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Fig. 1. Top 20 SIFT feature patches by histogram count from the bag-
of-words model for each location denoted by the measurement number for
an experiment. Only every second measurement is shown. The measurements
corresponding to landmarks (i.e. where the landmark detector fires) are shown
in red (shaded overlay). It can be seen that these correspond to the start of sub-
sequences of measurements that also differ qualitatively from the preceding
measurements, for example measurements before 34 are much more cluttered
than those following it.

Abstract— Automatic detection of landmarks, usually special
places in the environment such as gateways, for topological
mapping has proven to be a difficult task. We present the use of
Bayesian surprise, introduced in computer vision, for landmark
detection. Further, we provide a novel hierarchical, graphical
model for the appearance of a place and use this model to perform
surprise-based landmark detection. Our scheme is agnostic to the
sensor type, and we demonstrate this by implementing a simple
laser model for computing surprise. We evaluate our landmark
detector using appearance and laser measurements in the context
of a topological mapping algorithm, thus demonstrating the
practical applicability of the detector.

I. INTRODUCTION

We introduce a novel landmark detection scheme, based on
Bayesian surprise, for use in topological mapping. Our method
detects landmarks as “special places” in the environment that
can be added as nodes in the graph corresponding to the
topological map. The notion of “surprise”, first proposed by Itti
and Baldi [7], encodes the unexpectedness of a measurement
and has been shown to be a good predictor of directed
human attention [8]. Further, the computational framework for
Bayesian surprise, which is based on a KL-divergence type
measure, is quite simple and computationally efficient.

For vision-based sensors, we introduce a new hierarchical
graphical model, called the Multivariate Polya model, based on
the bag-of-words paradigm. The model explains the common
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Fig. 2. Topological map, showing landmarks detected for the sequence of
Figure 1 using Bayesian surprise (see also Figure 5). The smoothed trajectory
is also shown. Nodes belonging to the same physical landmark have the same
color.

observation that if multiple images are taken at a particular
place, their SIFT histograms are rarely exactly the same.
Hence, SIFT histograms can be viewed as noisy measurements
of the appearance of a place, and can be modeled accordingly.
The Multivariate Polya model is known in the text-modeling
community [1], but our usage of it in this context is novel.
We derive the computation of Bayesian surprise using this
model, which involves an approximation of the model to the
exponential family of distributions.

Our landmark detection technique generalizes to other sen-
sors as well, and we demonstrate this by deriving a simple
surprise model for laser range scans. Sensor-independence
of our scheme is obtained through its computation in a
Bayesian framework. Bayesian surprise supports the inclusion
of measurements from multiple, distinct sensor sources, the
only requirement being that a measurement model is defined
for each of the sensors.

We incorporate our landmark detection scheme into the
topological mapping algorithm given by us in previous work
[18] to produce a complete topological mapping system.
Landmark detection is evaluated in the context of this mapping
system using appearance and laser on a number of envi-
ronments, including publicly available datasets that are well-
known in the robotic mapping community. An analysis of the
number of false negatives and false positives output by the
technique is also presented.

We present related work in the next section and define
Bayesian surprise in Section III. This is followed by an
explanation of how surprise is used in landmark detection in
Section IV. In Section V, we briefly introduce the topological
mapping algorithm used to evaluate the landmark detection



scheme. The novel appearance model, the computation of
surprise using it, and results from landmark detection are
presented in Section VI, followed by a similar exposition of
the laser case in Section VII.

II. BACKGROUND AND RELATED WORK

Topological mapping is the process of using a robot to
automatically discover the topological structure of an environ-
ment. In its simplest form, this topological structure consists
of a graph where the nodes denote certain distinguishable
places in the environment, and edges denote connectivity.
Topological maps are well suited to robotics applications
since they are a sparse representation that scale well with
environment size. Further, topological maps are amenable to
the inclusion of higher level semantic concepts such as objects
[19] and navigation techniques [12].

