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Abstract

Switching Linear Dynamic System (SLDS) models are a popidehnique for modeling complex nonlinear dynamic
systems. An SLDS provides the possibility to describe cempémporal patterns more concisely and accurately than an
HMM by using continuous hidden states. However, the use dSImodels in practical applications is challenging for
several reasons. First, exact inference in SLDS modelswpatationally intractable. Second, the geometric dunatimdel
induced in standard SLDSs limits their representationalguo Third, standard SLDSs do not provide a systematic way to
robustly interpret systematic variations governed by &igirder parameters.

The contributions in this paper address all three challerajmve. First, we present a data-driven MCMC sampling
method for SLDSs as a robust and efficient approximate interenethod. Second, we present segmental switching linear
dynamic systems (S-SLDS), where the geometric distribstare replaced with arbitrary duration models. Third, weeot
the standard model with a parametric model that can capystersatic temporal and spatial variations. The resulting
parametric SLDS model (P-SLDS) uses EM to robustly intérpegametrized motions by incorporating additional global
parameters that underly systematic variations of the tvarion.

The overall development of the proposed inference methondseatensions for SLDSs provide a robust framework to
interpret complex motions. The framework is applied to thedy bee dance interpretation task in the context of theadmgg
BioTracking project at Georgia Institute of Technology.eTéxperimental results suggest that the enhanced modeisig@ro
an effective framework for a wide range of motion analysigliagtions.

1 Introduction

A challenging problem in computer vision is to infer the beébeal patterns that are being exhibited by a target in a gggm
of video. Even if we assume that targets can be reliably gdgcwe still face the difficult problem of interpreting befayv
Manual interpretation by skilled operators, as is commoddmains such as biology, is a time-consuming and errorgron
process. Thus, it is desirable to develop methods that attoafly infer the behavioral patterns of the targets. Idiadn,

in applications where there is large variability in the babes, we need a framework in which we cl@arn these behaviors
from examples.

In particular, we are interested in two inference tasksahabf central importance. The first, 'labeling’, is to autioally
segment the motion sequences according to different betswvnodes. The second task is what we call 'quantificatioy’,
which we mean the identification of global parameters thaeuly a given motion, e.g., the direction of a pointing gestu
These two inference tasks are not independent: a bettersiadding of the systematic variations in data can imprbee t
labeling results, and vice versa.

1.1 Biotracking

The application domain which motivates this work is a neveagsh area which enlists visual tracking and Al modeling
techniques in the service of biology [2, 3]. The currentestat biological field work is still dominated by manual data
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Figure 1: (a) A bee dance is in three patterns : waggle, left &and right turn. (b) The box in the middle is a tracked bee.

Figure 2: An example honey bee dance tra'iectorf/. The traekuiismatically obtained using a vision-based tracker and

manually labeled afterward. Ke, | left-turn]

interpretation, a time-consuming and error-prone prackg®matic interpretation methods can provide field bigdtgwith

new tools for the quantitative study of animal behavior. Assical example of animal behavior and communication is the
honey bee dance, depicted in a stylized form in Fig.1(a).eydrees communicate the location and distance to a foodesourc
through a dance that takes place within the hive. The dandedemposed into three different regimes: “turn left”, ftur
right” and “waggle”. The length (duration) and orientatmfrihe waggle phase corresponds to the distance and théaditen

to the food source. Figure 1(b) shows a dancer bee that weleettdy a previously developed vision-based tracker [21].
After tracking, the obtained trajectory of the dancing beeanually labeled as “turn left”, “turn right” or "waggle’hd is
shown in Figure 2.

The research goals in this application domain are threg-fotst, we aim to learn the motion patterns of honey beeekanc
from the obtained training dance sequences. Second, weédshelable to automatically segment new dance sequences
into three dance modes reliably, i.e., the labeling problé&imally, we face a quantification problem where the aim is to
automatically deduce the message communicated, in thés ¢hs distance and orientation to the food source. Note that
both the labels and the global parameters are unknown, tieageoblem is one of simultaneously inferring these hidden
variables.

1.2 A Model-Based Approach

We take a model-based approach, in which we employ a conmuahtmodel of behavior in order to interpret the data. In
our case the motions are complex, i.e. they are compriseabebshaviors. The model we use should be expressive enough
to accurately model the individual sub-behaviors, whilthatsame time able to capture the inter-relationships tweem.
Hence, the basic generative model we adopt is the Switchimgat Dynamic System (SLDS) model [35, 36, 37]. In an
SLDS model, there are multiple linear dynamic systems (L&) underly the motion, one for each behavioral mode that
we assume. We can then model the complex behavior of thet taygavitching within this set of LDSs. In contrast to an
HMM, an SLDS provides the possibility to describe complerperal patterns concisely and accurately. SLDS models have
become increasingly popular in the vision and graphics canities as they provide an intuitive framework for desarii
the continuous but non-linear dynamics of real-world motiBor example, it has been used for human motion classditati
[35, 36, 37, 39] and motion synthesis [47].



1.3 Contributions

In this paper, we present a framework that learns behaviaitérns from data and provides robust inference methads th
label the motion sequences while simultaneously quantifyhe global parameters, significantly extending the seopuk
modeling power of standard SLDS models. When applying thedsird SLDS model to the complex task of interpreting
honey bee behavior, it quickly becomes clear that there ewers limitations in the original SLDS model that limit its
applicability on real tasks. In this paper we discuss thesmetmajor problems and address them by extending the nrodel i
two novel ways, as well as providing robust inference mestfodeach of these.

