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Abstract— We present an algorithm for pose estimation
using fixed-lag smoothing. We show that fixed-lag smoothing
enables inclusion of measurements from multiple asynchronous
measurement sources in an optimal manner. Since robots
usually have a plurality of uncoordinated sensors, our algorithm
has an advantage over filtering-based estimation algorithms,
which cannot incorporate delayed measurements optimally. We
provide an implementation of the general fixed-lag smoothing
algorithm using square root smoothing, a technique that has
recently become prominent. Square root smoothing uses fast
sparse matrix factorization and enables our fixed-lag pose
estimation algorithm to run at upwards of 20 Hz. Our algorithm
has been extensively tested over hundreds of hours of operation
on a robot operating in outdoor environments. We present
results based on these tests that verify our claims using wheel
encoders, visual odometry, and GPS as sensors.

I. INTRODUCTION

Localization, also called pose estimation, is essential for a
robot trying to navigate in any environment. When combined
with map creation, this morphs into the Simultaneous Local-
ization and Mapping (SLAM) problem, one of the most im-
portant problems in robotics and one that has attracted much
attention in the last few years. However, in many settings,
such as in outdoor environments where GPS measurements
are available, pose estimation alone may suffice to enable a
robot to reach its goal.

The classical solution to the pose estimation problem
is the Lu-Milios algorithm [17], which performs a global
optimization over relative pose constraints to obtain the
optimal robot trajectory. However, the Lu-Milios algorithm
is a batch algorithm that is unsuitable for real-time operation.
On the other hand, filtering algorithms such as the Extended
Kalman Filter (EKF) [20] estimate only the current robot
pose, and hence provide estimates of poorer quality since the
information from measurements can only propagate forward
in time, unlike in the full Lu-Milios scheme, where new
information also influences earlier estimates.

A compromise between full smoothing and the filtering
is provided by the fixed-lag smoothing scheme, where the
joint estimate of the poses {x¢_p,...,x;} from time ¢ —p
to the current time ¢ is estimated at each step for a fixed
interval p called the lag. At each step, the estimate of the
first pose in the fixed lag, x;_, is the best since this estimate
can incorporate the largest number of future measurements.
Fixed-lag smoothing is often used as an expensive filtering

Fig. 1. Dynamic Bayes Net for fixed-lag smoothing. x; is the robot state
at time ¢, the control inputs are represented as w;, while 7; and z; represent
the relative pose constraints (eg. odometry) and absolute pose measurements
(eg. GPS) respectively. A state need not have all these types of measurements
associated with it. The active states comprising the fixed-lag of length p are
shown inside the rectangular box. The prior state x¢_, is shown shaded
dark.

scheme in cases where simple filtering produces unacceptably
poor estimates but full smoothing is too expensive.

Our motivation for using fixed-lag pose estimation stems
from its application to the LAGR program [16] where the
robot obtains pose measurements from multiple sources such
as wheel encoders, visual odometry, IMU, and GPS at
varying rates. In our application, while odometry from wheel
encoders is available at 20 Hz, visual odometry and GPS are
only available at rates of 2-4 Hz. Hence, while incorporating
a visual odometry measurement, we can take advantage of the
measurements from the “future” which have already arrived
from the faster sensors.

When measurements from multiple asynchronous sensor
streams need to be fused, fixed-lag smoothing offers un-
matched advantages over filtering, since future information
from faster sensor streams can be used to improve the
estimate when a time-delayed measurement from a slower
stream is obtained. However, this involves incorporating out-
of-sequence measurements in an efficient manner so that the
algorithm maintains its real-time character. To the best of our
knowledge, such an algorithm for robot localization has not
been presented before.

In this paper, we consider the pose estimation problem



in the above-mentioned scenario where the robot receives
measurements at varying rates from multiple sources. Further,
our estimates are computed for the 3D case, where the poses
are six-dimensional, consisting of three spatial coordinates
and three angles, respectively. This is important since outdoor
robot navigation in difficult terrain, which has recently been
in the spotlight following the DARPA Grand Challenge,
violates the ground plane assumption made in using 2D pose.
Our contributions through this paper are four-fold -

e We provide an optimal fixed-lag smoothing algorithm
that can incorporate measurements arriving out of time-
sequence order from different sensors

o Estimation is performed for 6D poses using Lie-
Algebraic techniques on the space of all Euclidean
motions, represented by the Special Euclidean group
SE(3)

e Covariance estimates for the poses are also computed.
This is useful, for example, in maximum likelihood data
association

e The complete algorithm, including covariance estima-
tion, runs in real time at up to 20Hz. This is possible,
in part, due to our use of a square root information
fixed-lag smoother, analogous to square-root informa-
tion smoothing [5].