This paper deals with landmark detection, which is the
problem of automatically placing topological nodes in the
environment. Landmark detection has received relatively little
attention mainly because of the tenuous definition of what a
landmark is; the most common being simply that landmarks
are “special places” in the environment. People often define
and locate landmarks using myriad higher-level semantic con-
cepts such as billboards and signs in outdoor environments,
and objects and their relative locations in indoor environments.
The detection and use of such diverse clues for automatic
landmark detection is not currently possible. To sidestep this
issue, landmarks are frequently defined using ad hoc heuristics
based on individual sensor characteristics.

Current techniques are limited in being tied to a single
sensor, functioning only in certain environments, and produc-
ing so many false positives as to destroy the sparsity of the
topological graph. Even when landmarks are defined using
invariant geometric properties of the environments [2][20],
general-purpose algorithms based on these properties, in the
sense of the limitations mentioned above, do not exist.

Among existing landmark detection techniques, many use
geometric invariants of the environment such as intersection
of Voronoi cells [4]. However, the use of such features may
introduce a large number of landmarks in the map, thus
destroying the sparse nature of the topological map. Beeson
et. al. [2] overcome the problem of too many false positive
landmarks by judiciously pruning the Voronoi graph so that
spurious nodal points are not classified as landmarks. The use
of sensor specific measures of distinctiveness for landmark
detection is common, for instance Kortenkamp [10] uses range
scans while Ramos et al. [17] use camera images. This leads
to landmark detectors that use very specific features of the
environment such as open doors and orthogonal walls, and
moreover, are bound to a particular sensor [5]. Kuipers and
Beeson [11] present a bootstrap algorithm for place modeling
based on image clustering and learning the topology of the
image locations. All these methods have the drawback of
being applicable to a particular sensor or specific type of
environment. Surprise-based landmark detection attempts to
overcome this limitation.

III. BAYESIAN SURPRISE

“Surprise” can be said to quantify the unlikeliness of mea-
surements according to the current model of the environment.
We base our surprise computation on the method proposed by
Itti and Baldi [7]. Consider the model at the current time as
M and a prior distribution on the space of all possible models
P(M). Upon receiving a measurement z, the prior is updated
to obtain a posterior on model space P(M|z) using Bayes law
P(z[M)P(M)

P(z)

Surprise is defined as the change in the belief in the model
upon observing the measurement. Clearly if the posterior is
the same as the prior, there is zero surprise. This intuitive de-
scription of surprise can be made concrete by defining it as the
KL-divergence between the prior and posterior distributions on
model space, i.e.

P(M|z) =

/ P(M)log P(M)
IM P(M|z)
The computation of surprise using the above equation is
inherently recursive as the posterior in one step becomes the
prior for the subsequent step.

While the definition of surprise above may seem overly
simplistic, note that the integral in (1) is over the model space,
i.e. takes into account all possible models for the measurement
z. This definition, in its current form, is thus useless for
computational purposes. In practice, we convert this model
space into a parameter space by assuming a specific parametric
family of distributions as the model.

This definition of surprise is intuitive in the sense that if a
measurement that is surprising at first is observed repeatedly, it
loses its surprising nature. Such operation is required when we
apply surprise to landmark detection as the landmark detector
should fire only when the robot moves into a new area.

S(z)
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IV. LANDMARK DETECTION USING SURPRISE

We propose the definition of landmarks as places that yield
highly surprising measurements. This implies the existence of
a threshold, where a place is classified to be a landmark if
its surprise value exceeds this threshold. The critical compo-
nent here is, hence, a procedure to determine this threshold
automatically for various environments and sensors.

The surprise threshold is defined in a general, adaptive
manner by comparing the expected surprise with the actual
obtained value. Computing the expected surprise in closed
form is not possible as it involves integrating (1) over all
possible measurements z. Instead, we employ a Monte Carlo
approximation to the integral wherein N measurements z;.y are
sampled from the current place model P(M), and the expected
surprise is taken to be the average of the surprise values
corresponding to these samples
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We postulate that landmarks correspond to maxima of the
actual surprise values that lie above the expected value. In
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practice, finding a local maximum is hard due to jitter caused
by noisy observations. This is overcome by running a fixed-
window smoother over the surprise values so that the curve
gets smoothed out.