We discuss the three main limitations of the original SLDSeldn Section 3, previewing each of the three main con-
tributions along with related work in those areas. In Sectipwe introduce a data-driven MCMC-based inference method
to address the intractability of exact inference in SLDSs.Séction 5, we present the segmental extension of a standard
SLDS model, the “segmental SLDS” model (S-SLDS) with enleainduration modeling capabilities. Then, in Section 6,
we advance a parametric extension of SLDS (P-SLDS) whichlesta infer systematic variations in the data. We combine
S-SLDSs and P-SLDSs in Section 7 and show how we can learneafaim inference in the resulting parametric segmen-
tal SLDS (PS-SLDS). Finally, in Section 8, we describe thpegimental data and demonstrate the improved labeling and
guantification capabilities of the enhanced SLDS modeliblhothe experimental results on the honey bee dance decoding
tasks.

2 Background

2.1 Linear Dynamic Systems
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Figure 3: A linear dynamic system (LDS)

An LDS is a time-series state-space model consisting ofeatiGaussian dynamics model and a linear Gaussian obser-
vation model. The graphical representation of an LDS is shiowFig.3. The Markov chain at the top represents the state
evolution of the continuous hidden statgs The prior density; on the initial stater; is assumed to be normal with mean
w1 and covarianc&, i.e.,z1 ~ N (1, 31).

The stater; is obtained by the product of state transition mafrixand the previous state_; corrupted by zero-mean
white noisew; with covariance matrix):

Ty = F.Itfl =+ wy Wherewt ~ N(O, Q) (1)
In addition, the measurement is generated from the current statethrough the observation matriéf, and corrupted by

Zzero-mean observation noisg
zZt = HSCt =+ vt Where’Ut ~ N(O, V) (2)

Thus, an LDS modeM is defined by the tuplé/ = {(p1,%1),(F,Q), (H,V)}. Exact inference in an LDS can be done
exactly using the RTS smoother [5], an efficient belief pggigon implementation. For further details on LDSs, theleza
is referred to [5, 27, 41].

2.2 Switching Linear Dynamic Systems

In an SLDS we assume the existencexdfistinct LDS models\/ 2 {M;]1 <1 < n}. The graphical model corresponding
to an SLDS is shown in Fig.4. The middle chain, representiedhidden state sequenKeé {z¢]1 <t < T}, together with



I,

(2 (078
\5 \& \&

Figure 4: Switching linear dynamic systems (SLDS)

the observationg 2 {z:|1 <t < T} at the bottom, is identical to an LDS in Fig.3. However, we rieave an additional

discrete Markov chaid, 2 {l;|]1 <t < T} that determines which of the models)/; is used at every time-step. We calll
l; € M the label at time and L a label sequence.

In addition to a set of LDS model&/, we specify two additional parameters: a multinomial disttion 7(I;) over the
initial labell; and ann x n transition matrixB that defines the switching behavior betweensthaistinct LDS models. In
summary, a standard SLDS model is defined by the te)p% {m B,M#~2 {Mi1 << n}}.

Switching linear dynamic system (SLDS) models have beediestiiin a variety of research communities ranging from
computer vision [36, 35, 37, 30, 8, 43], computer graphi& &, 39], tracking [6], signal processing [12, 13] and sbee
recognition [40], to econometrics [22], visualization [4®achine learning [25, 17, 31, 32, 33, 20], control syst@4B$and
statistics [42]. While one can find several versions of SLB#k literature, our work is most closely related to the niode
structure and extensions described in [36, 35, 37, 31, 32, 33

2.3 Learning and Inference in SLDS

The EM algorithm [10] can be used to obtain the maximum-iik@d parameter®. The hidden variables in EM are the
label sequencé and the state sequend&e Given the observation datd, EM iterates between the two steps:

e E-step : Inference to obtain the posterior distribution
FUL.X) £ P(L,X|2,©) (3)
over the hidden variables and X, using a current guess for the SLDS parame®ts
e M-step : maximize the expected log-likelihoods with redpe®:
Ot arg(r)nax (log P(L, X, Z|©) (1, x) (4)

Above, (-),,, denotes the expectation of a functioh under a distributio#?’. The intractability of the exact E-step in Eq.3
motivates the development of approximate inference teghes discussed in more detail below.

3 Contributions and Related Work

In this paper, we address three limitations of the standafSSmodel: (1) intractability of exact inference in SLDSg) (
limitations in duration modeling, and (3) absence of a sysiiic way to quantify global parameters. We propose novel
solutions to address these problems. First, we introducga-Driven MCMC (DD-MCMC) inference method to investigate
the exact posterior of SLDSs in the presence of intractgbfiecondly, a segmental SLDS model is proposed to implave t
limited duration modeling power of standard SLDSs. Finallg introduce a parametric extension of SLDSs that provide a



systematic means to quantify the embedded global parasnétethe sections below we discuss each of these contritsutio
along with the related work that provided the inspirationtfeem.

The BioTracking project [2, 3] is an interdisciplinary raseh initiative between biology and multi-robot system$1eO
of the authors’ previous work on automatic labeling of hobeg dances using HMMs [14] is most closely related to the
work in this paper. However, in [14], the honey bees werekedasia a color segmentation tracker and HMMs were learned
from two dimensional observations, i.e. locations of theshén contrast, the real-world dancer bee tracks are atiatia
obtained from a set of noisy video data by using a previousietbped appearance tracker [21]. In addition, SLDSs aé us
to learn and infer the motion patterns of bees and new DD-MQMhod and novel SLDS extensions are presented in this
work.

In comparison to our previous conference publications @ttipic [31, 32], the current paper extends the SLDS model
to include duration modeling, and presents the detailethieg and inference mechanisms for parametric segmen@B5SL
which combines the advantages of two extended modelsSt8LDS and P-SLDS.

3.1 Robust inference via Data-Driven Markov Chain Monte Cardon$ling

Inference in an SLDS model involves computing the postatisiribution on the hidden states, which consists of ths-(di
crete) switching state and the (continuous) dynamic sthatehe Biotracking application which motivates this workget
discrete state represents distinct honey bee behaviols thiei dynamic state represents the bee’s true motion. Giden-
based measurements of the position and orientation of theober time, SLDS inference can be used to obtain a MAP
estimate of the behavior and motion of the bee. In additioiist@entral role in applications such as MAP estimation,
inference is also the crucial step in parameter learninghgd&M algorithm [37].

