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Abstract— While probabilistic techniques have been consid-
ered extensively in the context of metric maps, no general
purpose probabilistic methods exist for topological maps.
We present the concept of Probabilistic Topological Maps
(PTMs), a sample-based representation that approximates
the posterior distribution over topologies given the available
sensor measurements. The PTM is obtained through the
use of MCMC-based Bayesian inference over the space of
all possible topologies. It is shown that the space of all
topologies is equivalent to the space of set partitions of all
available measurements. While the space of possible topologies
is intractably large, our use of Markov chain Monte Carlo
sampling to infer the approximate histograms overcomes the
combinatorial nature of this space and provides a general
solution to the correspondence problem in the context of
topological mapping. We present experimental results that
validate our technique and generate good maps even when
using only odometry as the sensor measurements.

I. INTRODUCTION

One way for a robot to navigate successfully in an
uninstrumented environment is for it to build a map. Both
metric [1][2][3] and topological maps [4][5][6] have been
explored in depth in the mobile robotics community. In both
cases, probabilistic approaches have been very successful
in dealing with the inherent uncertainties associated with
robot perception, that would otherwise make map-building
a very brittle process. However, no previous method has
dealt with inference in the complete space of topological
maps, which is perceived as intractably large.

In this paper we introduce a novel concept, Probabilistic
Topological Maps (PTMs), a sample-based representation
that captures the posterior distribution over all possible
topological maps given the available sensor measurements.
The key realization is that a distribution over this combi-
natorially large space can be succinctly approximated by a
sample set drawn from this distribution.

The idea of defining a probability distribution over the
space of topologies and using sampling to obtain this
distribution is, to the best of our knowledge, a completely
novel idea. As a second major contribution, we show
how to perform inference in the space of topologies given
uncertain sensor data from the robot, the outcome of which
is exactly a PTM. Specifically, we use Markov chain
Monte Carlo (MCMC) sampling [7] to extend the highly
successful Bayesian probabilistic framework to the space
of topological maps.

Sampling over topologies is accomplished by encoding
a topology as a set partition over the set of landmark
measurements. Each set in the partition corresponds to the
measurements arising from a single physical landmark. We
then sample over the space of set partitions, using as target
distribution the posterior probability over topologies.

PTMs can also be seen as a principled, probabilistic way
of dealing with the correspondence problem or *“closing
the loop” in the context of topological mapping. Previous
solutions to the correspondence problem [8][9] commit
to a specific correspondence at each step, so that once a
wrong decision has been made, the algorithm has diffi-
culty recovering. Computing the posterior distribution over
topologies helps solve the correspondence problem in a
robust manner. The key to making this work is assuming a
simple but very effective prior on the density of landmarks
in the environment. We demonstrate that given this prior
the additional sensor information used can be very scant
indeed. In fact, while our method is general and can deal
with any type of sensor measurement, the results we present
were obtained using only odometry measurements and yet
yield nice maps of the environment.

Il. RELATED WORK

A major part of the extant work in probabilistic mapping
applies to the creation of metric maps, especially as part
of the Simultaneous Localization and Mapping (SLAM)
problem [3][10]. A good survey of current techniques
given in [11] includes various approaches such as Extended
Kalman filters, the EM algorithm, particle filters and hybrid
methods. Recently, genetic algorithms have been used to
search over the space of metric maps [12], where each
map is encoded as a chromosome string. The space of
candidate solutions is then progressively refined to obtain
the maximum-likelihood map. Metric maps suffer from the
disadvantage that constructing geometrically accurate maps
depends to a large extent on errors in sensors and actuators
of the robot [13] and often results in brittle systems. In
addition, it is well-known that not all the information in a
metric map is required for navigation [14].

