
Accurate On-Line 3D Occupancy Grids

Using Manhattan World Constraints

Brian Peasley and Stan Birchfield

Electrical and Computer Engineering Dept.

Clemson University, Clemson, SC 29634

Alex Cunningham and Frank Dellaert

School of Interactive Computing

Georgia Institute of Technology, Atlanta, GA 30332

Abstract— In this paper we present an algorithm for
constructing nearly drift-free 3D occupancy grids of large
indoor environments in an online manner. Our approach
combines data from an odometry sensor with output
from a visual registration algorithm, and it enforces a
Manhattan world constraint by utilizing factor graphs to
produce an accurate online estimate of the trajectory of a
mobile robotic platform. We also examine the advantages
and limitations of the octree data structure representa-
tion of a 3D environment. Through several experiments
in environments with varying sizes and construction we
show that our method reduces rotational and translational
drift significantly without performing any loop closing
techniques.

I. INTRODUCTION

Three-dimensional (3D) modeling of the environment

is an important tool in robotics that has received much

attention in past decades. The advent of ubiquitous

range sensing has made it more relevant than ever, with

applications in both the exploration and navigation of

unknown environments, as well as the manipulation of

objects in those environments.

Of the many available 3D representations, multi-

resolution volumetric occupancy grids are a promising

approach for robotics. While both point clouds and sur-

face representations are relevant for many applications,

occupancy grids have the advantage that they provide the

ability to reason about known versus unknown regions

of space. In addition, by fusing the high-volume stream

of measurements into a finite grid, both storage and

computational requirements remain bounded and man-

ageable, especially if multi-resolution storage schemes

are used. A recent implementation of these ideas is

OctoMap [22], which uses an octree-based data structure

to accumulate data probabilistically while at the same

time compressing the required storage down to a mere

couple of bits per child node, maintaining the distinction

between occupied, unoccupied, and unknown cells.

However, the main strength of an occupancy-based

map, namely its ability to provide a compact represen-

tation of the scene, is perhaps also its greatest weakness.

Promising to obviate the need to store raw range data

for long periods of time, the representation is unable to

correct large mistakes because the data are discarded as

soon as they are assimilated into the map. This drawback

is particularly apparent in the case of loop closure, where

a single frame of data can necessitate large adjustments

in the map representation. Because of this limitation,

current implementations (such as [22]) assume that the

robot’s pose throughout a sequence is known at map

construction time.

We are motivated to consider the problem of building

3D maps using an octree representation. The over-

whelming amount of data available from an RGBD

sensor makes it impractical to store all raw data prior

to constructing the map, if online processing is desired.

To facilitate the assimilation and discarding of such data

as it is acquired, we propose to take advantage of the

“Manhattan world” assumption in order to ensure the

accuracy of the pose estimate. As the robot drives around

a previously unexplored environment, the data acquired

by the sensor is used not only to populate the map but

also to compute the transformation of the robot between

consecutive frames. These transformations, along with

readings acquired by an odometry sensor, are fed to

a pose-based SLAM (Simultaneous Localization and

Mapping) algorithm to estimate the robot’s pose on-line.

Feature correspondence along with the Manhattan world

assumption combine in a powerful way to significantly

reduce translational drift and to essentially remove ro-

tational drift. Results on several large environments

validate the method’s ability to build online octree-

based maps without the need for correction, even in the

presence of loop closure, demonstrating the benefits of

our approach. It is important to note that our approach

is not limited to occupancy grids but can be applied

regardless of the map representation.

II. PREVIOUS WORK

Occupancy grids have been a popular representation

for robot mapping since the pioneering work of Moravec

and Elfes [15]. However, as pointed out by a number

of researchers [9], [21], the grid-based approach does

not facilitate loop closing because it is unable to han-

dle pose uncertainty. The most common approach to



simultaneous localization and mapping (SLAM) is to

store a separate map with each particle, so that when

information is obtained that renders previous calcula-

tions invalid, the data stored in the particle set can be

used to correct the mistake [8]. However, this requires

either all the data to be stored, or for multiple maps

to be retained, both of which negate one of the main

strengths of the grid-based representation. One solution

would be to quickly rasterize the map into an occupancy

grid whenever requested, as in [19], but this solution also

requires the raw data to be stored.