It is known that the exact inference in SLDS is intractabl¢h@ssize of Gaussian mixtures increases exponentially with
time [24]. Thus, there have been research efforts to deffi@emt approximate inference methods. The early examples
include GPB2 [5], and Kalman filtering [8], and the pseudo-&lgorithm [42]. More recent examples include a variational
approximation [17, 35, 37, 33], an approximate Viterbi noetfi36, 35, 37], expectation propagation [48], iterativeritéo
Carlo methods [12], sequential Monte Carlo methods [13],@ibbs sampling [40]. Approximate inference in SLDS models
has focused primarily on two classes of techniques: stage‘wethods such as approximate Viterbi [37] or GPB2 [5] Wwhic
maintain a constant representational size for each tinye atedata is processed sequentially, and structured weéhti
methods which approximate the intractable exact model avttlactable, decoupled model [17, 33, 37].

While these approaches are successful in some applicaiioaids, such as vision and graphics, they do not provide any
mechanism for fine-grained control over the accuracy of ggr@imation. In fields such as biology where learned models
can be used to answer scientific questions about animal lmehagientists would like to characterize the accuracyrof a
approximation and they may be willing to pay an additionahpaitational price for getting as close as possible to the tru
posterior. In our initial stage of experiments, we obsertred the existing approximation methods, e.g., an appratém
Viterbi method and etc., demonstrated poor labeling peréarce. In such cases, it is necessary to validate the capdcit
the model to verify whether such a poor labling result is duthe approximation method itself or the inherent limitataf
the model not being able to represent the temporal phemomeatenuately.

We describe a novel proposal distribution for Data-driveBMWIC inference in Section 4, originally presented at AAAI
[31]. In situations where a controllable degree of accuiaagquired, Markov-Chain Monte-Carlo (MCMC) methods are
attractive. Standard MCMC techniques, however, are oftegued by slow convergence rates. We therefore exploresthe u
of Rao-Blackwellization [9] and the Data-Driven MCMC paigh [44] to improve convergence. The Data-Driven MCMC
approach has been successfully applied in computer vigi®m] and robotic mapping [38].

3.2 Improved Duration modeling

The duration modeling capabilities of a standard SLDS anédid by the Markov assumption which is imposed upon the
transitions at the discrete switching states. As a conseguef Markov assumption, the probability of remaining inzeg
switching state follows a geometric distribution :

P(d) = a*1(1-a) (5)



Above,d denotes the duration of a given switching state adénotes Markov transition probability to make a self-traois
which has a value between zero and one. As a consequencati@dof one time-step come to possess the largest protyabili
mass.

In contrast, many natural temporal phenomena exhibit pegtef regularity in the duration for which a given model or
regime is active. In such cases the standard SLDS model wmiidappropriate to effectively encode the regularity of
durations in data. A honey bee dance is an example: a daneewibbattempt to stay in the waggle regime for a certain
duration to effectively communicate a message. In suchsgitss clear that the actual duration diverges from a geamet
distribution.
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Figure 5: A realistic Gaussian and a limited geometric donainodel. Models are learned from the data shown as the
overlayed histogram.

For example, we learned a duration model for the waggle phsisg a realistic Gaussian density and a conventional
geometric distribution from one of the manually labeled@asequences depicted in Figure 16. Figure 5 shows the tkarne
geometric and Gaussian distributions for comparison. 1t loa observed that the learned geometric duration model does
not exhibit any pattern of regularity in durations. Hendanglard SLDS models are inappropriate for data which etéhibi
temporal patterns that deviate from geometric distrimgio

The limitation of a geometric distribution was also prevdlyuaddressed by the HMM communities, and HMM models
with enhanced duration capabilities were introduced [8,34]. HMMs has been widely studied by the speech recog-
nition and the machine learning communities to enhanceuditatibn modeling capabilities. The variable duration HMM
(VD-HMM) was introduced in [15]: state durations are modeéxplicitly in a variety of PDF forms. Later, a different
parameterization of the state durations was introducedevtie state transition probabilities are modeled as fanstbf
time, which are referred to as non-stationary HMMs (NS-HMRB]. It has since been shown that the VD-HMM and the
NS-HMM are duals [11]. Ostendoet.al. provides an excellent discussion on segmental HMMs [34].

We adopt similar ideas to arrive at SLDS models with enhadcedtion modeling. The resulting segmental SLDS model
is described in Section. 5.

3.3 Inference on global parameters

The standard SLDS does not provide a systematic way to duaethporal and spatial variations with respect to a fixed
(canonical) underlying behavioral template. E.g., theatyits and observations of a pointing gesture would varydase
on the speed of the motion and the direction being pointethanany applications we are more interested in these global
underlying parameters rather than the exact categorizafithe sub-motions.

Previously, Wilson & Bobick presented parametric HMMs [4B] a PHMM, the parametric observation models learned
are conditioned on global observation parameters, sudhgtbbally parameterized gestures can be recognized. PHMMs
have been used to interpret human gestures, showing supsc@gnition performance in comparison to standard HMMs.
A similar approach was taken in the style-machines work tgnBrand Hertzmann [7]. A transformation-invariant leagnin
approach for static images were addressed in [16].



We extend the standard SLDS model in a similar way, resuitirggparametric SLDS (P-SLDS) model. As in a PHMM,
the P-SLDS model we propose incorporates global paramigiarsinderly systematic spatial variations of the overaH t
get motion. In addition, while PHMM only introduced globabservation parameters which cause spatial variations, we
additionally introduce dynamic parameters which captenegoral variations.