We deal with the case where the distribution on poses in
the trajectory is assumed to be Gaussian. However, measure-
ments may be non-linear as in an EKF. We consider odometry
measurements from wheel encoders and visual odometry
obtained from a stereo pair mounted on the robot. GPS, which
unlike odometry provides absolute measurements on poses,
is also incorporated into the algorithm.

The pose estimation algorithm presented here has been
deployed on a robot operating in difficult and varied outdoor
terrain. It has operated consistently for many hundreds of
hours. We present selected results obtained during the robot’s
operation using our pose estimator.

In the rest of the paper, we first discuss related work
and subsequently provide a formal description of fixed-lag
smoothing in Section III. This is followed by an exposition
in Section IV of the square root information smoother applied
to the fixed-lag case. Section V provides the details for
incorporating out-of-sequence measurements into the fixed-
lag algorithm. Section VI discusses the particular state rep-
resentation, state transition model, and measurement models
used by us. We provide experimental results and analysis
using these models in Section VII and some concluding
remarks in Section VIII.

II. RELATED WORK

We view pose estimation as the problem of computing
the robot trajectory from relative constraints between, and
also absolute measurements, on the poses. This view was
pioneered by Lu and Milios [17], and further developed in
various contexts [14], [6]. All Lu-Milios type approaches
operate in batch mode and hence, are not real-time. Even
fast linear algebra-based smoothing techniques, such as [5],
ultimately become too slow due to the linear increase in

the number of states over time. This is especially severe
in our case since measurements arrive at rates of up to
20Hz, implying 20 additional states in the smoothing problem
every second. Of the various smoothing techniques, recent
work by Agrawal [1] is of particular interest as it extends
the Lu-Milios technique to the 3D pose estimation using
Lie Groups. This is also an approach we take here, but
our algorithm also operates in real-time and can handle
asynchronous measurement streams, features that Agrawal’s
work does not have.

Filtering approaches [10], especially those based on par-
ticle filters [9], provide real time operation at the expense
of some estimation quality, and have been very popular.
However, extending filtering algorithms to account for mul-
tiple measurement streams with possible delay is harder, and
provides estimates that are much poorer than smoothing.
The optimal solution for the delayed measurements case was
provided by Bar-Shalom [2].

The first fixed-lag smoothing algorithm was developed by
Rauch [19]. The use of fixed-lag smoothing for incorporating
out-of-sequence measurements has been proposed before
[3]. However, our use of it in conjunction with square-root
smoothing is novel. While we only consider the linearized
case of fixed-lag smoothing, non-parametric methods such
as Sequential Monte Carlo [4] can also be applied.

III. FIXED-LAG SMOOTHING FOR POSE ESTIMATION

We now describe the use of fixed-lag smoothing for robot
pose estimation. The fixed-lag problem consists of finding the
posterior on the p most recent robot states given all previous
measurements, where p is the length of the lag. The Dynamic
Bayes Net (DBN) for fixed-lag smoothing is shown in Figure
1. We term the states in the lag x;_,, 1.4 as the active states
and the most recent state x; as the head of the lag. The
model includes three types of input that we consider - the
control inputs u;, relative pose constraints r; such as those
from wheel encoders and visual odometry, and absolute state
measurements z; such as those provided by a GPS sensor.
In the discussion below, we denote all these inputs at time
collectively as Z; to simplify the notation.

