1θ

n2
ξ2 . . . θ

nW
ξW , (12)

p( θξ |αξ ) = �(
∑W

w=1 αξw)∑W
w=1 �(αξw)

θ
αξ1−1
ξ1 θ

αξ2−1
ξ2 . . . θ

αξW −1
ξW .(13)

The likelihood model in (11) with the multinomial and
Dirichlet distributions defined in (12) and (13) is called
the multivariate Polya model, or equivalently in docu-
ment modeling, the Dirichlet compound multinomial model
(Madsen et al. 2005). The multivariate Polya model mod-
els burstiness in the data, i.e. the empirical observation
that if a word occurs once in a document, it is likely to
occur many more times. However, as with any bag-of-words

model, it assumes that the occurrence of different words is
independent of each other.

The integration in (11) can be performed in closed form
since the Dirichlet distribution is the conjugate prior of the
multinomial distribution. This yields the final form of the
appearance likelihood as

P( an|Ln) =
∏
ξ∈Ln

N (ξ )!∏W
w=1 N (ξ )

w

�(αξ )

�( N (ξ ) + αξ )

W∏
w=1

�( N (ξ )
w + αξw)

�(αξw)
, (14)

where N (ξ )
w is the total count of the wth appearance word

across all of the image histograms in set ξ and N (ξ ) =∑
w N (ξ )

w , αξ = ∑
w αξw.

Given a collection of D images with features detected on
them, the maximum-likelihood value for α can be learned
by using iterative gradient descent optimization. It can be
shown that this leads to the following fixed point update
(Minka 2003)

αnew
w = αw

∑D
d=1 ψ( ndw + αw) −ψ(αw)∑D

d=1 ψ( ndw + α) −ψ(α)
, (15)

where α = ∑
w αw as before, and ψ( ·) is the digamma

function (derivative of the Gamma function).
For a new landmark, the number of images in the set

ξ is one, and it is not possible to learn a coherent max-
imum likelihood using (15) above. We overcome this by
learning a more ‘general’ prior value for α from a train-
ing set of images. We use the same set of images for this
purpose as was used for learning the visual words. Owing
to the broad prior, new landmarks always receive a low
appearance likelihood.

The appearance likelihood, evaluated by learning the α
parameter for each set in the topology and using these val-
ues appropriately in (14), can be used in the particle filtering
algorithm for computing the importance weight in (10).

4.5. Odometry and laser scan likelihood
evaluation

Odometry and laser scan likelihoods are evaluated by intro-
ducing the landmark locations and marginalizing over them
as given in (3). Evaluating (3), in turn, requires the com-
putation of the conditional likelihoods on the scan and
odometry measurements. Assuming the independence of
the scan and odometry measurements given the landmark
measurements, we obtain

p( sn, on|Ln,(i), X n, zn−1) =p( sn|Ln,(i), X n, zn−1)

× p( on|Ln,(i), X n, zn−1) . (16)

The scan likelihood p( sn|Ln,(i), X n, zn−1) is obtained by
performing scan matching between the map patches from
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Fig. 6. Scan measurements, obtained by concatenating scans from
around landmark locations, used by the RBPF algorithm.

the landmark locations. The map patches are obtained, in
turn, by simply concatenating laser scans from a local
area around the landmark as the robot moves through
it (Figure 6). We use the scheme of Chen and Medioni
(1991), which involves point-to-plane matching, to perform
scan matching. Since odometry drift can affect this simple
scheme for creating the map patches, we limit the size of
the patch to a 5 meter robot trajectory length. The odometry
likelihood p( on|Ln,(i), X n, zn−1) is evaluated simply through
the use of an odometry model.

The prior on the landmark location p( Xn|Ln,(i),
X n−1, zn−1) from (4) encodes the notion that distinct
landmarks do not usually occur close together in the
environment. We use the same prior on landmark locations
as given in Ranganathan et al. (2006). Topologies which
place distinct landmarks close together in location are
penalized by this prior.