As mentioned earlier, the problem of global parameter dfieation and labeling can be simultaneously solved. Hence,
we formulate expectation-maximization (EM) methods farténg and inference in P-SLDS and present it in Section 6.

4 Inference via Data-Driven MCMC

In this section, we introduce a novel sampling-based metihaictheoretically converges to the correct posterioritistion
on label sequenceB(L|Z). Faster convergence is achieved by incorporating a datardapproach where we introduce
proposal priors and label-cue models.

All MCMC methods work similarly [18]: they generate a seqoerof sampleswith the property that the collection
of samples approximates the desired target distributianaccomplish this, #Markov chainis defined over the space of
interest. The transition probabilities are set up in a vegcsfic way such that thetationary distributiorof the Markov chain
is exactly the target distribution. This guarantees thatgirun the chain for a sufficiently long time, the sampleriisition
converges to the target distribution.

4.1 Rao-Blackwellized MCMC

In our solution, we propose to pursue the Rao-BlackwellpesteriorP(L|Z), rather than the joint posterid?(L, X |2).
The effect is the dramatic reduction of sampling space fianX to L. This results in an improved approximation on
the labelsL, which are exactly the variables of interest in our appi@at This change is justified by the Rao-Blackwell
theorem [9]. The Rao-Blackwellisation is achieved via thalgtic integration on the continuous stat&sgiven a sample
label sequencé (™). In this scheme, we can compute the probability ofithie sample label®(L(")| Z) up to a normalizing
constant via the marginalization of the joint PDF :

P(LM|Z) /XP(L(’”),X,Z) (6)

Note that we omit the implicit dependence on the model patars® for brevity. The joint PDFP(L("), X, Z) in the r.h.s.
of Eq.6 can be evaluated via the inference in the time-varkiDS with the varying but known parameters. Specificallg, th
inference over the continuous hidden staieén the middle chain of Fig.4 can be performed by RTS smootfiig The
resulting posterior is a time-series of Gaussianskoand can be effectively integrated out.

We use the Metropolis-Hastings (MH) algorithm [19, 29] toigeate a sequence of samplé$). The pseudo-code for
the algorithm is shown in Algorithm 3 in Appendix A.

4.2 Learning and Inference

We propose to use a Data-Driven paradigm [44] where the cresept in the data provide an efficient MCMC proposal
distribution@. It is crucial to provide an efficient propos@l which results in faster convergence [1]. Even though MCMC
is guaranteed to converge, a naive exploration of the higtedsional state spadeis prohibitive. Thus, the design of a
proposal distribution which enhances the ability of the glamto efficiently explore the space with high probabilitass is
motivated. Our data-driven approach consists of two phaleesningandinference

In the learning phase, we collect temporal cues from thaitrgidata. Then, a set of models of cues which we call
'label-cue models’, i.e{P(c|l;)|1 < ¢ < n}, are learned based on the collected cues in a supervisecemdiun example,
the change of heading angles is derived as a cue in the hoeegdmee application. From the stylized dance in Fig.1(a),
we observe that the heading angles will jitter but stay @msbn average during the waggling, but generally increase o
decrease during the right turn or left turn phases. Thuseacior a frame is set to be the change of heading angles within
the corresponding window. Note that the heading angles assured clockwise.
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Leftturn~N (—5.77; 2.72) Waggle~N (—0.10; 3.32) Right turn~N (5.79; 2.83)

Figure 6: Learning phase. Three label-cue models are lddrom the training data. See text for detailed descriptions

Figure 7: Inference phase. Raw proposal priors are evaliissed on the collected temporal cues.

Figure 8: Final proposal priors and the ground truth labiéés; :

Specifically, a cue window slides over the entire angle ddtéewt collects cues as shown at the top of Fig.6. Then, the
collected cues are classified according to the trainingsafdnen, the label-cue (LC) models are learned in the forthrefe
Gaussians in our example, as shown at the bottom of Fig.6 eStimated means and the standard deviations show that the
average change of heading angles are -5.77, -0.10 and &lid@saas expected.

In the inference phase, we first collect the temporal cuas fie test data without access to the labels as shown at the
top of Fig.7. Then, the proposal priors are evaluated basetthie collected cues and the learned label-cue models. By a
proposal priotP(I;|c,), we denote the distribution on the labels which is a rough@gmation to the true posterid?(i;| Z).
However, the raw proposal prior often over-fits test datehasvs in Fig.7. Thus, we use the smoothed estimates as the final
proposal priors, shown in Fig.8. At the bottom of Fig.8, theund truth labels are shown below the final proposal priors f
comparison. The obtained priors provide an excellent giodee labels of the dance segments.

Afterwards, the obtained proposal prid%(ﬂ) is used to construct the data-driven propaal Then, MH algorithm
balances the whole MCMC procedure in such a way that the MCME&rénce on labels converges to the true posterior
P(L|Z). The details of learning and inference in DD-MCMC methoddescribed in Appendix A.

4.3 Experimental Results

The DD-MCMC is a Bayesian inference algorithm. Nonethelg#gsan be used as a robust labeling method. The MAP label
sequence are taken from the discovered posterior distibi?t( L|Z) where the label of MAP sequence at each time step is
the individually most likely label inP(L|Z). The resulting MCMC MAP labels, the ground-truth, and thpragimate
Viterbi labels for two data sequences in the database axersfiom the top to bottom in Fig. 9. It can be observed that
DD-MCMC delivers solutions that concur very well with theognd truth. On the other hand, the approximate Viterbi
labels at the bottom over-segments the data (insertiongdribhe insertion errors of approximate Viterbi highligimte of
the limitations of the class of deterministic algorithms &b DS. In this respect, the proposed DD-MCMC inference moéth
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Figure 9: DD-MCMC MAP, ground truth, Viterbi labels.

is shown to improve upon the Viterbi result and provide mataust labeling (inference) capabilities.

