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Abstract— We present a particle filtering algorithm to con-
struct topological maps of an uninstrument environment. The
algorithm presented here constructs the posterior on the space
of all possible topologies given measurements, and is based on our
previous work on a Bayesian inference framework for topological
maps [21]. Constructing the posterior solves the perceptual
aliasing problem in a general, robust manner. The use of a
Rao-Blackwellized Particle Filter (RBPF) for this purpose makes
the inference in the space of topologies incremental and run in
real-time. The RBPF maintains the joint posterior on topological
maps and locations of landmarks. We demonstrate that, using the
landmark locations thus obtained, the global metric map can be
obtained from the topological map generated by our algorithm
through a simple post-processing step. A data-driven proposal
is provided to overcome the degeneracy problem inherent in
particle filters. The use of a Dirichlet process prior on landmark
labels is also a novel aspect of this work. We use laser range scan
and odometry measurements to present experimental results on
a robot.

I. INTRODUCTION

The last decade of research in the field of robotic mapping
has seen the emergence of two major paradigms - metric
maps and topological maps. Metric maps [18][17], which
have enjoyed more popularity, provide a fine-grained, scale-
consistent representation of the environment with the added
benefit of being easy to use for navigation. However, they
are hard to build accurately due to their fine-grained structure.
Topological maps [23][4], on the other hand, are a graph-based
description of the environment that offer an orthogonal set of
benefits and drawbacks in the sense that they are a coarse
representation but not directly amenable for use in navigation.
For a detailed discussion comparing metric and topological
maps, see [27]. In this work, we use the standard definition of
a topological map, i.e a set of landmark nodes connected by
edges that denote traversibility [13].

A major problem in topological mapping is perceptual
aliasing in the environment, whereby many distinct landmarks
appear to be similar to the robot’s sensors. Thus, the robot
has trouble labeling the landmark correctly, and consequently,
in inferring the correct topology. Previous work in this area
has attempted to solve the perceptual aliasing problem through
the use of Hidden Markov Models (HMMs) [25][8], multiple
hypothesis tracking using POMDPs [29], maintaining a tree
of all consistent topologies at each step [24], and clustering
of measurements from the landmark locations [12]. Other
approaches use local appearance at a landmark to perform

place recognition [6][26]. However, many of these approaches
are brittle and prone to silent failure in difficult environments.

Recently, we have proposed a Bayesian framework for
inferring the posterior distribution on the space of topolo-
gies [21][22]. This technique, called Probabilistic Topological
Maps (PTMs) provides a general, robust solution to the
problem of perceptual aliasing. PTMs are generated through
inference in the space of topologies, which is equivalent
to the space of all possible set partitions of the landmark
measurements. This latter space is combinatorial in nature and
the number of possible topologies becomes intractably large
even for a modest number of distinct landmarks.

As our primary contribution in this paper we propose a
particle filtering algorithm for topological mapping based on
the PTM framework using a laser scanner as sensor. The
use of particle filters makes our algorithm incremental, as
opposed to our previous work on PTMs that used Markov
Chain Monte Carlo (MCMC) [21], which is inherently a
batch algorithm. While the use of importance sampling in a
highly combinatorial space may seem suspect, it is justified
by the fact that the posterior in the space of topologies is
highly peaked; only a handful of topologies get a non-zero
probability mass. Additionally, the use of laser range scanners
in the PTM framework is also a novel aspect of this work.
Range scans are used to construct local map patches around
landmark locations that the robot visits. These map patches
are subsequently matched using scan matching techniques to
provide a likelihood of their being from the same physical
location.

We present a data-driven proposal distribution that makes
use of odometry measurements to overcome the samples
degeneracy problem in the particle filter and encourage fast
convergence. A novel prior distribution on the type of land-
mark that the robot expects to see next is also provided.
This prior takes the form of a Dirichlet process and encodes
intuitive characteristics of the problem domain.

Our algorithm uses a Rao-Blackwellized Particle Filter
(RBPF) [19][17] to maintain a joint posterior on the landmark
locations and topologies. Hence, the posterior distribution on
the metric locations of the landmarks can be obtained as
a side effect of inferring the topology. A Lu-Milios style
smoothing operation that incorporates topological constraints
[9], performed as a post-processing step after the addition of
a landmark to the PTM, can be used to produce a metric



Fig. 1. Scan measurements, obtained by concatenating scans from around
landmark locations, used by the RBPF algorithm.

map of reasonable accuracy. Combined with the topological
map, this metric information makes navigation using PTMs
simple. Also, since a PTM is a posterior on topologies, this
step gives us a posterior on hybrid metric-topological maps of
the environment. As we have an estimate of the correctness of
any map in the posterior, navigation can be done in a robust
manner using an ensemble of maps.