The scan likelihood for a new landmark can be computed
in exactly the same way as described above since the map
patch for a landmark location is generated immediately.
However, in contrast to the appearance case, scan match-
ing the measurement scan against this map patch results in
a very high likelihood since the scan will match perfectly.
However, this high laser likelihood for a new landmark
is counteracted by the landmark prior, odometry measure-
ments and also by the appearance likelihood. This absolves
us of the need to specify an elaborate likelihood evaluation
scheme for the case of a new landmark as is done in Blanco
et al. (2008) and Angeli et al. (2008).

Note that the scan likelihood evaluation described above
only works since in our case a measurement is only obtained
at a landmark location, i.e. when the landmark detector
module fires. As this does not occur frequently, the above
approach works when odometry is available, even if appear-
ance information is ambiguous. However, when odometry is
also absent or ambiguous, our approach may break down as

the algorithm is forced to rely on the prior alone to correct
for the high likelihood assigned by the laser measurement
to new landmarks.

4.6. Summary of the OPTM Algorithm

As the odometry model is assumed to be Gaussian and the
result of the scan matching operation is also a Gaussian
distribution, all of the distributions involved in the compu-
tation of the landmark location posterior (4) are Gaussian
except for the landmark prior. This makes the posterior
non-Gaussian.

The computation is kept recursive by projecting the non-
Gaussian posterior onto a Gaussian posterior using the
Laplace approximation. This involves replacing the true
posterior by a Gaussian centered around the maximum a
posteriori (MAP) value of landmark locations. In practice,
this step is performed by linearizing around the most likely
landmark location, which is found through an optimization.
Details can be found in Ranganathan et al. (2006). The
covariance at the MAP location is estimated through the
Hessian matrix obtained from the optimization algorithm.
The OPTM algorithm thus trades off maximum-likelihood
estimation, or in this case really MAP estimation, in the
continuous landmark space with a much richer approxima-
tion of the probability distribution in the discrete space of
topologies, which is really the object of our interest.

The weight computation of (9) can now be performed in
closed form as it involves integrating a Gaussian distribu-
tion, albeit unnormalized.

Algorithm 1 The OPTM algorithm.

1. Randomly select a particle Ln−1,(i) from the previous
time step according to the weights w(i)

n−1.
2. Propose a new topology sample using the proposal

distribution p
(

L(j)
n |Ln−1,(i)

)
in (6)

3. Calculate the Gaussian posterior density on landmark
locations α(j)

n ( X n) using Bayes law as in (4) and the
Laplace approximation.

4. Calculate the importance weights w(j)
n from (10). The

appearance likelihood is calculated using (14), and the
odometry and scan likelihoods as the integral over the
unnormalized α(j)

n ( X n) in (3) and (16).

We now have all of the components to perform the infer-
ence using the RBPF. A summary of the OPTM algorithm
is provided in Algorithm 1.

5. Data-driven proposals for particle filters

Particle filters are susceptible, over time, to the ‘particle
degeneracy’ or ‘lack of diversity’ problem (Doucet et al.
2000), wherein only one sample has a significantly non-zero
weight. The reason for this is that many samples fall into
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regions of low probability and die out during the filtering
process. This results not only in the failure to converge to
the correct posterior but also in wasted computation, since
the algorithm is evaluating the weights of samples that will
be lost in any case.

A data-driven proposal overcomes this problem by
proposing more samples from regions of high probability
so that samples and computation are not wasted. Note that
the proposal distribution in (6) does not make use of the cur-
rent measurement. We rectify the situation in this section by
presenting a proposal distribution that uses the odometry to
provide more likely samples.

The key idea behind the data-driven proposal is that the
odometry likelihood can be incorporated into the proposal
distribution while only the appearance and scan likelihoods
are used to compute the importance weights. The measure-
ment likelihood in (1) is thus split into two parts. This split
also entails a two-step process for updating the analytic pos-
terior on landmark locations since this posterior needs to be
updated using both the odometry and scan measurements.