Topological maps overcome these drawbacks of metric
maps through use of a more qualitative spatial represen-
tation [15][4]. Topological maps, as used in this work,
are typically graphs where the vertices denote rooms or
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Two topologies with 6 observations each correspond-

Fig. 1.
ing to set partitions (a) ({0}, {1},{2},{3},{4},{5}) and (b)
({0}, {1, 5}, {2}, {3}, {4}). In (b), the second and sixth measurement
are from the same landmark.

other recognizable places, and the edges denote traversals
between these places. Such maps are quite useful for
planning and symbolic manipulation and, unlike metric
maps, do not require precise knowledge of the robot’s
environment. Unfortunately, they are difficult to build in
large scale environments in the presence of ambiguous
sensing, for example if two or more recognizable places
look very similar [16].

Though probabilistic methods have been used in con-
junction with topological maps before, none exist that
are capable of dealing with a general, multi-hypothesis,
topological space. Most instances of previous work do
not deal with general topological maps, but with the use
of decision theory to learn a policy to navigate in the
environment [17][6][18]. Probabilistic methods for metric
SLAM have also been applied to generating topological
maps with some success [19].

An approach that is closer to the one presented here, but
applicable only to indoor environments, is given by Tomatis
and Nourbakhsh [20]. However, while they do maintain
a multi-hypothesis space, it is used only to detect points
where the probability mass splits in two parts. Finally,
the work by Kuipers and Beeson [21] focuses on the
identification of distinctive places, but is not concerned with
inference about the topologies themselves.

I1l. INFERENCE IN THE SPACE OF TOPOLOGIES

We begin our consideration by assuming that the robot
observes N “special places” or landmarks during a run.
We assume that the robot is equipped with a “landmark
detector” that simply recognizes a landmark when it is near
(or on) a landmark, i.e. it is a binary measurement that
tells us when landmarks were encountered. We denote by
{Z;]1 < i < N} the set of sensor measurements recorded
by the robot. The results we present in this paper use
only odometry measurements though, in general, Z can
also include appearance measurements obtained from the
landmark locations.

No knowledge of the correspondence between landmark
observations and the actual landmarks is given to the robot:
indeed, that is exactly the topology that we seek. Given the

Algorithm 1 The Metropolis-Hastings algorithm

1) Start with a valid initial topology 7%, then iterate once for
each desired sample )

2) Propose a new topology T using the proposal distribution
Q(T{; )

3) Calculate the acceptance ratio
L P(T|zh QI )
P(T:|Z") Q(T}; T¢)

where Z'is the set of measurements observed up to and
including time ¢.

4) With probability p = min(1, a), accept T} and set T}
T}. If rejected we keep the state unchanged (i.e. return Ty
as a sample).

@

framework described above, the problem is to compute the
discrete posterior probability distribution P(T'|Z) over the
space of topologies T' given the measurements Z.

In this paper, we use the equivalence between the topol-
ogy of an environment and a set partition of landmark
measurements, which groups all measurements into a set
of equivalence classes. When all the measurements of the
same landmark are grouped together, this naturally defines
a partition on the set of measurements. It can be seen that a
topology is nothing but the assignment of measurements to
sets in the partition, resulting in the above mentioned iso-
morphism between topologies and set partitions. Figure 1
shows an example encoding of topologies as set partitions.

Formally, for the N element measurement set Z, a
partition P can be represented as P = {S; | i € [1, M]},
where the S; are disjoint sets of measurements and M <
N is the number of sets in the partition (and also the
number of distinct landmarks in the environment). In the
context of topological mapping, all members of the set
S; represent landmark observations of the ith landmark.
The cardinality of the space of topologies over a set of NV
landmark observations is identical to the number of disjoint
set partitions of the NV-set. This number is called the Bell
number by [22], defined as by = %ZZOZO ’“k—l,v and grows
hyper-exponentially with N, for example by = 1, b3 = 5
but b5 = 190,899, 522. The combinatorial nature of this
space makes exhaustive evaluation impossible for all but
trivial environments.

1V. INFERRING PTMs usING MCMC

We define a Probabilistic Topological Map to be a
data structure that approximates the posterior distribution
P(T|Z) over topologies T, given measurements Z. While
the space of possible topological maps is combinatorially
large, a PDF over this space can be approximated by
drawing samples from the distribution over possible maps.
The samples are obtained using Markov chain Monte Carlo
sampling. The PTM is then a histogram constructed on the
support of this sample set.