In this work, we do not deal with the problem of land-
mark detection, which is largely an orthogonal issue to the
main problem of inferring topologies. Any landmark detection
scheme, such as the ones in [15][12], can be used with our
algorithm. The only assumption made is that the output of the
landmark detection operator does not have false negatives, i.e
landmarks do not get skipped over without the robot sensing
them. However, as our algorithm is capable of dealing with
false positives from the landmark detector, any of the above
mentioned schemes can be tuned to avoid false negatives while
giving a fair number of false positives. Thus our assumption
in this regard does not restrict the use of our algorithm in any
way. We present experiments performed on an ATRV-Mini
robot to validate our algorithm that make use of manually
selected landmark locations.

II. THE SPACE OF TOPOLOGIES

Our aim is to compute the posterior over topologies given
measurements, P (T n|zn), where T n is a topology constructed
from n landmarks observed by the robot in its run so far,
and zn is the set of measurements upto the nth landmark.
In our case, the measurements consist of odometry and
laser range scans, so that zn =

{

sn, on−1
}

, where sn =
{s1, s2, . . . , sn} is the set of range measurements and on−1 =
{o1, o2, . . . , on−1} is the set of odometry measurements be-
tween landmarks. The scan measurements, used in one of our
experiments, are given in Figure 1. Before we can perform
inference in the space of topologies, we need to understand
the nature of this space.
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Fig. 2. Two topologies with 6 observations, each corresponding to
set partitions (a) with six landmarks ({0}, {1}, {2}, {3}, {4}, {5})
and (b) with five landmarks({0}, {1, 5}, {2}, {3}, {4}), illustrate the
equivalence between topologies and set partitions.

A. Topologies as set partitions

The key idea behind inference in the space of topologies is
the equivalence between topologies of an environment and set
partitions of landmark measurements. A set partition on the
measurements groups them into a set of equivalence classes in
which each set is associated with a distinct landmark. When all
the measurements from the same physical landmark are clus-
tered together, this naturally defines a partition on the set of
measurements. An example of the one-to-one correspondence
between topologies and set partitions is shown in Figure 2. Let
us assume, as before, that the robot has observed n landmarks
so far. If the number of distinct landmarks out of these is m

(m ≤ n), then a topology T n can be represented as the set
partition of the set measurement z, T n = {Sj | j ∈ [1, m]},
where each Sj is a set of measurements such that Sj1∩Sj2 = φ

∀j1, j2 ∈ [1, m], j1 6= j2 and
⋃m

j=1 Sj = zn. The set Sj

contains the measurements corresponding to the jth physical
landmark in the environment.

It can be seen that a topology is nothing but an assignment
of measurements to sets in the partition. This results in the
above mentioned isomorphism between topologies and set
partitions. The number of possible topologies for a given
environment is thus equal to the number of set partitions
of the set of measurements. This number is called the Bell
number [20], and grows hyper-exponentially with the number
of measurements.

If we associate a label with each landmark, we can also
represent the topology T n by a label sequence Ln = L1:n,
where Li is the label of the ith landmark. Further the number
of unique labels in this sequence is equal to the number of sets
in the set partition corresponding to the topology T n, i.e. m.
The posterior on topologies that we seek can then be written
as p (Ln|zn).

III. PARTICLE FILTERING FOR TOPOLOGICAL MAPPING

Since the space of topologies is discrete and combinatorial
in size, it is not possible to compute the posterior in ana-
lytical form. Probabilistic Topological Maps (PTMs), which
we introduced in earlier work [21], overcome this problem by



Symbol Meaning
n Total number of landmarks observed
m Number of distinct landmarks observed

on−1 The n odometry measurements
sn Range scan measurements around the n landmarks
zn Combined set of measurements zn =

{

sn, on−1
}

Ln Topology T n represented as a label sequence
Xn Landmark locations for the topology Ln

αn (Xn) Analytic distribution on the landmark locations

TABLE I
NOTATION USED IN THE EXPLANATION OF THE ALGORITHM

maintaining a histogrammed, sample-based approximation to
the posterior distribution over topologies given some measure-
ments. In this work, we use the particle filtering framework
to compute this sample-based approximation. A summary of
the notation used in our exposition of the algorithm is given
in Table I.