In the following exposition, we do not consider appear-
ance measurements since the appearance likelihood is eval-
uated in exactly the same manner and is unaffected by the
data-driven proposal. Starting with the posterior on topolo-
gies, we factor it using Bayes law in a slightly different
manner to obtain

p( Ln|sn, on) ∝ p( Ln|zn−1, on−1) p( sn|Ln, zn−1, on−1) , (17)

where the likelihood is factored into two terms using the
chain rule. The prior term can in turn be written using Bayes
law as the product of the odometry likelihood and a prior on
the current label

p( Ln|zn−1, on−1) ∝p( Ln|Ln−1, zn−1) p( Ln−1|zn−1)

× p( on−1|Ln, zn−1) . (18)

The proposal distribution is taken to be the right-hand side
of (18), which can be written using the sample representa-
tion of (5) as

L(i)
n ∼ p

(
Ln|Ln−1,(i), zn−1

)
p( on|Ln,(i), zn−1) . (19)

The form of the predictive label distribution p( Ln|zn−1) is
the Dirichlet process prior as before. However, the odome-
try likelihood in (18) is evaluated by marginalization over
the landmark locations

p( on|Ln, zn−1) =
∫

X n
p( on|Ln,(i), X n, zn−1)

× p( X n|Ln,(i), zn−1) , (20)

where the same landmark prior and odometry model are
used as in Section 4.5. Note that the prior in (20) can be
evaluated using the posterior on the landmark locations
from the previous by use of the chain rule as in (4).

One drawback of this proposal distribution is the need
to perform m optimizations to compute it. These optimiza-
tions are required since the integral in (20), evaluated by

Fig. 7. ATRV-mini robot with eight camera rig and forward-facing
laser scanner used in the experiments.

linearizing around the optimum, needs to be computed for
all of the possible label values for Ln (except for the case
when Ln is a new landmark), which are m in total. However,
performing these extra optimizations once per filtering step
is still preferable to evaluating the importance weight for all
of the particles that do not survive when a vanilla proposal
is used.

From the target (17) and proposal (18) distributions and
the definition of the importance weights (8), we get the
expression for the importance weights in this case as

w(i)
n ∝ p( sn|Ln,(i), zn−1, on) w(i−1)

n−1 .

This is evaluated by marginalization over landmark
locations

p( sn|Ln,(i), zn−1, on) ∝
∫

X n
p( sn|Ln,(i), X n, zn−1, on)

× p( X n|Ln,(i), zn−1, on) ,

where the scan likelihood is evaluated using scan match-
ing exactly as in Section 4.5, since it is independent of the
odometry given the landmark locations. The location prior
p( X n|Ln,(i), zn−1, on−1) is the same as the integrand of (20)
up to a normalizing constant and the linearized Gaussian
approximation found therein is used again here.

6. Results

We now present the results of testing the OPTM algorithm
in various environments. An ATRV-mini robot with an eight
camera rig mounted on top and a laser scanner facing for-
wards, as shown in Figure 7, was used for the experiments.
Particle filtering was performed using the optimal strati-
fied resampling method of Fearnhead and Clifford (2003)
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Fig. 8. Landmark locations obtained from simulated odometry for
the first experiment.

that varies the number of particles automatically but ensures
that memory usage is O( 1) with respect of number of mea-
surements seen so far. The data-driven proposal was used
in all of the experiments. A value of 3.0 was empirically
determined for the Dirichlet prior parameter c. This value
gives good results on all of our experiments, which have a
widely varying number of landmarks. Changing the value
of the prior parameter by up to a factor of 10 did not affect
the results significantly. The SIFT-based appearance model
described in Section 4.3 above was used to model images
obtained from the camera rig. SIFT features detected from
the landmark images were quantized into 1,024 appearance
words. The landmark location prior was used with a value
of 10 meters for the penalty radius and 15 for the maxi-
mum penalty value. For a description of these parameters
and their effect on the inferred posterior, see Ranganathan
et al. (2006). In the absence of an automatic landmark
detector, landmarks were identified manually and corre-
sponded to gateways and junctions in the environment
(Schroter et al. 2003).