The desired posterior can be obtained by marginalizing
over the state which occurs just before the start of the lag.
Denoting the current time by ¢, this is the state at time ¢ — p,
Xt _p- This state, denoted the prior state, captures all the
information contained in the previous measurements up to
time ¢ — p. The fixed-lag posterior can hence be written as

p(xtprrl:t ‘xtfgm therl:t)
t—p

p(Xt—pi1:tlZ14) = /
p(Xt—plZ1:t—p) (1)

where Z1.; is the set of measurements {Z, ..., Z;}. Note that
(1) is simply the Bayes filter equation for the fixed-lag case.
The prior distribution p(x;—p|Z71.;—p) is the filtering estimate
of x;_, when it was the head of the lag. Applying Bayes
law to the first term in the integrand on the right side, we



obtain

o P(Zt—pi1:tXt—p, Xt—pi1:t)
P(Xt—pt+1:t|Xt—p)(2)

P(Xt—pt1:t1Xt—ps Zt—pt-1:t)

The two terms on the right side of (2), which denote
respectively the joint measurement likelihood and the prior on
states, can in turn be factorized using the Markov assumption

=iy pr1 P(Zilxi—1,%:)(3)

=IliZf pp(xipilxi) (4
Fixed-lag state estimation consists of estimating the posterior
in (1) recursively using the sensor models p(Z;|x;_1,x;) and
the motion model p(x;1|x;). A graphical illustration of the
algorithm is given in Figure 2

P(Zp—p1:t1%e—p» Xt —pt-1:t)

p(xt—p+1:t|xt—p)

IV. SQUARE ROOT INFORMATION SMOOTHING

While the above discussion provided an abstract view
of fixed-lag smoothing, we now present details for real-
time computation of the fixed-lag posterior using square root
information smoothing.

We assume Gaussian motion and measurement models,
as is standard in the SLAM literature. The motion model
is given as x;41 = fi(x;,u;) + w;, where w; is zero-
mean Gaussian noise with covariance matrix A;. Similarly,
the measurement equation for a relative constraint between
poses is given as 7, = hy(x;,,x;,) + v, and that for
an absolute measurement on the state, such as GPS, is
given as z;, = gp(x;,) + s, where v;, and s;, are normally
distributed zero-mean measurement noise with covariances
'y, and 3 respectively. Denoting the active states x;_;,41:¢
by X, the problem becomes one of non-linear least squares
minimization to compute X*

t—1

> Il w;) = i1 lla,+

i=t—p

X* = argmin

(b)

Fig. 2. Illustration of fixed-lag smoothing. (a) The initial smoothing problem
with fixed-lag length p, prior state x;_, and head of the lag x; (b) When a
new measurement arrives, a new state x; 1 is added and x;_, 1 becomes
the new prior state. Since the states move to the left in the DBN after the
addition of each measurement, the prior distribution at time ¢ is simply the
filtering distribution on the head of the lag at time ¢ — p. For example, the
filtering distribution on x;41 in the figure will be the prior distribution for
the smoothing problem at time ¢ + p + 1.

Z [t (X4, %5,.) — Tl + Z l9k (%) = 2klls, + an iteration produces an increment 5X* such that X +86X™* is
k

2
[1x¢t—p — Mt—pHPt,p}

where (p¢—p, P;—p) is the Gaussian prior on the prior state
x¢_p, and we use the notation |le||ly;, = eI's~le for the
squared Mahalanobis distance given a covariance matrix 3.
Note that all the terms in the above equation correspond to
the integrand in the Bayes filter (1). Further, the prior on
x¢_p is the filtering distribution on that state from p time
steps ago, when x;_,, was the head of the lag, and so need
not be calculated here.

In practice, only linearized versions of the motion and
measurement models are considered, with multiple iterations
involving relinearization and optimization being used to
obtain convergence to the minimum. In the following, we
will assume that either a good linearization point is available
or that we are working on one iteration of a non-linear
optimization method. Each iteration produces an estimate
of the incremental change to the current values of the state
needed to reach the minimum, i.e. if the current state is X,

closer to the minimum state than X. It can be shown [5] that

(5) the linearized version results in a sparse linear least squares

problem in 6 X*

t—1
D IFdx; + Igdxiq1 — agl|a,+
1=t—p

> [HFox;, + HYFoxj, — bellr, + |G}, — ckllss,
k=1

§X* = argmin

(6)

where F; is the Jacobian of f;(.) at the linearization point

Hixt—p — rt—pllp,_, }

x? and q; a xg 1 fi(xg,ul-) is the odometry prediction
error. The other terms are defined analogously, for example

}g is the Jacobian of g (.) with respect to a change in Xy
evaluated at the linearization point x?k, and ¢y, 2 zp— gk(x?k)
is the measurement prediction error. We use the d x d identity
matrix I; , d being the dimension of x;, to avoid treating
0x;41 in a special way.