The posterior on topologies that we seek is represented as
p(Ln|sn, on−1). Applying Bayes law on the required posterior
to obtain the measurement likelihood and prior, we get

p(Ln|sn, on−1) ∝ p(Ln|zn−1)p(sn, on−1|L
n, zn−1)(1)

where the measurements upto the (n − 1)th landmark have
been represented as zn−1 =

{

sn−1, on−2
}

and the likelihood
of the measurements from the nth observed landmark is
p(sn, on−1|L

n, zn−1). The prior p(Ln|zn−1) can be further
factorized to give an incremental prior on the label in the
current (nth) time step -

p(Ln|zn−1) = p(Ln|L
n−1, zn−1)p(Ln−1|zn−1) (2)

where p(Ln|L
n−1, zn−1) is the prior (proposal) distribution

for the label on the nth observed landmark and p(Ln−1|zn−1)
is the posterior from the previous step containing n − 1
measurements. The prior gives a distribution on which of the
distinct landmarks we are likely to see next, including the
possibility of the next landmark being a previously unvisited
one.

Since our algorithm is based on a particle filter, we represent
the posterior by a set of weighted particles

Sn =
{

Ln,(i), w(i)
n

}N

i=1
(3)

where w
(i)
n is the weight on the ith particle. It can be seen that

equations (1) and (2) together give a recursive formulation for
the posterior on topologies that is amenable for performing
particle filtering. An illustration of a set of samples from the
particle filter is given in Figure 3.

The two components required to perform filtering are the
proposal distribution and a method for computing the impor-
tance weights. These are explained in the following sections.

A. The Proposal Distribution

We use the predictive prior distribution on the current land-
mark label p(Ln|L

n−1, zn−1), given in (2), as our proposal

distribution. Using the sample notation of (3), the proposal
distribution can be written as

L(i)
n ∼ p

(

Ln|L
n−1,(i), zn−1

)

(4)

This is a discrete probability distribution on a vector of
size p + 1, where p is the number of distinct landmarks
observed upto the (n−1)th step. The distribution (4) encodes
our expectation of the robot revisiting one of the previously
observed landmarks or visiting a completely new one. While a
uniform distribution can be used for this purpose, it does not
capture all the characteristics of the problem. For example,
with a uniform distribution, the probability of a robot visiting
a new landmark remains constant with time. However, we can
reasonably expect the robot to visit fewer new landmarks as
its run progresses. Similarly, landmarks that have been visited
frequently in the past should be better candidates for revisi-
tations. This is especially true for indoor environments where
lobbies and corridor junctions are visited more frequently than
other locations.

A distribution that models these problem characteristics well
is the Dirichlet process prior [7][1]. The Dirichlet process is
an extension of the standard Dirichlet distribution to infinite
mixture models, i.e it also includes a probability of observing
previously unobserved measurement classes, in our case land-
marks. The prior on the nth landmark label using the Dirichlet
process is given as

p
(

L(i)
n |Ln−1,(i)

)

=

{

n(L
(i)
j

)

n+c
1 ≤ j ≤ p

c
n+c

j = p + 1
(5)

where p is the number of distinct landmarks observed upto
the (n − 1)th step as before, and n(L

(i)
j ) is the number of

occurences of the label j in the label sequence corresponding
to the topology.

The parameter c encodes our belief in the number of
distinct landmarks in the environment. A large value of c

increases the probability of observing a new landmark at every
step and consequently, the number of distinct landmarks in
the topology. Note that the probability of observing a new
landmark decreases as n increases though it never goes down
to zero. Also, the probability of revisiting a landmark is
proportional to the number of times it has been visited before,
given by n(L).

B. Rao-Blackwellization in the Importance Weight Computa-
tion

Using the definition of the importance sampling weights,
we see that the expression for the importance weights is the
same as the measurement likelihood

w(i)
m,n =

Target distribution
Proposal distribution

(6)

∝ p(sn, on−1|L
n,(i), zn−1) (7)

where we have used the target distribution from (1) and
proposal from (2).



Fig. 3. Example of a set of samples from the space of topologies for an environment. Each sample is associated with a weight in the particle filter.