We use the Metropolis-Hastings (MH) algorithm [7], a
very general MCMC method, for performing inference.



Algorithm 2 The Proposal Distribution
1) select a merge or a split with probability 0.5
2) if amergeis selected go to 3, else go to 4
3) merge move:
« if T contains only one set, re-propose 7’ = T, hence
r=1
o oOtherwise select two sets at random P and @, and
9 T = (T —{P} —{QHu{PuQ} and o(T"|T) =

b) év(%T’) is obtained from the reverse case 4(b),
hence r = N,,'Ns{!"Y<}, where Ns is the
number of possible splitsin 7’
4) split move:
« if T' contains only one set, re-propose 7" = T, hence
r=1
« otherwise select a non-singleton set R at random from
T, split it into two sets P and Q, and

a 7' = (T—{R}) U{P,Q} and ¢(T"IT) =
-1
(~s{51)
b) q(T|T’) is obtained from the reverse case 3(b),
-1
hence r = N (Ns{”;‘}) , where Ny is the
number of possible merges in T’

All MCMC methods work by generating a sequence of
states from a Markov chain, with the property that the
generated states are samples from the target distribution. In
our case the state space that is sampled over is the space
of set partitions, where each partition represents a different
topology of the environment. The pseudo-code to generate
a sequence of samples from the target distribution using the
MH algorithm is shown in Algorithm 1 (adapted from [7]).
The MH algorithm uses a proposal distribution Q(T%; T})
to propose moves, the tentative next state in the Markov
chain at each step, in the space of topologies. Intuitively, the
algorithm samples from the desired probability distribution
P(T|Z) by rejecting a fraction of the moves generated by
the proposal distribution. The fraction of moves rejected
is governed by the acceptance ratio a, where most of the
computation takes place.

The two hurdles to sampling using an MCMC sampler
are the design of the proposal density and evaluation of the
target density. The details of these are discussed below.

A. The Proposal Distribution

The proposal distribution operates by proposing one of
two moves, a split or a merge, with equal probability at
each step. Given that the current sample topology has M
distinct landmarks, the next sample is obtained by splitting
a set or merging two sets in the partition 7" and may have
M, M +1, or M — 1 distinct landmarks.

The merge move merges two randomly selected sets in
the partition to produce a new partition with one less set
than before. The probability of a merge is simply 1/Ny,
N being the number of possible merges given by (%).

The split move splits a randomly selected set in the

partition to produce a new partition with one more set than
before. To calculate the probability of a split move, let Ng
be the number of sets in the partition with more than one
element. Clearly, Ng is the number of sets in the partition
that can be split. Out of these Ng sets, we pick a random set
R to split. Then, the number of possible ways to split R into
two subsets is given by the Stirling number of second kind
for R, {!%I}, where the Stirling number itself is defined

recursively as {"} 2 {m 11+ m{™~"} [22]. Hence, the

m—1
—1
probability of the split is (Ns{”;'} . A random split
of R can be generated efficiently by using the recursive
algorithms described in [22].

The proposal distribution is summarized in pseudo-code
format in Algorithm 2, where ¢ is the proposal distribution
and r = qg'lle) is the proposal ratio. It is to be noted that
this proposal distribution does not incorporate any domain
knowledge but uses only the combinatorial properties of set
partitions to propose moves.

B. Evaluating the Target Distribution

In addition to proposing new moves in the space of
topologies, we also need to evaluate the posterior proba-
bility P(T'|Z) for each proposed topology change. Using
Bayes Law, we obtain

P(T[Z) o P(Z|T)P(T) 0]

where P(T) is a prior and P(Z|T) is the observation
likelihood. In this work, we assume a non-informative
uniform prior over all topologies, but it is also possible
to use a Poisson distribution on the number of landmarks
in the environment if some evidence for this exists.