Some errors between the MAP labels and the ground truth ai@ito the systematic irregular motions of the tracked
bees. In these cases, even an expert biologist will haveulififiguring out all the correct dance labels solely basethe
observation data, without access to the video. ConsidénaigSLDSs are learned exclusively from the observatioa,daé
results are fairly good.

Figure 10: Posterior distributioR(L|Z) is discovered from sequence 1. The heading angle of a bepésisiposed on the

figure as an indicator of a dancer’s dance mode. , right-turnj left-turn

To further analyze the inference capabilities of a stan@®r@S withinin our application, we investigated the posteri
distribution P(L|Z) which is discovered from the first sequence using the prapp&MCMC inference, see Fig.10. The
discovered posterior shows that most of the over-segmensare induced due to the strong noise in the data. As anggam
of an extreme systematic noise, around the two fifths fromitie in Fig.10, the tracked bee systematically side-wtdkie
left due to the collision with other bees around it for abo@iftames while it was turning right. Consequently, the MCMC
posterior shows the two eminent hypotheses for those fram@% turn-left and 30% turn-right roughly, and it resultshie
over-segmentation of the data where it appears at the top swip in Figure 9(a).

4.4 Discussion

While DD-MCMC inference method improves upon the Viterbithwal, the results are still not completely satisfactory for
the bee dance application. DD-MCMC MAP label results stittéduce several over-segmentations. In addition, it @n b
observed that the average waggle duration based on MCMC Mé&td diverges significantly from the ground truth.

From the visuallized posterior in Fig.10, we notice two liations of standard SLDS model in our bee application. First
we observe that the limited duration modeling power of SLD&kens its labeling capabilities on bee data. It can be
observed that a slight noise introduces an over-segmentaten though such noise appears only for a few frames. 8kgon
the absence of systematic means to quantify global parasrsgieuld be addressed. The estimation of global dance angle
and average waggle duration solely dependent on labelingaes can severely deviate from the ground truths. Magov
it is certain that the global information can provide a bettee for overall labeling processes.

Accordingly, we introduce segmental SLDS and parametridSlas the robust extensions to resolve the problems men-
tioned above.

It should be noted that DD-MCMC method is still computatihphdemanding although it is an efficient solution in the
space of MCMC methods. For example, it proposed approxignaie00 samples to converge in one of the experiments



above. As each proposed label sequence requires temparaitsng step for Rao-Blackwellised inference, the comfiora
required for every samples is approximately identical &d tf an approximate Viterbi (VI) method. As a consequendg; D
MCMC method consumed approximately 4,000 times more coatiputthan VI method. The models to be introduced in the
following sections are shown to reflect the characteristfdhe honey bee dance data more tightly and were able to peodu
satisfactory results using VI or a variational approximatmethod. Additionally, theoretical justification of contptional
complexity of data-driven MCMC methods is still an on-goarga of research in spite of its success in hard computenvisi
problems. Hence, we plan to investigate the scaling isstieegiroposed DD-MCMC method in the extended models in the
future and adopt computationally less-demanding appration inference methods in the following sections.

5 Segmental SLDS

We introduce the segmental SLDS (S-SLDS) model, which imgs®n the standard SLDS model by relaxing the Markov
assumption at a time-step level to a coassgment levelThe development of S-SLDS model is motivated by the regular

in durations being exhibited by the honey bee dances. Asisist in Section 3.2, a dancer bee will attempt to stay in
the waggle regime for a certain duration to effectively caumicate a message. In such a case, the geometric distrnibutio
induced in standard SLDSs is not an appropriate choice toefrthé duration patterns. Fig. 5 shows that a geometric
distribution accords the highest probability on the dumatdf only one time step. As a result, the inference in stashdar

SLDSs is susceptible to over-segmentation due to the nodata.

In an S-SLDS, the durations are first modeled explicitly drahtnon-stationary duration functions are derived fromthe
Both of them are learned from data. As a consequence, thdXs 8todel has more descriptive power in modeling duration,
and more robust inference capabilities than the standatisSSNonetheless, we show that one can always convert a barne
S-SLDS model into an equivalent standard SLDS, operatirsgdiiferent label space. Hence, as a significant advantage we
are able to resuse the large array of approximate inferamtéarning techniques developed for SLDSs.

5.1 Conceptual view on the generative process of S-SLDS
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Figure 11: A schematic sketch of an S-SLDS with explicit dimramodels.

Conceptually, in an S-SLDS, we deal with segments of finiteatlon, i.e. each segmest 2 (I;,d;) is described by
a tuple of labell; and durationd;. Within each segment a fixed LDS mod#; is used to generate the continuous state
sequence for the duratiaf). Similar to SLDSs, we take an S-SLDS to have an initial disttion7(l;) over the initial
labell; of the first segment;, and ann x n semi Markov label transition matri® that defines the switching behavior
between the segment labels. The tilde denotes that thexis&risemi-Markov transition matrix. Additionally, howeyese
associate each labeWwith a fixedduration modelD;, represented as a multinomial. We denote the setdifration models

asD 2 {D;(d)|1 <1 < n}, and refer to them in what follows asplicit duration models In summary, an S-SLDS is
defined by a tupl® 2 {w, B,DE(Dl=1.n}, M2 (Ml = 1..n}}.
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A schematic depiction of an S-SLDS is illustrated in Fig.I'"he top chain in the figure is a series of segments where

each segment is depicted as a rounded box. In the model, trentaegment; = (l;,d;) generates a next segmest ¢

in the following manner: first, the current lablglgenerates the next labgl ; based on the label transition matiix then,
the next durationl; ; is generated from the duration model for the label, i.e. di;1 ~ Dy, (d). The dynamics for the
continuous hidden states and observations are identiGaktandard SLDS : a segmentevolves the continuous hidden
statesX with a corresponding LDS modél/;, for the durationd;, then the observatiorns are generated given the labéls
and the continuous states.