The first experiment was conducted using simulated data
to demonstrate the capability of the OPTM to work with just
odometry measurements similar to the PTM (Ranganathan
et al. 2006). A very loopy sequence of length approxi-
mately 80 meters with 813 odometry measurements was
generated and 33 landmarks were manually labeled in the
trajectory. The simulated odometry with noise is shown in
Figure 8 and the resulting posterior from the OPTM algo-
rithm is shown in Figure 9. Owing to the absence of any
laser and appearance measurements, the probability mass
on the groundtruth topology is relatively low.

The second experiment was conducted in the TSRB
building at Georgia Tech using the ATRV-mini robot in
an indoor setting. A map of the experiment area along
with the robot path, which is approximately 100 meters
long and passes through 12 landmark locations, is shown

Fig. 9. Topologies with highest posterior probability mass for the
second experiment. (a) The groundtruth topology receives 59% of
the probability mass while (b), (c), and (d) receive 9.1%, 8.2%,
and 6% of the probability mass, respectively.

in Figure 10(a). The map patches obtained by concate-
nating scans around the landmark locations are shown
in Figure 6. The result of the OPTM algorithm is a
joint distribution on topologies and landmark locations.
The maximum-likelihood sample is shown in Figure 5. The
distribution on the landmark locations is displayed in the
figure through the marginal covariance ellipses along with
the local map patches aligned using scan matching. The
corresponding topology, shown in Figure 5(a), is also the
groundtruth topology and obtains 98.5% of the probabil-
ity mass in the posterior. The topology constraints and the
inferred landmark locations can be used to produce a global
metric map using the global optimization technique of Lu
and Milios (1997). The resultant metric map is given in
Figure 10(b). It can be seen that this simple post-processing
step produces a globally consistent metric map.

A third experiment was performed in a larger environ-
ment (about 60 meters across) of the CRB building to con-
firm our findings. The RBPF computes the PTM that gives
the groundtruth topology in Figure 11(a), 94% of the prob-
ability mass. The probability mass on the groundtruth is
lower in this case since there is perceptual aliasing around
the corners of the building that scan matching is unable
to resolve completely. The maximum-likelihood sample
with the distribution on landmark locations is shown in
Figure 12. The metric map obtained from the Lu–Milios
step is given in Figure 11(b).

6.1. Landmarks at equidistant intervals

The perfect landmark detector assumed above is not avail-
able in practice. Hence, to validate the robustness of the
OPTM algorithm we tested it with landmarks placed at
equidistant intervals, which is the simplest and most redun-
dant of landmark detection schemes, but has been used
before in practical topological mapping schemes Tapus
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Fig. 10. (a) Schematic of the robot path overlaid on a floorplan of the TSRB environment. (b) Global metric map obtained using
topological constraints and landmark locations for the second experiment. The robot path is the dotted (red) line.

Fig. 11. (a) Groundtruth topology for third experiment on the CRB dataset. This receives 94% of the probability mass in the PTM.
(b) Metric map obtained using topological constraints. The robot path is the dotted (red) line.

(2005). We now present experiments involving equidistant
landmarks.

The first experiment was again in the TSRB dataset. A
landmark was placed at every 10th image, i.e. approxi-
mately equally spaced in time. Hence, landmarks are closer
spatially when the robot moves slowly and vice versa. A
total of 35 landmarks were obtained using this scheme. The
PTM at various stages of the incremental inference is illus-
trated in Figure 13. The final PTM contains only one topol-
ogy, which is also the groundtruth. The covariances marking
the uncertainty in landmark positions are also shown for the
final topology.

The second experiment was performed using the well-
known Intel dataset widely used in the SLAM literature
(Hähnel et al. 2003b). The dataset consists of odometry
and laser measurements, and the laser measurement model
as described in Section 4.5 was used to obtain the result.
Although appearance measurements are not available for
this dataset, they can be left out of the computations sim-
ply by neglecting the appearance likelihood in the Bayes
law equation (1). Landmarks were placed every 5 meters
to obtain a total of 63 landmarks in the environment. The
PTM contains nine topologies, and the most likely topology,
which is also the groundtruth, obtains approximately
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Fig. 12. MAP sample from the RBPF for the CRB experiment.
Mean landmark locations are denoted as crosses while the ellipses
denote marginal covariances.