Several researchers have extended the idea of grid-

based representations to height maps that include the

distance above the ground for each grid cell. Such an

approach is explored by Marks et al. [14], in which

the robot is run in an environment with high visibility,

so that the large overlap in field of view between

various viewpoints minimizes the effects of loop closure.

Another approach is that of Pfaff et al. [18], in which

a graph-based algorithm operating on all the data is

used for loop closure, though an occupancy grid is used

for the final representation. A similar approach for a

flat ground is adopted by [7], which also builds on the

idea of Lu and Milios [13] that requires all data to be

retained.

In the computer vision literature, several methods

have been developed in recent years to use the Man-

hattan world assumption for reconstruction. Furukawa et

al. [5] describe an algorithm that employs a multiview

stereo approach for estimating the 3D coordinates of a

sparse set of feature points. From these points, domi-

nant plane directions are extracted, from which plane

hypotheses are generated. Markov random fields are then

used to compute per-view depth maps, even for relatively

textureless scenes. In followup work [6], an automated

system for 3D reconstruction of architectural scenes is

described using a combination of Manhattan world mul-

tiview stereo, structure-from-motion, and graph cuts for

axis-aligned depth map integration. Additional research

endeavors [16] [17] demonstrate the ability to perform

online SLAM using planes extracted from point clouds.

The approach of Flint et al. [4] uses visual SLAM to

obtain key frames in a video sequence, along with the

pose of the sensor for each key frame. Using these poses,

along with line segments detected in the key frames,

an EM algorithm is used to estimate the rotation of

the SLAM coordinate frame with the axis-aligned co-

ordinate frame. This rotation yields the vanishing points

in the images, which imposes a powerful constraint for

detecting even faint axis-aligned edges, from which the

wall, ceiling, and floor planes can be reconstructed.

Our approach combines the simplicity and compact-

ness of the occupancy grid representation, with the

power of the Manhattan world constraint to overcome

the problem of rotational drift. Combined with visual

registration, our system provides a simple but com-

pelling way to build accurate, online 3D maps without

the need to store all the data.

III. OCTREE SCENE REPRESENTATION

An occupancy grid [3], [20] is an efficient way to

integrate sensor readings, while an octree efficiently

represents a 3D occupancy grid. An octree is a hierar-

chical data structure, where each node represents a cubic

volume of space (voxel), and each node is either a leaf

node or has eight children representing eight equally-

sized cubic subsets of the parent’s cubic volume. Octrees

are flexible representations, able to capture arbitrarily

shaped environments at any desired level of resolution,

the resolution being determined by the minimum voxel

size. Research has shown [1] that octrees are able to

efficently represent scenes, requiring approximately 2.6
bits to store each cubic volume. An illustrative example

of the octree data structure can be seen in Figure 1.

One of the more compelling implementations of oc-

trees is the OctoMap, recently introduced by Wurm et

al.[22]. By explicitly representing three types of voxels

(occupied, unoccupied, and unknown), the data structure

is able to differentiate between areas of the environment

that have been determined by the sensor to be free of

obstacles and areas for which no information has yet

been obtained. Each node is represented by two bits

capturing one of four states, that is, whether the voxel

is a leaf node, and therefore one of the three types

just mentioned, or whether it is a parent node. Utilizing

a clamping update policy, nodes that are saturated to

either a minimum or maximum value indicate with a

high degree of certainty whether they are occupied,

leading to a binarized maximum likelihood decision. In

combination, these implementation details yield a com-

pact representation that, when binarized, can represent

sub-meter resolution of areas more than 10,000 square

meters in size with considerably less than one megabyte

of storage.