The solution to the linear least squares problem (6) is given



by the linear system J6X — b = 0, where J is the system
Jacobian matrix obtained by assembling the individual mea-
surement Jacobians, and b is the vector of all the measurement
erTors.

A solution to the linear system can be obtained using
the QR factorization [12] of the measurement Jacobian J €

RmXTL.

J=Q

R
. )

Rme

where Q € is orthogonal, and R € R™*" is upper

triangular. Note that the information matrix 7 2 JT g , which
is the inverse of the covariance, can also be expressed in
terms of this factor R as 7 = RTR, which we therefore call
the square root information matrix R. We rewrite the least-
squares problem, noting that multiplying with the orthogonal
matrix Q7 does not change the norm:
X — { d ] 2
€

IRSX —d|)* + el (8)

R

R 2
0X —b =
11Q 0 I Il 0

where we defined [d, e]T 2 Q"'b. The first term [|[R6X —
d||? vanishes for the least-squares solution §X*, leaving the
second term ||e] |2 as the residual of the least-squares problem.

The square root factor allows us to efficiently recover the
mean of the active states in the fixed-lag posterior (1) at
any given time. This is simply achieved by back-substitution
using the current factor R and right hand side d to obtain an
update for all states X based on

R6X*=d 9)

Since R is a sparse matrix due to the fact that the active states
are not fully connected in the DBN (Figure 1), the mean state
estimates can be obtained in O(p) time complexity, where p
is the length of the lag as in Section III.

While the state update using 5 X ™ involves simple addition
in most cases, this in inappropriate in our case due to the use
of 6D pose, which involves a 3D orientation. The 6D pose
lies in the Lie group SE(3), which in turn can be viewed as a
semi-direct product of the 3D Euclidean Lie group E(3) and
the 3D orientation Lie group SO(3). We effect the update in
this product space through use of the Lie group exponential
maps of E(3) and SO(3) respectively. The exponential map in
SO(3), for instance, is the well-known Rodriguez’s formula
[8]. As our focus here is fixed-lag smoothing, we do not
discuss the update equations further, but instead direct the
reader to [21] and [1] for further details.

Given the above discussion, we can now summarize the
square root information fixed-lag smoothing algorithm. At
each step, we linearize and obtain the linear equation in-
volving the Jacobian J6X — b = 0. The equation is solved
using QR factorization, and a back-substitution step using
the R matrix, to obtain the minimum state X = x;_p 1.
When a new measurement is encountered, we add a new
state corresponding to this measurement as x;1 and the
oldest active state x;_, 1 becomes the new prior state. The
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Fig. 3. TIllustration of the fixed-lag algorithm using square root information
smoothing. (a) The fixed-lag posterior is linearized to obtain a linear
system J6X = b involving the Jacobian matrix. The system shown here
corresponds to Figure 2(a). The prior distribution on x;_p is imposed using
the error computed from (9). (b) The linear system is solved using QR
factorization followed by back-substitution. The R matrix for the above
system is shown here. The marginal covariance of the head of the lag x:
is given by (RT Rlast) 1 This corresponds to the filtering distribution

last
on x; and is saved at each step, since it is also the prior on x¢ when it

becomes the prior state at time ¢ + p.

whole process is then repeated. Fixed-lag smoothing using
the square root information matrix is illustrated in Figure 3.

A. Computing Marginal Covariances

The square root information smoother enables an easy
estimate of the marginal covariances of the robot poses.
Covariances are useful, for example, for providing a max-
imum likelihood solution to the data association problem in
SLAM [15], and also for providing location uncertainty to
probabilistic path planning algorithms [13].