72% of the probability mass. The PTM along with the
most likely topology is given in Figure 14. The metric
map obtained from Hähnel et al. (2003a) is also shown for
reference.

The smoothed trajectories for the above datasets were
obtained using the optimization process described in Sec-
tion 4.5 where it was used to compute the odometry like-
lihood, except that now all of the odometry measurements
are used instead of just the compounded odometry between
landmarks. The figure also illustrates the locations of the
landmarks. Nodes classified as being the same physical
landmark share the same shade (color).

6.2. Automatic Landmark Detection

We also evaluated the OPTM algorithm with the landmark
detection algorithm described in Ranganathan and Dellaert
(2009), which detects landmarks based on sudden changes
in measurement values. We used the MIT Killian Court
dataset (Bosse et al. 2004) which is another widely used
dataset in the SLAM community. The dataset consists of
1,941 poses and corresponding laser scans. No appearance
data is present in the dataset and the appearance likeli-
hood was simply omitted in all of the OPTM calculations
to obtain the results. The groundtruth metric map with
laser scans and robot trajectory is shown in Figure 15 for
reference. A total of 61 landmarks were detected using
the landmark detection algorithm (Ranganathan and Del-
laert 2009) and the PTM obtained using these landmarks,

Fig. 13. PTM for the TSRB dataset with 35 landmarks placed
equally in time. (a) PTM after 13 landmarks. (b) After 29 land-
marks: he difference between the topologies is in the small tri-
angular piece at the top of the smaller loop. (c) The final PTM
after 35 landmarks contains only one topology, which is also the
groundtruth. Landmarks are shown as small shaded (colored) cir-
cles with nodes corresponding to the same physical landmark
shaded (colored) similarly. (d) 5σ covariance ellipses for the
landmark locations of the groundtruth topology.

which also contains the groundtruth as the most likely
topology, is shown in Figure 16. The groundtruth receives
81% of the probability mass. Figure 16(b) gives the tra-
jectory smoothed with the topological constraints and also
the color-coded nodes as before. Note that this trajectory
does not look exactly the same as the groundtruth topology
of Figure 16(a), especially at the lower right, because the
landmark detector fails to detect a landmark in the segment
connecting the small lower-right loop to the larger loop at
the upper-right part of the image. Owing to this the two
robot trails do not lie on top of each other in the groundtruth
topology, which merely shows the landmark locations con-
nected by edge. However, they do overlap in the smoothed
trajectory map of Figure 16(b) due to the other neigh-
boring topological constraints. Further, even though a few
false positives are encountered in the landmark detection,
the OPTM algorithm finds the groundtruth topology. This,
and previous experiments using different landmark detec-
tion schemes, convincingly demonstrate that the OPTM
algorithm is agnostic to the type of landmark detector used.



14 The International Journal of Robotics Research 00(000)

Fig. 14. (a) PTM (Bayesian posterior over loop closings) for the Intel dataset obtained using the OPTM algorithm. Sixty-three land-
marks were placed in the environment at a distance of 5 meters from each other. The bars give the posterior probability of each topology.
(b) Smoothed trajectory for the most likely topology, which is also the groundtruth topology and gets 72% of the probability mass.
Landmarks are shown as shaded (colored) circles with nodes corresponding to the same physical landmark shaded (colored) similarly.
(c) Metric map of the Intel lab given for reference.

Although the robot trajectory in this dataset spans an area
of more than 200 m × 200 m and is considered challeng-
ing for metric mapping algorithms, it is a relatively easy
sequence for performing topological mapping due to the
wide separation between most landmarks, thus illustrating
the advantage of a topological map over metric maps in this
case.