However, this tremendous gain in efficiency comes at

a price. The reason that occupancy grid maps are able

to save so much space is that they discretize the sensor

readings prior to storage. This discretization discards

information and is a reasonable approach only when the

pose of the sensor is known. Therefore, occupancy grid-

based approaches typically perform in a batch fashion,

first estimating the robot pose throughout the entire

data collection process, then compressing the data in

the occupancy grid structure. Such an approach does

not naturally extend to online operation because drift

in the pose estimation causes increased errors in the

map over time. We will incorporate a constraint on the

environment to reduce online pose estimation errors.



Fig. 1. An octree representation (b) and corresponding compact bit
encoding (c) of a simple 3D model (a). White indicates areas of the
map that are unoccupied, color indicates areas that are unknown, black
indicates occupied areas, and black with a white cross indicates nodes
that have children. At each level the 3D model is scanned in clockwise
order around the top half, then the bottom half.

x
0

x
1

x
n-1

x
n

M
1

M
n-1

M
n

O
1

O
n

V
1

V
n

Fig. 2. Factor graph used to estimate trajectory of robot. Three types
of factors are used: relative pose by robot odometry (Oi), relative pose
by visual registration (Vi), and Manhattan world constraint (Mi). The
ith pose is given by xi, i = 0, . . . , n.

IV. FACTOR GRAPHS FOR POSESLAM

The underlying inference technique used in this pa-

per employs the Smoothing and Mapping (SAM) tech-

nique for representation and incremental solving of

the SLAM problem as inference over an undirected

graphical model; a detailed explanation of the approach

can be found in [2]. In a pose-only formulation of

SLAM, we solve for the trajectory X
∆
= {xi}, given

the measurements Z
∆
= {zk}, which we represent in an

undirected, bipartite factor graph.

The measurements are typically connected to a small

number of variables, such as binary pose constraints

calculated by visual registration or odometry. As an

inference problem, we compute a MAP estimate over

all measurements

X∗ ∆
= argmax

X

P (X|Z) = argmax
X

P (X,Z) (1)

= argmin
X

− logP (X,Z),

using Bayes’ rule to cast inference as a nonlinear least-

squares optimization problem in which we minimize the

negative log likelihood:

X∗ = argmin
X

1

2
‖h(X)− Z‖

2

Σ
, (2)

where h(X) is a generative measurement model that

predicts all sensor measurements given the poses.

The sparsity of the relationships between variables

motivates the use of a graphical formulation, in which

we factor the optimization problem into separate fac-

tors fk(Xk, zk), where each factor is a loss function

fk(Xk, zk) = 1

2
‖hk(Xk)− zk‖

2

Σk
operating on the

subset Xk of X associated with zk. In this framework,

hk(Xk) is the generative measurement model for the

given sensing modality, with a local measurement co-

variance Σk. We can write the full loss function as

L(X) =
∑k

fk(X, zk). As these factors are indepen-

dent, we can easily add different types of constraints to

the graph.

Direct nonlinear optimization algorithms, such as

Levenberg-Marquardt, can solve this problem in batch

through recursive linearization of the full system around

the current estimate X , successively computing updates

δ until convergence:

δ∗ = argmin
δ

1

2
‖h(X) +H(X)δ − Z‖

2

Σ
(3)

= argmin
δ

1

2
‖Aδ − b‖

2

Σ
, (4)

where H(X) is the Jacobian of h(X) at X .

We reduce the full linearized system of (3) to a large

block-wise sparse least-squares problem (4) to solve for

δ∗. To avoid repeatedly solving a large system online,

we again exploit sparsity and represent the solution

process with a Bayes tree [11], which performs incre-

mental multi-frontal Cholesky factorization to update the

current estimate as we add new pose constraints. For

more details on the iSAM (incremental SAM) algorithm,

see [12].