It is not possible to evaluate the likelihood P(Z|T)
without knowledge of the landmark locations. Hence, in a
process called Rao-Blackwellization [24], we integrate over
the set of landmark locations X to calculate the marginal
distribution P(Z|T') from the joint distribution P(Z, X |T).
The likelihood P (Z|T') is then given as

P (Z|T) x /X P (Z|X,T) P (X|T) 3)

where P(Z|X,T) is the measurement model, an arbitrary
density on Z given X and 7', and P(X|T) is the prior on
landmark locations. As an example, in a 2D environment,
commonly assumed in the robotics literature, we have X=
{Xi = (z4,y1,00)|1 <t < N}

A prior on the distribution of the landmark locations X
given the topology 7', P(X|T), is required to evaluate (3).
In our case, the prior is used to encode the assumption
that distinct landmarks do not lie close together in the
environment. For this purpose, a penalty function is used
to penalize topologies containing distinct landmark mea-
surements that are spatially close. Specifically, the penalty
function used is a cubic function as in Figure 2. The prior
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Fig. 2. Cubic penalty function used as a prior over landmark density

on landmark locations, , is then

PX|T) =

P(X|T)
e~ Licicjen F(XiX5) (@)

where f is the penalty function, and X; and X, do not
belong to the same set.

Assuming the availability of only odometry measure-
ments, we can write the negative log-likelihood function
corresponding to P(Z|T) in (3) as

Lo = (0 XO) SZTZZS(X X)
+ 1<iZ<N (X, X5) i ®)

where S is a set in the partition corresponding to 7', oo
and o are standard deviations explained below, and X, is
the set of landmark locations obtained from the odometry
measurements. The intuition here is that the topology T
constrains some measurements as being from the same
location even though the odometry may put these locations
far apart. The log-likelihood function accounts for the error
from distorting the odometry, the first term in (6), and the
error for not conforming to the topology 7', the second
term in (6). The error for not conforming to a topology
is expressed through a set of “soft constraints”. These
constraints try to place two observations that are ascribed
to the same landmark by the topology at the same physical
location. The standard deviations for the odometry and soft
constraints, oo and o respectively, encode the amount
of error that we are willing to tolerate in each of these
quantities. The final term in (5), where the sum is over all
X; and X that do not belong to the same set, is simply
the negatlve log-likelihood of the prior in (4).

C. Numerical Evaluation of the Target Distribution

Though in some cases integral (3) may be evaluated
analytically using the functional form of the log-likelihood
given in (5), this is not possible in general. Instead, we use
a Monte Carlo approximation to evaluate the integral, using
importance sampling [25] to approximate the integrand
P(Z|X,T)P(X|T). Given a target distribution to be sam-
pled, importance sampling requires a proposal distribution

Fig. 3. Raw odometry (left) and Ground truth topology (right) from the
first experiment involving 9 observations

from which samples are actually obtained. Subsequently,
these samples are weighted by their “importance”, i.e. the
ratio of the target distribution to the proposal distribution at
the sample point. The weighted samples can then be used
in Monte Carlo integration.

In our case, the importance sampling proposal distribu-
tion is an approximation of the log-likelihood in (5). Firstly,
ignoring the final term corresponding to the prior in (5), we
obtain the function

(X Xo)

Subsequently, Laplace’s method is employed to obtain a
multivariate Gaussian distribution from (X)), which is
used as the proposal distribution. This is achieved by
computing the maximum likelihood path X * through a non-
linear optimization of ¢ (X), and creating a local Gaussian
approximation Q(X|Z,T) around X*

X* =argmax (X)
X

P(X) =

Yy (A5

SeT i,jES

1 P—%(X—X*)TEfl(X—X*)

NN

where 3 is the covariance matrix relating to the curvature of

(X)) around X*. The distribution Q(X|Z, T) is then used

as the proposal distribution for the importance sampler.
The posterior given by (3) is now evaluated using the

Monte Carlo approximation

QX |[2T)=

S P(Z|IX D, T)P(XD|T)
Z Q(X®|Z,T)

/P(Z|X,T) (X|T) ~
X =
where X () denote the N samples obtained from the
Gaussian proposal distribution Q(X|Z,T).