Before illustrating landmark detection using specific sen-
sors, we next introduce the topological mapping algorithm
used to evaluate the landmark detector in a practical scenario.

V. PROBABILISTIC TOPOLOGICAL MAPS

We evaluate our surprise-based landmark detection in the
context of topological mapping to obtain realistic results. For
this purpose, the topological mapping algorithm proposed by
Ranganathan and Dellaert [18] is used. This algorithm con-
structs a distribution over the space of all possible topologies
and hence, solves the problem of topological ambiguity. While
the space of topologies is combinatorial, this is overcome
by using Monte Carlo sampling techniques - in this case
particle filtering - to make the algorithm tractable. The sample
based posterior distribution over the space of topologies, which
essentially consists of a set of topologies along with their
probabilities, is called a Probabilistic Topological Map (PTM).
By recording the ambiguity associated with each map in the
form of its probability, a PTM provides a fail-safe mechanism
to establish the correctness of the map.

PTMs are ideal in many ways for testing landmark de-
tection. First, there are generalizable to various sensors, and
hence, can be used with the appearance and laser measure-
ments described above. Second, since PTMs are sensor inde-
pendent, plugging in a landmark detector is easy, as compared
to other mapping schemes. Third, PTMs only address the
problem of topological ambiguity while landmark detection
is unresolved. Incorporating our detection scheme results in a
complete, probabilistic topological mapping system.

The topological mapping system with our landmark detec-
tion scheme alongwith the PTM works as follows. At each
step, surprise computation is performed to determine if the
current location is a landmark. If this is the case, a new
landmark is added to the existing PTM, and the particle
filtering algorithm is invoked to perform inference in the space
of topologies, which results in an updated PTM.

In the following sections, we describe surprise-based land-
mark detection using appearance and laser measurements,
though other sensors can also be incorporated similarly.

VI. COMPUTING SURPRISE USING APPEARANCE

We now discuss the modeling of appearance measurements
for the purpose of computing surprise. Appearance measure-
ments are obtained using images from an eight camera rig,
shown in Figure 3. Two types of features are detected on the
images; the Harris Affine features by Mikolajczyk and Schmid
[15], and the Maximally Stable Extremal Regions (MSER) by
Matas et. al. [14]. The reason for two types of features is their
complementary nature that ensures that both affine-invariant
features and regions of intensity maxima are detected, thus
ensuring a relatively dense representation of the images in

Fig. 3. The camera rig and the robot used to obtain panoramic images

feature space. All the features are subsequently transformed to
a 128-dimensional vector space using SIFT descriptors [13].

Each panoramic image, obtained by combining the images
from the rig, is represented using a bag-of-words model
[21]. Appearance “words” are obtained from the SIFT de-
scriptors using vector quantization, performed using the K-
means algorithm done as batch process over all the features
detected across all the images. Each panoramic image is,
subsequently, transformed into a histogram of word counts.
Thus, the representation of an image in a bag-of-words model
is a vector of word counts, which comprise a histogram.

A. Modeling Places Using the Multivariate Polya Model

We consider the SIFT histograms, obtained from images
taken from a place, to be measurements of the appearance of
the place. We model all the images arising from a landmark as
having the same underlying “cause”. Since the measurements
are histograms of word counts, they are modeled using a multi-
nomial distribution having dimensions equal to the number
of appearance words. Further the prior over the multinomial
parameter is the conjugate Dirichlet distribution to aid in
ease of computation. Hence, the Dirichlet parameter is the
underlying “cause” of the appearance measurements from a
landmark. Given a set of appearance measurements A = {a}
from a landmark, the model P(«|A) can be written using Bayes
law as

P(aA) o P(Ala)P(a)

and the likelihood of the histogram measurements P(A|a) can
be expanded so that the above equation becomes

P(ala) < P() [ P(6]o) [T Plale) 3
6 acA

where 6 = [01,6,,...,0y] and a = [04,00,...,a] are the
multinomial parameter and Dirichlet prior respectively, and
a denotes the SIFT histogram measurement with bin counts
given as [ny,ny,...,ny]. The number of distinct appearance
words is denoted as W, while the prior on « is taken to be
uniform. Hence the distributions in the integrand above are
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Fig. 4. Graphical model illustrating the Multivariate Polya distribution.