6.3. Timing results

While the OPTM and the batch MCMC algorithm of Ran-
ganathan et al. (2006) give similar mapping results, the
OPTM is much faster. We present timing results for all of
the datasets discussed above that confirm this statement.
The fastest version of the PTM algorithm in Ranganathan
et al. (2006) and the OPTM algorithm with the data-driven
proposal were used to obtain the results given in Figure 17.
Timing was obtained by running OCaml code on a 1.4 GHz
dual-core machine with 2 GB of RAM. As can be seen, the
OPTM is at least an order of magnitude faster than the batch

Fig. 15. Metric map of Killian Court dataset obtained from Bosse
et al. (2004).

MCMC algorithm, and considering the number of measure-
ments in each of the datasets, is quite close to real-time in
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Fig. 16. (a) PTM for the MIT Killian Court dataset with automatic landmark detection using Bayesian surprise. The topology at the top
left with the maximum probability is the groundtruth. (b) The smoothed trajectory corresponding to the groundtruth topology.

Fig. 17. Timing comparison of batch PTM and OPTM algorithms
on various datasets.

operation. The Killian court dataset is mapped much faster
than the Intel dataset, even though they have a similar num-
ber of landmarks, because the posterior contains fewer of
topologies. This in turn is due to very little perceptual alias-
ing in the environment. Note that the inference procedure
itself only has to be run when a landmark is detected, and
not at every step.

6.4. Effect of the appearance model

The enhanced appearance model presented here is more
resistant to perceptual aliasing, and hence provides better
results compared with the simple Gaussian mixture over
Fourier signatures used in Ranganathan et al. (2006). This
is demonstrated by the more confident PTMs inferred by
the OPTM with the bag-of-words appearance model. The
output using the OPTM algorithm on the TSRB dataset
with manually selected landmarks is a PTM where the
groundtruth topology gets 98.5% of the probability mass.
The corresponding probability for the RBPF using the
Gaussian mixture appearance model is 95%. Similarly, the
OPTM gives a probability of 94% for the groundtruth
of the CRB dataset, while the probability using the sim-
pler appearance model is 91%. Since the datasets used are
exactly the same, we can attribute the better performance
solely to the appearance model.

7. Conclusion and discussion

We have proposed a novel online particle filter-based loop-
closing algorithm that is based on a systematic Bayesian
framework for topological mapping. The framework works
with various sensors and in diverse environments, as has
been demonstrated in theory and in practice through exper-
iments. While we have provided and tested sensor models
for laser, odometry, and appearance, other sensors can be
easily incorporated into the algorithm in a similar manner.
Inference for loop closing with a large number of landmarks
has also been demonstrated.

In future work we plane to incorporate more constraints
such as planarity and limited types of junctions in man-
made environments (Savelli and Kuipers 2004). Inclusion
of these constraints would make the inference more effi-
cient. The use of PTMs, in the form of a weighted ensemble
of maps, for the purposes of planning and navigation, is also
to be explored in the future.

A practical issue in the OPTM algorithm is the number
of particles to use in inference. This is not only a question
of efficiency but also one of correctness, since the algo-
rithm may not converge to the true posterior with very few
samples. In general, it is best to start the particle filter-
ing algorithm with a reasonably large number of samples,
say a hundred, and subsequently repeat the experiment with
smaller numbers of samples to confirm convergence. In
pathological cases, where perceptual aliasing is very high,
even larger number of samples may be required.

The problem of convergence of the OPTM algorithm is
a complicated one since convergence metrics that work in
all cases are still an open topic of research in Monte Carlo
sampling. However, a battery of convergence tests can be
performed to ascertain convergence in the majority of cases.
In the ideal scenario, every PTM algorithm should yield
the same result since they are computing the same posterior
over topologies. However, effects due to starting conditions
and mixing speed are hard to avoid.
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A converged sampler in the OPTM algorithm yields a
theoretically correct posterior probability distribution, i.e.
no algorithm using the same measurement models can
obtain a better result. Hence, this can be used as a gold
standard for comparison. In the absence of convergence, no
such comparison of results in an objective manner is pos-
sible. A subjective test in such scenarios is to compare the
topology with the highest probability to the groundtruth and
ascertain whether they are the same.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Evolution of Online Probabilistic
Topological Mapping on the TSRB
dataset