5.2 Graphical Representation of S-SLDS

In this section we present a graphical representation df[3SS, transforming the conceptual generative model desdrin
Section 5.1 into a concrete model that uses conventionaéhsvdtching at every time-step. To maintain the same daomati

semantics, we introduceounter variable<?' £ {e:|]1 < ¢ < T}. The resulting graphical model of S-SLDS is illustrated
in Fig.12, and is identical to the graphical model of an SLD%ig.4, but with additional top-chain representing a seoie
counter variable§’.

C

* Cra Cre2

(5 (&
& \&

Figure 12: Graphical representation of an S-SLDS

i+3

l

The counter chai’ maintains an incremental counter which evolves based onad Ben-stationary transition functions

(NSTRFs)U é{Ul(c)|1 <1< n}. An NSTFU; for the current label, defines the conditional dependency of the next counter
variablec, . given the current counter variableand the label, :

Ul(Ct) = P(Ct+1|0t7l)

The system can either increment the counter,d;g; — c¢; + 1, or reset it to one, i.ec;1; < 1. If the counter variable
ci11 1S reset, then a label transition occurs, i.e. a new segraénttialized. A new label, ; is chosen based on the label
transition matrixB. If the counter simply increments, then the new label is@éktthe current labél, i.e. ;1 «— [;.

O.=Z 0.4 0.3 0O.1 0.8 0.5 0.25 0.0

Figure 13: Evaluating an NSTF (right) from an explicit dimatmodel (left).
While the explicit duration model® introduced in Section 5.1 are more understandable andlyeautained from the

labeled data, it is necessary to transform the explicit timamodelsD into an equivalent NSTF# to incorporate the
knowledge in durations into a framework based on graphicalets. To do this, we can observe that the explicit duration
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S-SLDS model

1.Model
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Y

Inference
—>
SLDS model on labels

2.Inference

Figure 14: Inference in S-SLDS.

modelsD and the NSTF4J are analogous to the duration models of VD-HMMs [15] and N@Mb [26] respectively.
Hence, we can exploit the duality between the VD-HMMs andHW\8Ms, which appeared in [11]. The equivalent NSTFs
U are exactly evaluated from the explicit duration modelas follows :

max
Dy

Uler) = 1= |Diler)/ Y Diler) (7)

d=c;

Above, D** denotes the maximum duration allowed for fhéd model. Intuitively, the latter composite term on thes.h.
denotes the probability to reset the counter variaple. It represents the ratio of the probability of current dionat; over
the sum of durations equal or greater thaim the corresponding duration mode}. An example is illustrated in Fig.13 to
show the evaluation of an NSTF from an explicit duration miode

In summary, an S-SLDS model is completely defined byat@p% {m BUZ2 {Un<i<n}, M = {Mi1<i< n}}
where the NSTF#/ are obtained from the explicit duration modéls

5.3 Learning in a Segmental SLDS

Learning in S-SLDS is analogous to learning in SLDS, using. Hle initial distribution, and LDS model parameters

M are learned in exactly the same manner as in SLDS. Howevusmécessary to learn the additional duration models
and the semi-Markov transition matrix. These two additional model parameters only influence thel lsequencé, and
hence the ML estimates of these two parameters can be exdiivam a segmental representation of the label sequence
ie., L = U.‘j‘ilsj. The specific functional forms of ML estimation depends om¢hoice of duration models. An example

is demonstrated in Section 7 where we learn the duration lednl&aussian forms from the honey bee dance sequences.
However, Gaussian models encode proabilities for nortiegisegative durations as well. Hence, only positive pathe
learned Gaussian models were used in our work. Note thatibieecon the form of probability distributions depend on the
duration characteristics of data. For example, Gamma en@mgal distributions which only encode probability reggmon
positive durations can be adopted.

5.4 Inference for Segmental SLDSs

Below we demonstrate that an S-SLDS can be always convertaial €quivalent SLDS. This is an important advantage as
it allows us to readily reuse the large array of approximaterence algorithms discussed in Section 2.3. In other syord
the inference in S-SLDS is identical to that of the standdrBS, simply with additional conversion from an S-SLDS to its
corresponding SLDS.

The overall idea of inference is depicted in Figure 14. Iipgtewe convert an S-SLDS model into an equivalent SLDS
model. Then, we perform step 2 (inference) using any of tipe@pmate inference algorithms for the standard SLDSs.eOnc
the parameters of the equivalent standard SLDS are leaiaétM, the obtained SLDS model is converted back to S-SLDS
model and the inference in S-SLDS concludes.

The model conversion from an S-SLDSs to an equivalent SLIp8ssible by applying the standard technique of merging
multiple discrete variables into meta variables. Spedificall possible pairs of a labé} and a counter valug are merged

and form a set of ¢ variables wherecC £ {(l,c;)]1 <1< n,1<¢ <D™}, To obtain a complete SLDS model, an
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equivalentr’ x n’ transition matrix3’ wheren’ £ S, De* is constructed from the semi-Markov transition matkx
and the NSTF$#/, as follows :

Ui, (¢i) increment
szi,ci),(lj,cj) = By, (1= U, (ci)) reset (8)
0 otherwise

In Eq. 8, the three cases differ as follows : (incremeént} [; andc; = ¢; + 1. (reset)c; = 1. (otherwise) all other cases.
In addition, the initial label distribution’ for the equivalent SLDS can similarly be constructed from $:SLDS initial
distributions :

11 ] o F(ll) ifcizl
m(li,e) = { 0 otherwise

Nonetheless, it is important to note that the naive reusbefdarning and inference algorithms for SLDS to S-SLDS may
induce substantial increase in computational overheaé effitient implementation and increased computationaltmesds
are discussed below.