We introduce the landmark locations by marginalizing over
them, thus performing Rao-Blackwellization [2]. This is nec-
essary since the measurement likelihood p(sn, on−1|L

n, zn−1)
cannot be evaluated without knowledge of the landmark loca-
tions. Upon performing the marginalization, we obtain (using
the notation of (3))

p(sn, on−1|L
n,(i), zn−1) =

∫

Xn p(sn, on−1|L
n,(i), Xn)

p(Xn|Ln,(i), zn−1)
(8)

where Xn is the vector of landmark locations of length n

and we have used the chain rule in the integrand. Note that
the prior on landmark locations p(Xn|Ln,(i), zn−1) can be
further factorized into a predictive prior on the location of the
current (nth) landmark and the posterior on locations from the
previous step

p(Xn|Ln,(i), zn−1) = p(Xn|L
n,(i), Xn−1, zn−1)

p(Xn−1|Ln−1,(i), zn−1)
(9)

where Xn is the location of the nth landmark and
p(Xn−1|Ln−1,(i), zn−1) is the posterior on landmark locations
from the previous step. Furthermore, the integrand of (8) is
equal to the posterior on Xn upto a normalization constant.
Hence, we also have a recursive formulation for the posterior
on landmark locations p(Xn|Ln,(i), sn, on−1).

Since storing the posterior on landmark locations at each
step aides in the computation of the measurement likelihood,
we add this information to each of the particles. However,
this is a large continuous space and joint sampling of this
space with the space of topologies is not possible. Instead,
the posterior is stored in an analytical form, a Gaussian
distribution in our case, and updated at each step.

A Rao-Blackwellized Particle Filter (RBPF) maintains the
joint posterior over two disparate spaces in exactly the manner
described above. Hence, our motivation for using an RBPF
in our algorithm is clear. The RBPF maintains the posterior
p(Ln, Xn|sn, on−1) on the joint space of landmark locations
and topologies but in a hybrid discrete-continuous form. This
posterior can be denoted by a set of samples, each of which
also includes an analytical marginal posterior on the landmark
locations conditioned on the sample value

Rn =
{

Ln,(i), w(i)
n , α(i)

n (Xn)
}N

i=1
(10)

where α
(i)
n (Xn) is the analytic distribution on landmark loca-
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Fig. 4. A sample from the RBPF that contains (a) a topology and (b) an
analytical distribution on the landmark locations in the form of a Gaussian.
The red points in (b) are the mean landmark locations while the green ellipses
denote marginal covariances.



tions associated with the label sequence Ln,(i) defined as

α(i)
n (Xn)

∆
= p(Xn|Ln,(i), sn, on−1) (11)

This analytical distribution can be calculated using Bayes law

p(Xn|Ln,(j), zn−1, sn, on−1) ∝ p(sn, on−1|L
n,(j), Xn)

p(Xn|Ln,(j), zn−1) (12)

Note that the second term on the right side of (9) corresponds
to α

(i)
n−1(X

n−1).
An example of a joint sample from the RBPF is shown in

Figure 4.

C. Computing the Importance weights

Computing the importance weights involves calculating
the integral in the marginalization step (8). First, consider
the measurement likelihood given the landmark locations
p(sn, on−1|L

n,(i), Xn, zn−1). Assuming the independence of
the scan and odometry measurements given the landmark
measurements, we obtain

p(sn, on−1|L
n,(i), Xn, zn−1) = p(sn|L

n,(i), Xn, zn−1)

p(on−1|L
n,(i), Xn, zn−1)

(13)
The scan likelihood p(sn|L

n,(i), Xn, zn−1) is obtained by
performing scan matching between the map patches from the
landmark locations. The map patches are obtained, in turn, by
simply concatenating laser scans from a local area around the
landmark as the robot moves through it. To perform the scan
matching, we use the scheme of Chen and Medioni [3] that
involves point-to-plane matching. The odometry likelihood
p(on−1|L

n,(i), Xn, zn−1) is evaluated simply through the use
of an odometry model.

The prior on the landmark location
p(Xn|L

n,(i), Xn−1, zn−1) encodes the notion that distinct
landmarks do not usually occur close together in the
environment. We use the same prior on landmark locations
as given in [21]. Topologies which place distinct landmarks
close together in location are penalized by this prior. More
details can be found in [21].

The weight computation, which is done via the integration
in (8), can now be performed in closed form by linearizing
around the most likely landmark location and integrating the
Gaussian resulting from this. The odometry model is assumed
to be Gaussian and the result of the scan matching operation is
also a Gaussian distribution. However, the landmark location
prior is non-Gaussian. Hence, it is necessary to perform an
optimization to find the most likely landmark location and
subsequently, linearize around this optimum.

We now have all the components to perform the inference
using the RBPF. A summary of the algorithm is provided in
Algorithm 1.