To obtain a measurement z, which is a quantized SIFT histogram, we first
sample from a Dirichlet distribution with parameter o to obtain a Multinomial
vector 6 . This Multinomial distribution is, in turn, sampled to obtain the
measurement histogram z. Note that a different 6 has to be sample for
each z. For visual effect, some sample histogram measurements are shown
alongside the graphical model. Image patches centered on the SIFT features
corresponding to the top 20 histogram bins are also displayed.
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The expanded likelihood model in (3), where P(a|60) is a
multinomial distribution (4) and P(6|a) is a Dirichlet distribu-
tion (5), is called the Multivariate Polya model, or equivalently
in document modeling, the Dirichlet Compound Multinomial
model [1]. The integration in (3) can be performed in closed
form since the Dirichlet process is the conjugate prior of
the multinomial distribution. Using the definitions of the
distributions (4) and (5) in (3), this yields the final form of
the place model as

p(6slas) = L%l (5)

P(a]A) o

n! W nw+aw
H Fn+a H ©)
o =

where n,, is the count of the wth appearance word across all the
SIFT histograms in A and n=Y,,ny, & =Y,, ay. I(.) denotes
the Gamma function. Graphical intuition for the Multivariate
Polya model is provided by Figure 4.

Given a set of D images with features detected on them,
the maximum likelihood value for o can be learned by using
iterative gradient descent optimization. It can be shown that
this leads to the following fixed point update [16]

2 gy + o) — y(aty)
new  _ g L= )
e Y2 (g + ) — y(0)

where oo =Y, o, as before, and y(.) is the Digamma function,
the derivative of the Gamma function.

B. Surprise Computation

We now apply the theory of surprise to the Multivariate
Polya model discussed above. Consider the situation where
the set of histogram measurements A = {g;|1 <i<n} has been
observed. The prior model for surprise computation is then
simply the Multivariate Polya model learnt using A. If now a
measurement z is observed, the posterior is the Multivariate

Polya model learnt using the measurements {A,z}. Surprise
can be computed per (1) as
P(a|c
(aloyr) ®)

P(alayyy)log
/a P(alayap)

where a7, is the maximum likelihood parameter learned using
measurements A as given in (7), and oy p is the corresponding
parameter learned using {A,z}

Computation of surprise using (8) is still not possible
in closed form due to the form of the Multivariate Polya
model. We now briefly summarize the exponential family
approximation to the Multivariate Polya model given by Elkan
[6]. Using this approximation, surprise can be computed in
closed form.

S(z) =

C. Exponential Family Approximation

Empirically, the learned values of « is usually such that
oy < 1 in most cases. For small a, the following approxima-
tion holds

I'x+a)
-Tr =
T(a) () 0
so that we can substitute Fg;a) by I'(x)a. Also using the

fact that I'(z) = (z—1)! in (6) yields the exponential family
approximation to the Mutivariate Polya model

i 1 B ©)
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g(a) =

where the parameters have been denoted as f instead of «
following Elkan [6] to distinguish them from the exact model
, and s=Y,, By. More details of the exponential nature of the
above distribution can be found in [6].

Given a collection of documents the maximum likelihood
value of B can be learned in a similar manner to (7) using
iterative fixed point equations as follows

Ywlallng, >1)
Yav(s+ng)—|Dly(s)

(10)

S =

Yal(ngy >1)
Lay(s+ng) = [Dly(s)
where I(.) is the indicator function.

(1)
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D. A Closed-form Expression for Surprise

Given the above discussion, we can now compute surprise
as the KL-divergence between two exponential family Polya
models using the expression for the model (9). The calcula-
tion is straight-forward using basic properties of exponential
family distributions and is omitted here for brevity. The final
expression for surprise is given as

B Disg+n) . Tl(sq)
S@ = C(sp+n) (sp)
il pi
(w(sq+n)—w(sq)) Z B log ﬁw (12)

where p and ¢ are the posterior and prior distributions, with
their eponymously subscripted parameters, respectively.