5.5 Computational Considerations

As mentioned above, an equivalent SLDS can always be camestidrom an arbitrary S-SLDS. However, if we reuse
the original learning and inference algorithms for SLDSs&inaive manner the cost of inference will be on the order of

O(TD2,,,|L|?) for S-SLDSs, while it take® (T'| L|?) for SLDSs without duration models, wheg, o, 2 max{D"e*}n

max

i.e. the number of all meta variables. Thus, there is a cenalile computational overhead, by a factotxgfD?2, ). This
increased asymptotic running time overhead applies to ppeoximate inference algorithms with HMM-type components
in general, e.g. approximate Viterbi [37] and a variatiomathod [37, 17, 33], as they require the computations betate
possible state pairs from the previous time-step to the tiregtstep.

Nonetheless, we can still maintain linear efficiency witte maximum duratiorD,,,.,. by exploiting the sparseness of
the constructed SLDS matri®’. It can be observed from Eq.8 that the SLDS mafsixis mostly sparse, i.e. only a few
transitions are allowed between the state£dh In fact, only|L| + 1 transitions allowed for everye state. The allowable
transitions include the resets [tb| labels and one increment transition. Hence, we can achiewwerall performance of
O(T Dyaz|L)?) via exploiting this fact, which results in reduced overhbga factor ofO(D,,..). The number is derived
from the fact that there are totél(D,,,.,|L|) states at time — 1, and the number of transitions allowed for each state to
time ¢ reduces ta(|L|) from O(D,,q|L|). This reduction in complexity allows us to incorporate aation model with a
large D,,.... and maintain computational efficiency. As a consequencesameadopt the more powerful duration modeling
capabilities of an S-SLDS at the cost of a modest complerityeiase over the standard SLDS model.

In case of the presented DD-MCMC method, the complexity efrtfethod in S-SLDS is a topic of on-going research.
This is partly due to the fact that the straightforward us®BFMCMC would not be the optimal choice, as the Markov
Chain properties in S-SLDS has very regularized structacethe proposed DD-MCMC method does not exploit this fact.
Hence we plan to present the research results on this issesstedre in the future.

6 The Parametric SLDS Model

The idea of parametric extension of SLDSs (P-SLDS) desgribéhis section originally appeared in [32].

As discussed in Section 3.3, the standard SLDS does notdwahe means to quantify global variations. Hence, the
development of a framework which can decode the global petersiw.r.t. the canonical behavioral template is necssit
For example, honey bees communicate the orientation atahdis to food sources through the (spatial) dance angles and
(temporal) waggle durations of their stylized dances wliddte place in a hive, and the communication messages of slance
are exactly the variables of interest in our bee application

Moreover, it should be noted that the superior global patanestimates, which are closer to ground truth, can provide
improved labeling capabilities and vice versa, i.e. thelialg and quantification problems are not independent. fsamgle,
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it can be observed in Fig.1(a) that an angle estimate whigkrig close to the ground truth would provide a strong cue for
the labeling of the overall motions. Hence, a parametric SB-SLDS) which provides a means to quantify the global
variables and solves both labeling and quantification gmlih an iterative manner is introduced.

The resulting P-SLDS learns canonical behavioral templ&tem data with additional information on the associated
global parameters. A P-SLDS effectively decodes the glphedameters while it simultaneously labels the sequendas. T
is done using an expectation-maximization (EM) algoritidi®, [28], presented in detail below.

6.1 Graphical representation of P-SLDS

TS

Lyt

Figure 15: Parametric SLDS (P-SLDS)

In P-SLDSs, the discrete state transition probabilities@utput probabilities are parameterized by a set of gloasm-
etersd = {4, D, }. The parameterd are global in that they systematically affect the entirausepe. The graphical model
of P-SLDS is shown in Fig.15. Note that there are two clas$egobal parameters : the dynamics paramefeysand the
observation parameteds,.

Thedynamics parameterg,; represent the factors that cause temporal variations. fteeaht values of the dynamics
parameter®, result in different switching behavior between behavionades. E.g., for the bee-dance, a food source that
is far away leads a dancer bee to stay in each dance regimerltmmake a larger dance, which will result in less frequent
transitions between dance regimes. In terms of S-SLDS mtiteglobal dynamics parameters are associated with darati
models. In contrast, thebservation parameter$, represent factors that cause spatial variations. A goothphais a
pointing gesture where the indicating direction changestrerall arm motions.

Additionally, the canonical parametégsrepresent the common underlying behavioral template. Matethe canonical
parameter® are embedded in the conditional dependency arcs in Fignlthelbee dancing example, the canonical parame-
ters describe the prototyped stylized bee dance. Howdaemdividual dynamics in the different bee dances systiealbt
vary from the prototyped dance due to the changing food sdomations which are represented by the global paraméters

In detall, it can be observed that the discrete state tiansitt the top chain of Fig. 15 are instantiatedbgnd®,, and
the observation model at the bottom is instantiate@®@and®; while the continuous state transitions in the middle chaén a
instantiated by solely the canonical parameérsn other words, the dynamics parametérsvary the prototyped switching
behaviors, and the observation paramedeyvary the prototyped observation model, in a systematic ranrhe intuition
behind the quantification of global parameters is that ttagyle effectively discovered by finding the global paransatest
best describe the discrepancies between the new obsewatiol the behavioral template.

The graphical model of P-SLDS necessitates parameterersibns of an initial state distributia®(l, |0, ®,), a discrete
state transition tablé(l;|l;—1,©, ®,4) and an observation modél(z;|l;, 2+, ©,®,). There are three possibilities for the
nature of the parameterization: (a) the PDF is a linear fanabf the global parameters, (b) the PDF is a non-linear
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Algorithm 1 EM1 for Learning in P-SLDS
e E-step 1: obtain the posterior distribution

fi(X) 2 P(x|0', D) )

over the hidden state sequen€ebased on a current guess of the canonical param@ters

e M-step 1: maximize the expected log-likelihood :

O — argmax (log P(L, X, Z|©, ti))J“. (10)
() L

(X)

function of ®, and (c) no functional form for PDF is available. In the lattase, a neural network may be used as suggested
in [46].