A conservative estimate of the marginal covariance of a
state can be obtained from the filtering distribution when the
state is the head of the lag. At this point, the portion of
the R matrix that corresponds to the head state is the last
triangular piece, denoted R, as shown in Figure 3(b). Due
to the conditional independence constraints encoded by the R
matrix, the marlginal covariance of the newest state is simply

le;stRlast) . This covariance estimate is conservative
since it can only shrink as the state moves up through the
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Illustration of out-of-sequence measurement handling. (a) The initial smoothing problem with prior state x;_p, and head state x¢. (b) A delayed,

asynchronous absolute pose measurement arrives with time stamp ¢’ and has to be inserted along with its state x,/ (shown in light yellow) into the DBN.
The stored filtering distributions of all the poses following x;, are now invalid and have to be recalculated. (c)-(d)This is done incrementally by solving
a number of smoothing problems starting with states up to x,, and adding a state until we get to the complete fixed-lag problem in (b). Each of these
smoothing steps has a state with an invalidated filtering distribution at the head of the lag. Note that the relative measurement 7,42 in (b), shown in
yellow, spans across x;/. (¢) When x;/ becomes the prior state as shown here, the state preceding it, x;_p2 (in red), which should have been discarded,
is involved in a relative constraint with an active state and so has to be included in the calculations. (f) This is done by using a joint prior distribution on
X¢—p+2 and x/ (R matrix shown) computed from (c). In general, there may be more than one state like x;—p4-2.

set of active states and future measurements provide more
information on it.

While it is possible to obtain marginal covariances for all
the states in the fixed-lag at each time step, the operation is
no longer O(1) as above, but takes O(p2), p being the length
of the fixed-lag.

V. INCORPORATING OUT-OF-SEQUENCE
MEASUREMENTS

When multiple asynchronous measurement streams with
different time delays are present, this introduces significant
complications to the vanilla fixed-lag smoother presented in
the previous section. Firstly, a time delayed measurement
causes the stored filtering distributions of the active states
that follow the measurement to be invalidated, as shown in
Figure 4(b). Since these distributions are used as priors in
the Bayes filter (1) in future steps, this problem is henceforth
called the prior invalidation problem. Secondly, introduction
of asynchronous absolute pose measurements can give rise to
constraints between active states and those that have already
been discarded, as shown in Figure 4(e). We will call this
the fixed-lag overflow problem.

The fixed-lag overflow problem can be overcome by mod-
ifying the Bayes filter (1) so that we marginalize over not
just the prior state but all inactive states that have constraints

linking them to active states. We denote this set of states
by xf_p. In Figure 4(e), x?_p consists of just the single
state x;_, 12 (shown in red). However, in general, because a
delayed measurement may involve states separated by more
than one state, and because multiple delayed measurements
may be present, x?_p will be larger in size. Thus, the Bayes
filter (1) can now be modified to marginalize over this set of
states in addition to the prior state

P(X¢—pt1:41Z21:4) = / P(Xf—ps Xt—pl Z1:4—p)

o
xt—p7xt—P

P(Xt—pt1:1XE—pr Xt —ps Zp—p1:¢)  (10)

and an analysis similar to Section III follows.

For the square-root information case, computing the
marginal distributions of all the states in x{_, for use in
(10) at each time step is expensive. Instead, we note that all
the states in xf,p precede x;_j, and denote the oldest state
by xo,. The marginalization can now be performed over the
contiguous states x,,,:;—p Which can again be obtained by
storing the joint distribution on these states when x;_,, was
the head of the lag.

Referring to Figure 4(e), marginalization is performed over
the two contiguous states x; 1o and x, the joint distribu-
tion on which is computed from the smoothing solution in the



previous step shown in Figure 4(c). The R matrix correspond-
ing to the joint covariance on these states in shown in Figure
4(f). In the case where there are additional states between
x¢_p42 and x that are not involved in any delayed measure-
ments, these are also included in the marginalization. This
is because computing the marginal distribution on x;_,49
is more expensive compared to integrating over the joint
Gaussian distribution on the states x;_, | 9.,/ Additionally, as
the intervening states are not involved in any measurements,
their distributions are not affected by the computation in
(10). Since the number of states in this joint prior cannot
be more than p, the length of the fixed-lag, this implies that
any measurement delayed excessively cannot be processed.
However, in practice, this is not an issue since p can be set
to account for measurement time delays of the system.