V. MANHATTAN CONSTRAINT

While the visual registration between consecutive

frames helps significantly to reduce drift in the pose

estimation of the robot, errors nevertheless persist. For

large environments, even small rotational errors cause

large errors over time, because positional errors are on

the order of ℓ sin∆θ, where ℓ is the length traveled,

and ∆θ is the rotational error. For example, even a



(a) (b) (c) (d)

Robot Odometry Visual Registration Manhattan Constraint Manhattan Constraint

+ Robot Odometry + Robot Odometry +Visual Registration

+ Robot Odometry

Fig. 4. Top: A 3D octree-based map of a laboratory environment of size 10.6 by 20.6 meters, constructed using 590 scans from the RGBD
sensor and modeled with 30 mm resolution. Bottom: A 2D plan view of the map obtained by taking a horizontal slice through the 3D map.
From left to right: results from various versions of the algorithm, demonstrating the ability of visual registration to reduce translational drift,
and the Manhattan constraint to remove rotational drift. The final map required just 1.9 MB of disk space.

(a) (b)

Fig. 3. Output from the RANSAC line fitting algorithm. The black
dots indicate the points along a scan line from the point cloud. The
red line is in the dominant direction of the points in the scan line. (a)
The robot in the middle of a corridor, (b) The robot in an area where
only one wall is visible.

rotational error of just 1 degree will produce positional

errors of nearly two meters when traversing a length of

100 meters.

To overcome this rotational drift error, we propose

to use a Manhattan world assumption. According to

this assumption, every pair of surfaces of interest are

either parallel or perpendicular to one another. One key

advantage of the Manhattan world assumption is that its

enforcement does not require precise correspondence to

be established between pairs of frames. Rather, in the

context of a 3D sensor, all that is required is that planes

be clustered appropriately into one of three mutually

orthogonal bins. Because the relative rotation between

consecutive frames is on the order of a few degrees

at most, and because the bins are 90 degrees apart,

essentially zero rotational drift for indefinite periods

of time can be achieved in environments in which the

assumption holds, with only mild assumptions on the

ability of the algorithm to associate planes correctly.

This removal of the most dangerous of the two types

of drift enables the compression abilities of the occu-

pancy grid-based approach to be fully utilized without

significant fear of regretting the loss of data that would

otherwise have been imperative for proper handling of

loop closure.

Unlike the other factors which are added to join

consecutive robot poses in the graph, the Manhattan

constraint always connects the current pose to the initial

pose, where the world coordinate frame is defined. This

is illustrated in Figure 2.

In order to apply the Manhattan constraint on the

geometry of the scene it is necessary to isolate fea-

tures in the environment that will allow us to find

the rotation parameters for this constraint. The most

obvious features in indoor environments that are either

parallel or orthogonal are walls. As mentioned earlier, in



order to calculate the rotation appropriate for geometric

alignment, explicit correspondence of items in the point

cloud is not necessary. Rather, we only need to find the

normal of a single wall in the current frame, along with

the assignment to the same plane sensed in the previous

frame. To determine such a plane, we apply RANSAC to

the depth data in a horizontal scan of the RGBD sensor

to find the dominant line. Output from this approach can

be seen in Figure 3.

Once the relative rotation between walls of consec-

utive frames has been established, the orientation of

the current frame and the global coordinate frame is

automatically achieved, since the orientation of the pre-

vious frame is already known. This zero-drift principle

of the Manhattan World constraint is similar to the

driftless approach of matching the current sensor reading

to the model rather than to a previous sensor reading,

employed in KinectFusion [10].

VI. EXPERIMENTAL RESULTS

To evaluate the proposed approach we constructed

maps from data recorded in three different indoor envi-

ronments. The first environment was a small laboratory

where our mobile robot drove around the perimeter

of the room. The purpose of this experiment was to

test the ability of our method to handle rotational and

translational drift without explicitly handling any loop

closures. The second environment was a building on

our campus consisting of a long main corridor and two

side corridors, with no opportunity for loop closure. This

experiment tested the performance of the rotational con-

straint imposed by the Manhattan world assumption over

a long distance. The third environment was another large

building on our campus containing many opportunities

for loop closure, thus allowing us to measure the error

in our results with and without such techniques. Our

hardware platform consisted of an ActivMedia Pioneer

P3AT mobile robot with a forward-facing Kinect RGBD

sensor.