(@) (®)
Fig. 5. (a) Floor plan with approximate robot path overlaid for the
TSRB dataset. (b) Actual and predictive KL-divergences obtained from the
appearance model for the TSRB dataset plotted on a log scale.
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Fig. 6. Smoothed trajectory for the ground truth topology with the rig
panoramas corresponding to a few landmarks. This illustrates that many of
the landmarks that seem to be false positives at first glance are, in fact,
genuine landmarks due to the presence of doors and gateways, even though
the trajectory does not indicate this.

Surprise, as defined for the Multivariate Polya model in (8),
can be computed using the above equation. The parameter
values are learned for the prior distribution using all the
measurements observed upto the current time. The posterior
parameter is learned similarly, but by also adding the current
measurement to the dataset. The KL-divergence between these
distributions, which is the surprise, is computed using (12).

E. Results

The above landmark detection scheme was applied to a
robot run in the TSRB building where our lab is situated.
The building floorplan with hand-drawn robot trajectory is
shown in Figure 5(a). SIFT features were detected on images
obtained from the camera rig and appearance words computed
in exactly the same fashion as Section VI with 1024 appear-
ance words being computed using K-means clustering. The
topological mapping algorithm described in [18], which also
uses odometry in addition to appearance, was used to compute
the map using these landmarks.

The expected and the actual surprise values are shown in
Figure 5(b). Figure 1 shows the top twenty SIFT features
from the appearance histogram for certain places. A total of
19 landmarks were detected in this dataset, and the topology

(@ (b)
Fig. 7. (a) Floorplan of experimental area for CRB experiment using laser. (b)
Actual and expected KL-divergence (surprise) for the first experiment using
laser measurements plotted on a logarithmic scale. 15 landmarks are detected
in total.

obtained using the landmarks is the same as the ground truth
topology as is shown in Figure 2 along with the trajectory
obtained by optimizing the odometry with the correspondence
constraints provided by the topology. Colors of the nodes
depict correspondence, so that nodes classified as being the
same place are colored similarly. Note that all the decision
points are classified as landmarks, while a few false positives
also exist. The number of false positives is quite small since a
number of landmarks that appear to be false positives are, in
fact, gateway locations. Mosaics of a few of these landmarks
in Figure 6 show that they indeed correspond to locations that
are qualitatively different from their surrounding areas.

VII. LASER BASED SURPRISE COMPUTATION

We now provide a landmark detection scheme using laser
range scans that is based on the computation of Bayesian
surprise. Firstly, we convert the laser scans to a representation
that can be used to model places. Using a very simple
representation, place modeling is performed using the area of
laser scans as measurements.

The area contained in a laser scan can be computed by
triangulation followed by computation of the areas of the
triangles which are summed up to obtain the desired area.
Since in most cases, only a single laser is available, the robot
has a forward facing view of the world. This implies that if
the robot were to approach the same place from a different
direction, the place models would not match. We get around
this problem by building map patches incrementally around
each place as the robot moves. The areas of these patches give
an omni-directional, orientation-independent model for places.

Since a place in a topology does not imply a precise metric
location, the area measured by laser scans in the same place
will differ slightly due to the robot not being in exactly the
same location. This uncertainty is modeled using a Gaussian
distribution, which is the parametric model distribution used
for computing Bayesian surprise.

Given the above model, the computation of surprise is
straight-forward. The Bayesian surprise between the prior
q= W(uq,og) and posterior p = /(up,cl%), which are both



Fig. 8. PTM for the first laser experiment with automatic landmark detection
using Bayesian surprise (top). The topology at the top right with the maximum
probability is the ground truth. (bottom) The smoothed trajectories for the
top four most probable topologies. Nodes belonging to the same physical
landmark are colored similarly.