A time delayed measurement invalidates the stored joint
distributions corresponding to states following the measure-
ment. These joint distributions are nedded for use as fu-
ture prior distributions as described above. This problem
is illustrated in Figure 4(b). The invalid distributions have
to be recalculated by successively performing smoothing
steps starting from the state corresponding to the delayed
measurement and adding one state at a time. This is shown
in Figures 4(c)-(d).

While this procedure for computing the joint prior distribu-
tions may seem expensive, it is in practice quite fast since all
the states have good initial estimates from previous iterations
(except for x;/) and 1-2 steps of the iterative optimization
usually suffice to compute each new prior. Furthermore, time
delayed measurements are usually infrequent.

VI. STATE REPRESENTATION AND MODELS

We now provide details of the robot state representation,
motion model and measurement models used to obtain the
results presented in the following section. Note that the fixed-
lag algorithm is in no way restricted to this particular state
representation but is applicable to any valid representation
with the associated motion and measurement models.

We take the robot state to be the 8-tuple

(1)

X =

(1’7 y7 Z’ 07 ¢7 /l/}7 U7 w)

where (z,vy,z) is the location of the robot, (6, ¢,v) is the
(yaw, pitch, roll) orientation of the robot, and v and w are
the linear and angular yaw velocities respectively. The state
transition dynamics are modeled by the linear system x; 1 =
f(x¢) + Q, where f is the non-linear prediction function and
Q is the Gaussian prediction noise. The prediction function
models the pitch ¢, roll ¢ and angular velocity w as constants
Chiteh» Cron and Cy respectively with some added Gaussian

P
noise. Hence, the state transition equation can be written out

Fig. 5. The LAGR robot with two stereo camera pairs and a GPS antenna
on top used in the experiments.

as
Yyawg4 1 yaws + wy * dt [0 1]
pitchitq Chitch op
Tollt+1 CTOll or
T ¢ + v¢ * (cosyawy) * dt 0
X1 = t+1 || @t +ve* (cosyawy) N
Yit1 Yyt + v * (sinyawy) * dt 0
Zt+1 Zt Oz
UVt41 Ut Ov
L w1 | Cuw L ow |
(12)

so that the motion model p (x;41|x¢) is given by the Gaussian
N (Fzy, rerT 4+ Q), where F is the Jacobian matrix of f(x)
evaluated at x4, and X is the covariance matrix on x;. Note
that this is the standard constant velocity model used widely
in the literature, for instance in car tracking [7].

We consider measurements in the form of odometry, visual
odometry, and GPS. The measurement models for these are
also assumed to be Gaussian distributed

p(zilz;) o< N(x4,Xgps)

Prglxiy, xj,) o« N(h(xiwxjk)vzk) (13)

where h(.) is the non-linear map that computes the 6D rigid
transformation between two robot states.

VII. RESULTS

We have implemented the fixed-lag smoothing pose esti-
mator using the motion and measurement models described
in the previous section, on a robot with two stereo camera
pairs (Figure 5). Odometry information from wheel encoders
is available from the robot at the rate of 20Hz while GPS
measurements arrive at 3-4Hz with a latency of about 0.3
seconds. Visual odometry, computed from the stereo pairs
using the algorithm described in [18], can be computed at
a rate of 4Hz but is only available with a latency of 0.5
secs due to communication and computation delays. Hence,
the measurement streams are both asynchronous and contain
time delays, both of which are difficult cases for normal pose
estimators, but are handled by our algorithm.

Under the LAGR program [16], our pose estimator has
clocked hundreds of robot hours in varied outdoor terrain,
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Fig. 6. Two views of the rectangular trajectories for the first experiment -
the proposed fixed lag algorithm (red), EKF filtering (blue), and Lu-Milios
smoothing (black). The start location is at the top right in (b) and the robot
traversed the rectangle in an anti-clockwise direction. The total number of
states in the run was 2788. Note that the z-axis has a much larger scale.

including under forest cover where GPS measurements are
unreliable, and in hilly terrain where full 6D pose is essential.
We present results from some of these runs below. All results
were obtained using a lag of length p = 25 which corresponds
to approximately 1.25 secs on the robot.