Results from the first experiment in the laboratory

can be seen in Figure 4. Four different reconstructed

maps demonstrate the influence of the various terms in

the factor graph. Figure 4(a) shows the constructed map

using only odometry data. As expected, both rotational

and translational drift are present, causing noticeable

errors in the map. Figure 4(b) shows the map constructed

using cues from both the robot odometry and the visual

registration. Although visual registration could be used

to reduce both translational and rotational drift, we

employ it only for the former in order to better show the

power of the Manhattan assumption. As a result of this

limitation, the addition of the visual registration causes

the right wall to move to the left. At first inspection it

may not be obvious that the map constructed in Figure

(a) (b)

Robot Odometry Visual Registration

+ Robot Odometry

Fig. 5. A comparison of the system with and without visual
registration, showing the rather larger translational error reduction.
The points in red were rotated about the bottom left corner of their
respective maps to isolate the translational drift from the rotational
drift.

4(a) is worse than that of Figure 4(b). However, if the

coincidental combination of translational and rotational

drift is separated, then the errors due to odometry alone

are more readily apparent, see Figure 5. While the

Manhattan world constraint is sufficient for removing

the rotational drift from the map, it does not address the

problem of translational drift. The effects of the latter

can be seen by the slight misalignment of the two pieces

of the wall on the right side of the map (just above the

concavity) in Figure 4(c). This gap is removed in Figure

4(d) by the addition of visual registration.

Figure 6 shows the resulting maps of the second

environment. Due to the size of the building (the length

of the main corridor is approximately 55 meters), there

is much room for the robot odometry and visual regis-

tration to drift. This drift is shown in Figure 6(a), where

significant rotational drift causes noticeable errors in the

map. By adding in the Manhattan world constraint to the

factor graph we are able to remove all rotational drift

from the map, see Figure 6(b), even though there is no

opportunity to perform loop closure.

In the third experiment the robot was driven around

the floor of a large building containing several inter-

secting hallways. This experiment shows not only the

ability of the Manhattan world constraint to remove

rotational drift over an extended period of time, but

also the ability of the visual registration to reduce the

translational drift to a surprisingly low level, without

any loop closure. Figure 7(a) shows the map with robot

odometry and visual registration, which exhibits notice-

able distortions over the length of the path. Of course,



(a) (b)

Robot Odometry Manhattan Constraint

+ Visual Registration + Visual Registration

+ Robot Odometry

Fig. 6. A large building with no loops. (Size was 23.9 by 47.8 meters,
modeled with 30 mm resolution using 3,300 scans). The addition of
the Manhattan constraint enforces perpendicularity of the walls. The
map was saved to disk using only 2.1 MB.

existing techniques can handle such environments, but

only by requiring that raw data are kept until such a time

as loop closure is performed. In contrast, our approach,

shown in Figure 7(b), is able to significantly reduce

rotational and translational drift over an extended period

of time, thus enabling data to be discarded as they are

assimilated into the map.

The particular path driven by the robot is illustrated

in Figure 8. Starting at intersection 1, the robot drove

(from a bird’s eye point of view) north, then east, then

south to 2. Turning west, it traveled through 3, then

south to 4, then east to 5, after which it encountered

3 and 2 again before heading south to 6 and then

completing the bottom loop to end at 6. Opportuni-

ties for loop closure therefore occurred at intersections

1, 3, 2, 4, 5, and 6, in that order. Table I shows

the errors occurring at the six different potential loop

closure locations for the particular path driven. These

errors were obtained by manually viewing the video

and selecting, for each intersection, two key frames in

which the robot was approximately in the middle of

the intersection; the distance between the two estimated

robot locations yielded the error. Due to imprecision

in this measurement technique, these numbers should

be used as relative rather than absolute assessments of

error. Nevertheless, the Manhattan assumption reduces

the error by about an order of magnitude.

The amount of memory saved in using the octree-

based representation rather than retaining all the raw data

is approximately three orders of magnitude, as shown in

Table II and Figure 9.