V. RESULTS

We performed two experiments consisting of runs with
nine observations each, a short run of about 15 meters and
a longer one covering a complete floor of a building. The
platform used for the experiments was an I-Robot ATRV-
Mini with a frontal SICK laser range finder. In all cases,
the sampler was initialized with a topology that assigned
distinct landmarks to each observation.

In the first experiment we explored the influence of the
penalty-term in a small, lab-like environment, the results of
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TABLE |
CHANGE IN PROBABILITY MASSWITH MAXIMUM PENALTY OF THE FOUR MOST PROBABLE TOPOLOGIESIN THE HISTOGRAMMED POSTERIOR. THE

HISTOGRAM AT THE END OF EACH ROW GIVES THE PROBABILITY VALUES FOR EACH TOPOLOGY IN THE ROW.

Fig. 4. Map obtained by plotting laser on raw odometry (left) and the
laser plot corresponding to odometry from the correct topology (right)

which are shown in Table I. The experiment was performed
on a short run approximately 15 meters long during which
the robot observed nine landmarks. The raw odometry
from the run and the corresponding ground truth topology
are shown in Figure 3. The table shows the evolution
of the Markov Chain sampler for different values of the
maximum penalty. In our algorithm, it is the penalty term
that facilitates merging of nodes in the map that are the
same. Without the penalty, the system has no incentive to
move toward a topology with lesser number of nodes as
this increases the odometry error. Table I(a) illustrates this

case. It can be seen that the topology that is closest to
the odometry data and also having the maximum possible
nodes gets the maximum probability mass. For the next
two cases with maximum penalties equal to 80 and 90
respectively, the most likely solution is a compromise
between the ground truth solution and the odometry. Also,
it is to be noted that the large error in odometry makes the
ground truth topology less likely compared to topologies
such as the most likely one in Table I(b). In spite of this,
as the penalty is increased the effect of the odometry is
diminished and the ground truth topology gains probability
mass. However, a very large penalty swamps the odometry
data and makes absurd topologies more likely.

The second experiment demonstrates that PTMs have
the power to close the loop even in large environments.
This experiment involved a complete floor of the building
containing our lab during which nine landmark observa-
tions were recorded. The raw odometry with laser readings
plotted over it is shown in Fig 4. Also shown is the map
obtained by plotting the maximum likelihood path with
laser readings on top. It can be seen from Figure 5, which
gives the most probable topologies in the posterior, that the
correct topology receives the largest probability mass.
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Fig. 5. Topologies with highest probability mass for the second
experiment (a) The correct topology receives 97% of the mass (b), (c)
and (d) receive 2%, 0.5% and 0.5% of the mass respectively

V1. DISCUSSION

We presented the novel idea of computing discrete prob-
ability densities over the space of all possible topological
maps. Probabilistic Topological Maps are computed using
Markov chain Monte Carlo sampling over set partitions
that are used to encode the topologies. We use a simple
spatial prior in the form of a cubic penalty function
that disallows proximity among landmarks. Experimental
results on environments with varied sizes hold promise for
the applicability and further improvements of PTMs.

One advantage of our approach is that an estimate of
topology is possible even if only a meager amount of
information is available. It is not the purpose of this work to
find the best topological map but to compute the posterior
distribution over topological space as per the Bayesian
approach. We have shown this capability in experiments
that use only odometry to create distributions that can either
correspond to the odometry or the prior (in this case the
spatial penalty function) as parameters are varied.

The next step is to include range sensors and appearance
models in our technique. It is also future work to induct
domain-specific knowledge into the proposal distribution of
the MCMC sampler and include a more informative prior.
Finally, the present algorithm is sensitive to parameter set-
tings of the penalty function, which needs to be addressed.
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