We first present an experiment that emphasizes the need
for processing delayed measurements optimally. The robot
was made to traverse a rectangular path and ended its run at
its initial location. The trajectories obtained using simple a
EKF filtering algorithm, our fixed-lag smoothing, and full Lu-
Milios smoothing are shown in Figure 6. The robot’s wheels
slip at the start of its trajectory resulting in an orientation
error. The fixed-lag and smoothing algorithm cope with this
by incorporating GPS measurements, which are delayed by
about 0.3 seconds each. The EKF algorithm, however, cannot
accomodate these measurements optimally. In this case, we
modified the filter to consider the GPS measurement as
corresponding to the current state. This results in EKF state
estimate lagging behind the GPS measurements, and forever
trying to “catch up”. The resulting trajectory is skewed as
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Fig. 7. Timing information for the run in Figure 6 displayed in seconds
for a given length of the full trajectory. Since fixed-lag smoothing (red) and
filtering (blue) are independent of the length of the trajectory, their com-
putation time per time step remains almost constant, while full smoothing
(black) requires O(n) time, where n is the number of states. The times for
fixed-lag smoothing and filtering have been exaggerated by a factor of 20
for viewing convenience.

can be seen in Figure 6. Fixed-lag smoothing with a lag of
25 gives an almost identical result to Lu-Milios smoothing.

Figure 7 gives timing information for run in the above
experiment, where the runtime for filtering and fixed-lag
smoothing have been multiplied by 20 for viewing conve-
nience on the linear scale. As expected, the time required for
full smoothing increases linearly with number of states while
the time required for fixed-lag smoothing remains almost
constant. This time is almost the same as that required for
filtering up to a constant factor. Both filtering and fixed-lag
smoothing are almost two orders of magnitude faster than
full Lu-Milios style smoothing. This provides evidence for
the real-time applicability of fixed-lag smoothing, especially
when used in conjunction with square-root smoothing.

The second experiment validates the robustness of the
algorithm to missing measurements. The robot in this case
was made to traverse a circular trajectory of known radius
(Figure 8(a)). We analysed the localization error of our
algorithm under a scenario where the GPS signal is lost
midway through the run but is regained after an interval.
When GPS is regained, this causes a discontinuity in the
EKF estimate due to the large measurement error. Fixed-
lag smoothing spreads this error over all the active states,
and hence displays more robustness. Figure 8(b) gives the
localization error and demonstrates that the error from fixed-
lag smoothing is less than half of the filtering error at the
end of the run.

VIII. CONCLUSION

We presented a fixed-lag smoothing algorithm for pose
estimation that can deal with multiple asynchronous mea-
surement sources in the presence of time delays. We provided
an implementation for the general fixed-lag smoother in the
case of linearized motion and measurement models. This
implementation uses sparse QR factorization to produce a
fast square-root smoothing algorithm. Our algorithm has been
extensively tested on a robot in a wide variety of terrain and
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Fig. 8. (a) The circular path traversed by the robot is shown with the
ground-truth in black, the filtering estimate in blue and fixed-lag estimate in
red. GPS is lost midway through the run and causes a jump in the filtering
estimate when it is regained. (b) Average localization error for the run with
the error from the filtering estimate in blue and fixed-lag estimate in red.

we presented results that confirm the robustness and real-time
applicability of the method.

Integration of GPS measurements has been done using
a Gaussian measurement model. However, GPS measure-
ments are highly non-linearly distributed in practice due
to multipath effects from surroundings, particularly under
forest cover or in urban canyons. In practice, to enable
the use of a Gaussian model, we gate GPS measurements
and discard those that fall outside the gating radius. This
approach is adopted in the interest of speed and also accuracy,
since linearizing a function encoding multi-path effects is
impractical. The use of sequential Monte Carlo methods
instead of square-root smoothing would rectify this problem
[11].

The extension of our technique to SLAM is relatively
straight-forward. The fixed-lag posterior for SLAM consists
not only of p robot states but also includes the current
estimates of locations of landmarks in the environment,
which make up the map. Loop closings can be handled in
a similar manner to EKF SLAM but with more accurate
estimates. The application of fixed-lag smoothing to SLAM
and an analysis of its performance is part of future work.
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