Intersection RO VR + RO VR + RO
+ Manhattan

1 12.0 m 1.0 m 0.1 m
2 31.5 m 8.3 m 0.5 m
3 16.1 m 3.7 m 1.0 m
4 25.0 m 6.7 m 0.8 m
5 12.7 m 10.7 m 0.5 m
6 15.5 m 4.5 m 0.5 m

TABLE I

ERROR FOR SIX INTERSECTIONS FROM THE ENVIRONMENT SHOWN

IN FIGURE 7. THE COLUMNS SHOW THE RESULTS USING VARIOUS

COMBINATIONS OF ROBOT ODOMETRY (RO), VISUAL

REGISTRATION (VR), AND THE MANHATTAN CONSTRAINT. THE

PATH OF THE ROBOT AND THE INTERSECTION POINTS CAN BE SEEN

IN FIGURE 8.

1

3 2

4

5 6

Fig. 8. Path taken by the robot in the generation of map in Figure 7.
The robot moved in the direction of the arrows, encountering the
intersection points in the following order: 1 → 2 → 3 → 4 →

5 → 3 → 2 → 6 → 4 → 5 → 6. Therefore, the potential loop
closures would have been, in order, (1, 3, 2, 4, 5, 6). The blue dots
indicate the start and end points of the path.

in memory on disk

Point Cloud 4,350,000 kB 590,000 kB
Octree 941 kB 363 kB

Compression 4622:1 1625:1

TABLE II

AMOUNT OF SPACE REQUIRED TO STORE THE ENTIRE MAP IN

FIGURE 6 IN BOTH MEMORY AND ON DISK.



(a) (b)

Robot Odometry Manhattan Constraint

+ Visual Registration + Visual Registration

+ Robot Odometry

Fig. 7. An environment with several intersecting corridors. The building is 52.6 by 53.2 meters and modeled with 30 mm resolution using
7,789 RGBD scans. The building was traversed multiple times in order to map the environment in its entirety. The benefit of the Manhattan
assumption is evident. The map required just 5.6 MB of disk space.

VII. CONCLUSION

In this paper we have presented a system that builds

online 3D maps by overcoming one of the primary

disadvantages of occupancy-grid-based representations,

namely their rigidity. By focusing on the reconstruction

of man-made environments, we are able to remove

essentially all rotational drift by enforcing a Manhattan

world constraint on the geometry of the map. In addition

to removing rotational drift in this manner, we are also

able to reduce translation drift significantly by combin-

ing the odometry readings with output from a visual

registration algorithm. Both relative pose measurements

and the Manhattan world constraint are added to a

factor graph to yield an optimized online trajectory of

the mobile robot with greatly reduced rotational and

translational drift. Together, these aspects of the system

result in geometrically accurate maps for large indoor

environments while utilizing the ability of octrees to

perform significant data compression on the 3D maps.

Experimental results on several large environments show

the ability of our system to accurately construct 3D

maps from RGBD data without having to perform any

loop closures. Future work will be aimed at further

characterizing the resulting error, generalizing the tech-



100 200 300 400 500 600
frame number

 

octree size on disk

octree size in memory

100 200 300 400 500 600
frame number

 

octree size on disk

octree size in memory

point cloud size on disk

point cloud size in memory

Fig. 9. The amount of space required by the map on disk and in
memory by point cloud and octree representations, as a function of
frame number. The plots show the sizes for the map constructed in
Figure 4. The top plot is a zoomed-in view of the bottom plot (notice
the red and green lines overlaid on the x axis in the bottom). The octree
reduces storage requirements by more than three orders of magnitude.

nique to non-Manhattan worlds with other types of

global constraints, and performing interleaved mapping

and navigation in dynamic environments. We will also

investigate the use of a more robust plane matching

algorithm to handle cluttered areas where simple plane

matching will not necessarily yield the walls.

VIII. ACKNOWLEDGEMENTS

This research was supported by the U.S. National

Science Foundation under grant IIS-1017007.