IV. DATA DRIVEN PROPOSAL

We suggest the use of a data-driven proposal to overcome a
common mode of failure in particle filters, namely the lack of
diversity in the particle set as time progresses [5]. The reason

Algorithm 1 The RBPF algorithm for inferring PTMs

1) Randomly select a particle Ln−1,(i) from the previous
time step according to the weights w

(i)
n−1.

2) Propose a new topology sample using the proposal
distribution p

(

L
(j)
n |Ln−1,(i)

)

in (5)
3) Calculate the posterior density on landmark locations

α
(j)
n (Xn) using Bayes law as in (12) .

4) Calculate the importance weights w
(j)
n as the integral

over the unnormalized α
(j)
n (Xn).

for this failure is that many samples fall into regions of low
probability and die out during the filtering process. This results
not only in the failure to converge to the correct posterior but
also in wasted computation, since the algorithm is evaluating
the weights of samples that will be lost in any case.

A data-driven proposal overcomes this problem by propos-
ing more samples from regions of high probability so that
samples and computation are not wasted. Note that the pro-
posal distribution in (4) does not make use of the current
measurement. We rectify the situation in this section by
presenting a proposal distribution that uses the odometry to
provide more likely samples.

The key idea behind the data-driven proposal is that the
odometry likelihood can be incorporated into the proposal
distribution while only the scan likelihood is used to compute
the importance weights. The measurement likelihood in (1)
is thus split into two parts. This split also entails a two-
step process for updating the analytic posterior on landmark
locations since this posterior needs to be updated using both
the odometry and scan measurements.

Starting with the posterior on topologies, we obtain using
Bayes Law the likelihood and prior

p(Ln|sn, on−1) ∝ p(Ln|zn−1)p(sn, on−1|L
n, zn−1)

= p(Ln|zn−1)p(on−1|L
n, zn−1)

p(sn|L
n, zn−1, on−1) (14)

where the likelihood is factored into two terms using the chain
rule. The prior term can in turn be written using Bayes law
as the product of the odometry likelihood and a prior on the
current label.

p(Ln|zn−1, on−1) ∝ p(Ln|L
n−1, zn−1)p(Ln−1|zn−1)
p(on−1|L

n, zn−1)
(15)

The proposal distribution is taken to be the right hand side of
(15), which can be written using the sample representation of
(10) as

L(i)
n ∼ p

(

Ln|L
n−1,(i), zn−1

)

p(on−1|L
n,(i), zn−1)(16)

The form of the predictive label distribution p(Ln|zn−1) is
the Dirichlet process prior as before. However, the odometry
likelihood in (15) is evaluated by marginalization over the



landmark locations

p(on−1|L
n, zn−1) =

∫

Xn p(on−1|L
n,(i), Xn, zn−1)

p(Xn|Ln,(i), zn−1)
(17)

where the same landmark prior and odometry model are
used as in Section III-C. Note that the prior in (17) can be
evaluated using the posterior on the landmark locations from
the previous by use of the chain rule as in (9).

One drawback of this proposal distribution is the need to
perform m optimizations to compute it. These optimizations
are required since the integral in (17), evaluated by linearizing
around the optimum, needs to be computed for all the possible
label values for Ln (except for the case when Ln is a new
landmark), which are m in total. However, performing these
extra optimizations once per filtering step is still preferable to
evaluating the importance weight for all the particles that do
not survive when a vanilla proposal is used.

A. Calculating Importance weights

From the target (14) and proposal (15) distributions and the
definition of the importance weights (6), we get the expression
for the importance weights in this case as

w(i)
n ∝ p(sn|L

n,(i), zn−1, on−1)

This is evaluated by marginalization over landmark loca-
tions

w
(i)
n ∝

∫

Xn p(sn|L
n,(i), Xn, zn−1, on−1)

p(Xn|Ln,(i), zn−1, on−1)

where the scan likelihood is evaluated using scan matching
exactly as in Section III-C, since it is independent of the
odometry given the landmark locations. The location prior
p(Xn|Ln,(i), zn−1, on−1) is the same as the integrand of (17)
upto a normalizing constant and the Gaussian approximation
found therein is used again here.

V. EXPERIMENTS

We validated our algorithms through robot experiments. We
used the same datasets in our experiments as used in our
previous work [21][22]. The particle filtering was performed
using 50 samples and the data-driven proposal was used in
all the experiments. A value of 3.0 was used for the Dirichlet
prior parameter c. The landmark location prior was used with
a value of 10 meters for the penalty radius and 15 for the
maximum penalty value. For a description of these parameters
and their effect on the inferred posterior, see [21].