Gaussian distributions, is computed as follows

S(z) =

2 2 2 2
o +u;+o0;—2
0.5log b + M TEPTOP IR o5 (13)
O,

2
q 20

Landmark detection using surprise computed from (13) is
performed as follows. At each step, a number of measurements
for the area of the place are made based on the current
Gaussian model. The expected surprise is computed from
these sampled measurements using (2) and (13). This gives
a threshold for the actual surprise computed when the real
measurement is obtained.

A. Results

We now present results using our surprise-based landmark
detection scheme. Surprise was computed for laser scans using
(13). The decision of whether a surprise value corresponds to
a landmark is made by computing the expected surprise for a
given model as described above and in Section IV.

The laser-based Bayesian surprise computation was applied
to another indoor building environment, called the CRB,
whose layout is shown in Figure 7(a). The dataset contains
a total of 2106 laser scans. The actual and expected surprise
for each step are shown in Figure 7(b). 15 landmarks were
detected in total. The PTM obtained using these landmarks
has the ground truth topology as the most likely one, receiving
64% of the probability mass, as shown in Figure 8. The
smoothed trajectories corresponding to a few of the topologies
in the PTM are also shown in Figure 8. Landmarks at the
corners are detected when the laser sees around the corner for
the first time, and hence, anticipate the actual corners slightly.
The number of landmarks and their placement is almost perfect
in this case.

Fig. 9. Metric map of Killian Court dataset [3] produced using the iSAM
algorithm [9] shown as reference for comparison with Figure 10

We next apply the landmark detection scheme to the MIT
Killian Court dataset [3] which is another widely used dataset
in the SLAM community. The dataset consists of 1941 poses
and corresponding laser scans. The ground-truth metric map
with laser scans and robot trajectory is shown in Figure 9 for
reference. A total of 61 landmarks were detected using laser-
based surprise and the PTM obtained using these landmarks,
which also contains the ground truth as the most likely
topology, is shown in Figure 10. The ground truth receives
81% of the probability mass. Figure 10(b) gives the trajectory
smoothed with the topological constraints and also the color-
coded nodes as before. It can be seen that only a few false
positives are found, and crucially, all the actual landmarks,
i.e. the junctions and gateways, are accurately detected. The
robot trajectory in this dataset spans an area of more than
200x200 meters and is considered challenging for metric
mapping algorithms. It is however, a relatively easy sequence
for performing topological mapping due to the wide separation
between most landmarks, thus illustrating the advantage of a
topological map over metric maps in this case.

The operation of the landmark detector was quantitatively
tested with respect to the number of false negatives and false
positives. For this purpose, a number of robot runs with laser
were performed in the environment of Figure 7 and with
cameras in the environment of Figure 5. A total of 7000 laser
measurements and 1371 panoramic images were obtained.
Gateways were marked manually as landmarks and the results
of the landmark detectors were compared against this ground
truth labeled data. Results are shown in the form of contigency
tables in Figure 11.

Since “perfect”, human-level landmark detection based on
high-level clues is currently not possible, a good landmark
detector can be taken to be one that has negligibly few
false negatives while producing a tolerable number of false
positives, i.e. the landmark detector fires at almost all the
locations that would be viewed as landmarks by a human while
also firing at some locations that would not. It can be seen that
the number of false negatives is very low as required, while
the number of false positives is reasonable.
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Fig. 10. (a) PTM for the MIT Killian Court dataset with automatic
landmark detection using Bayesian surprise. The topology at the top left with
the maximum probability is the ground truth (b) The smoothed trajectory
corresponding to the ground truth topology.

VIII. CONCLUSION

We have proposed a new landmark detection scheme that
equates the presence of a landmark with a sudden change in
environment characteristics as quantified by Bayesian surprise.
The computation of surprise was illustrated for appearance
measurements using a bag-of-words model, and using laser
range scans, thus proving the generality of the algorithm.
Landmark detection was tested with a topological mapper on
a number of datasets, hence demonstrating its practicality.

There are a number of limitations with regard to the
appearance and, especially, the laser model used in the current
system. It is future work to incorporate more sophisticated
models that are invariant to the ordering of data, and can
take into account dynamic objects and significant changes in
lighting and perspective during recognition.
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