REFERENCES

[1] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality
rendering of point sampled geometry. In Thirteenth Eurographics

Workshop on Rendering, 2002.
[2] F. Dellaert and M. Kaess. Square Root SAM: Simultaneous

localization and mapping via square root information smoothing.
Intl. J. of Robotics Research, 25(12):1181–1203, Dec 2006.

[3] A. Elfes. Occupancy grids: A probabilistic framework for robot
perception and navigation. Journal of Robotics and Automation,
RA-3(3):249–265, June 1987.

[4] A. Flint, C. Mei, I. Reid, and D. Murray. Growing semantically
meaningful models for visual SLAM. In Computer Vision and

Pattern Recognition CVPR, 2010.
[5] Y. Furukawa, B. Curless, S. Seitz, and R. Szeliski. Manhattan-

world stereo. In Computer Vision and Pattern Recognition CVPR,
June 2009.

[6] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Recon-
structing building interiors from images. In Proceedings of the

International Conference on Computer Vision, Sept. 2009.

[7] J.-S. Gutmann and K. Konolige. Incremental mapping of large
cyclic environments. In IEEE Intl. Symp. on Computational

Intelligence in Robotics and Automation (CIRA), pages 318–325,
November 2000.

[8] D. Häehnel, W. Burgard, D. Fox, and S. Thrun. An efficient
FastSLAM algorithm for generating maps of large-scale cyclic
environments from raw laser range measurements. In Proceed-

ings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2003.
[9] G. Q. Huang, A. B. Rad, and Y. K. Wong. Online SLAM in

dynamic environments. In Proceedings of the 12th International

Conference on Advanced Robotics, pages 262–267, July 2005.
[10] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,

P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon. KinectFusion: Real-time 3D reconstruction and
interaction using a moving depth camera. In Proceedings of

the 24th ACM Symposium on User Interface Software and

Technology, pages 559–568, 2011.
[11] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and

F. Dellaert. iSAM2: Incremental smoothing and mapping using
the Bayes tree. Intl. J. of Robotics Research, 31:217–236, Feb
2012.

[12] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental
smoothing and mapping. IEEE Trans. Robotics, 24(6):1365–
1378, Dec 2008.

[13] F. Lu and E. Milios. Globally consistent range scan alignment
for environment mapping. Autonomous Robots, pages 333–349,
Apr 1997.

[14] T. K. Marks, A. Howard, M. Bajracharya, G. W. Cottrell,
and L. Matthies. Gamma-SLAM: Using stereo vision and
variance grid maps for SLAM in unstructured environments. In
Proceedings of the International Conference on Robotics and

Automation, 2008.
[15] H. Moravec and A. E. Elfes. High resolution maps from

wide angle sonar. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pages 116–121,
Mar. 1985.

[16] K. Pathak, A. Birk, N. Vaskevicius, M. Pfingsthorn, S. Schw-
ertfeger, and J. Poppinga. Online three-dimesional SLAM by
registration of large planar surface segments and closed-form
pose-graph relaxation. Journal of Field Robotics, 27(1):52–84,
Jan. 2010.

[17] K. Pathak, A. Birk, N. Vaskevicius, and J. Poppinga. Fast regis-
tration based on noisy planes with unknown correspondences for
3-D mapping. IEEE Transactions on Robotics and Automation,
26(3):424–441, June 2010.

[18] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to
elevation maps for outdoor terrain mapping and loop closing.
Intl. J. of Robotics Research, 2007.

[19] J. Strom and E. Olson. Occupancy grid rasterization in large
environments for teams of robots. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2011.
[20] S. Thrun. Learning occupancy grid maps with forward sensor

models. Autonomous Robots, 15(2):111–127, 2003.
[21] S. Thrun. Robotic mapping: a survey. In Exploring artificial

intelligence in the new millennium, pages 1–35. Morgan Kauf-
mann, Inc., 2003.

[22] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and
W. Burgard. OctoMap: A probabilistic, flexible, and compact 3D
map representation for robotic systems. In Proceedings of the

ICRA Workshop on Best Practice in 3D Perception and Modeling

for Mobile Manipulation, May 2010.