The first experiment was conducted using data from an
ATRV-mini robot in an indoor setting. A map of the experi-
ment area along with the robot path, which is approximately
100 meters long and passes through twelve landmark locations,
is shown in Figure 5. The odometry from the run with the
laser scans also plotted is given in Figure 6. The map patches
obtained by concatenating scans around the landmark locations
are shown in Figure 1.

The result of the filtering using the RBPF algorithm is
a joint distribution on topologies and landmark locations.

Fig. 5. Schematic of robot path overlaid on a floorplan of the environment
for the first experiment.

Fig. 6. Robot odometry used in first experiment.

The maximum likelihood sample is shown in Figure 4. The
distribution on the landmark locations is displayed in the figure
through the marginal covariance ellipses along with the local
map patches aligned using scan matching. The corresponding
topology, shown in Figure 4(a), is also the ground truth
topology and obtains 94% of the probability mass in the
posterior. The topology constraints and the inferred landmark
locations can be used to produce a global metric map using
the global optimization technique of Lu and Milios [14]. The
resultant metric map is given in Figure 7. It can be seen that
this simple post-processing step produces a globally consistent
metric map.

A second experiment was performed in a larger environment
(about 60 meters across) to confirm our findings. A floorplan
of the test area is shown in Figure 8. The RBPF algorithm
computes the PTM that gives the ground-truth topology in
Figure 10, 82% of the probability mass. The probability



Fig. 7. Global metric map obtained using topological constraints and
landmark locations for the first experiment. The robot path is in red.

Fig. 8. Floorplan of experimental area for second experiment.

Fig. 9. Metric map obtained using topological constraints for second
experiment. The robot path is in red.

0 

1 

2 

3 

4 

5 

2 

3 
0 

Fig. 10. Ground truth topology for second experiment. This receives 89%
of the probability mass in the PTM.

Fig. 11. Maximum likelihood sample from the RBPF for second experiment.
The red points are the mean landmark locations while the green ellipses denote
marginal covariances.

mass on the ground truth is lower in this case since there
is perceptual aliasing around the corners of the building that
scan matching is unable to resolve completely. The maximum-
likelihood sample with the distribution on landmark locations
is shown in Figure 11. The metric map obtained from the
Lu-Milios step is given in Figure 9.

VI. DISCUSSION

We presented a novel technique for constructing topological
maps in an incremental but robust manner. Our algorithm uses
laser range data and odometry in a Rao-Blackwellized Particle
Filter (RBPF) setting to perform inference in the joint space of



topologies and landmark locations. The resulting topological
maps not only solve the problem of perceptual aliasing but
also provide the basis for the construction of global metric
maps. The use of a Dirichlet process prior on the landmark
labels is also a significant and novel contribution of this work.
The use of a data-driven proposal distribution to overcome
degeneracy in the particle filter is another contribution. We
presented experiments on data gathered from robot runs to
validate our algorithm.

An interesting aspect of this work is that computation only
needs to be performed at landmark locations. Apart from
gathering odometry and detecting for landmarks, the robot is
free to perform other tasks between landmarks. Also, since
the discrete proposal space at each step is only as large as
the number of landmarks observed so far, the particle filter
does not require a large number of samples. This fact also
contributes to the efficiency of the algorithm.

Recent work by Modayil et. al. [16] is similar to ours in the
sense that they too generate an ensemble of topological maps
and use them to construct a global metric map. However, they
do not provide a probabilistic ordering to their ensemble of
maps as the posterior on topologies constructed by our algo-
rithm does. Moreover, since the topological maps generated
in that work do not contain sufficient metric information, the
process of constructing a global metric map using the topology
is a complicated process. By maintaining a joint posterior
on the landmark locations in the RBPF, we overcome this
drawback.

Other recent work [11][28] has focussed on the creation of
hybrid metric-topological maps using local reference frames
around landmarks that are connected using the global topolog-
ical map . By maintaining metric maps only in local frames,
these approaches sidestep the problems in creating large scale
metric maps. While we do not maintain detailed local maps
around landmarks in this work, our approach can easily be
extended to generalize such approaches. As an example, each
landmark could be associated with a grid map that is updated
analytically in the RBPF using a technique similar to [10].
It is future work to implement such a technique that brings
the complete power of probabilistic inference to bear on the
problem of hybrid metric-topological map construction. It is
also future work to integrate the PTM construction with an
automatic landmark detector to obtain a complete mapping
system on a robot.
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