In the following Sections, 6.2 and 6.3, we discuss learnimgjiaference in P-SLDS assuming that functional forms are
available.

6.2 Learningin P-SLDS

In the learning phase, P-SLDS learns a canonical behavigolége from motion data where the individual dynamics may
vary due to different underlying global parameters, but egiane these parameters known in our training data.

Learning in P-SLDS entails estimating the P-SLDS canorieahmeter®, given the datd) = {®={0y4, 0.}, L, Z}
where the dat® comprises a set of global parametérs- {®,, ®,}, a label sequenck, and the observatioris. The upper
bars indicate that the values are known. We employ EM [10\28] the continuous state¥ as the only hidden variables to
find an ML estimate of the canonical paramet@rsas described before.

The E-step in Eq.9 is equivalent to inference in an LDS mottemore detail, as the global parametérsthe current
P-SLDS paramete®’, the label sequende, and the observatior% are all known, the inference over the continuous hidden
statesX in E-step can be performed by Kalman-smoothing [4]. Givengbsterior distributiory? (X) in Eq. 9 we then
update the paramete®s 1.

In case the parameterized dependencies are linear fusciitime global parameteds M-step in Eq.10 can be analytically
solved. However, in case the parametric dependencies aréimear, an exact M-step is often infeasible and needs to be
solved by alternative optimization methods, e.g., conjeigaadient or Levenberg-Marquardt methods.

6.3 Inference in P-SLDS

We use the learned P-SLDS canonical paraméeosperform the quantification of the global parameteiend the inference
on the label sequende (labeling), given exclusively the observatiods Note that the canonical parameter €eis fixed
once they are learned from the training dataSetand we now interpret a distinct dataset relying on an imfegewhere
neither the global parametebsnor the label sequendeis known.

As in [46], we use EM to quantify the optimal global paramsteras shown in Algorithm 2. Note that we perform EM1
in Section 6.2 'Learning’ to learn the canonical model pagtars©, while EM2 in Section 6.3 'Inference’ is performed to
estimate the global paramet@rawvith simultaneous inference on the lab&lsMore details on EM2 are described below. In
the following sections, we use the abbreviatidhC’H” to denote log-likelihood.

6.3.1 E-step2

The exact E-step in Eq.12 is known to be intractable [35, B&Lls, we need to rely on the approximate inference methods.
Here, we present a derivation of E-step based on approxivfitgdi (VVI) method [35]. Note that the choice of VI method
does not harm the generality of the framework although iivdet more concise derivation. At eveith EM iteration,
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Algorithm 2 EM2 for Inference in P-SLDS
e E-step 2 : obtain the posterior distribution:

fi(L,X) 2 P(L,X|Z,0, ") (12)
over the hidden label sequenteand the state sequendg using a current guess for the global parameférs
e M-step 2 : maximize the expected log-likelihood:

pitl argmax <IogP(L, X, Z|®v (I))> 49)
D

fH(L,X)

the joint posterior over the hidden variablesand X is approximated by a peaked posterior over #evith the obtained
pseudo-optimal label sequenkte:

P(L,X|Z,®") P(X|L,Z,®"P(L|Z,®")

P(X|L', Z,®")5(L") (11)

Q

i A Pioz o @iVs(Ti
f1(X) = P(X|L', Z,9")6(L")
Note that the implicit conditional dependence on the fixatbcgcal parameter® is omitted for clarity.

6.3.2 M-step 2

Using the approximate posterigf(X ) obtained in Eq.11, the expected complete log-likeliho®d*t) in Eq.13 is approxi-
mated as:

£i®) 2 Z/1ogP(L,X,Z|q>)P(L,X|Z,q>i)
I X
~ [ logP(L X, Z19)fi(X) (14)
X
Using the chain rule, this factors as:
P(L',X,Z|®) = P(L'®.)P(X,Z|L,®,) (15)

Note that we now only condition on relevant global paransetery. the label sequenéé is only conditioned orbg. Sub-
stituting (15) into the expecteiLH L¢(®) (14), we obtain a more succinct form 6f(®) in which the termog P(L?|®,)
is moved outside the integral:

L®) = logP(Lidg) + /X log P(X, Z|L1, ®,) fi(X)
= LY(®a) + L(Do) (16)
Here we introduced two convenience terms, the dynamicilagditiood £(® ) and the observation log-likelihoa®{(®,, ):
Li(®4) £ log P(L|®y) (17)
£i(@) 2 [ logP(X. 2L #)fi(X) 18)

In Eq.16, we can observe that the total expedt&ad( £(®) is maximized by independently updating the global obséesmat
parameter®, and dynamic parameteds;, i.e. we obtain the updated global parame@ﬁ1 and®it! by maximizing the
dynamicLLH L¢(®,) and the the observatiobhlH L (®P,,) respectively.
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Now we can further factorize the dynamicCH L£(®,) in Eq.17 and the observaticdhCH L¢(®,) in Eq.18. Then, we
obtain the fully factorized’ £LH terms shown in Eq.19 and 20 where the tefifti;) denotes the marginal an from the full

posteriorfi(X), i.e. fi(z,) 2 Jx e THX).
) 12 .
Li(®q) = log P(L'|®g) +log y_ P lli_,®a) (19)

t=2

(@) = [ s {P(2IX. 1.9 PXIEN} i)

/X log P(Z|X,L",®,) f}(X)
|Z]

= > [ toPlafe i 20 i) (20)
t=1"%t

In case we are modeling data with parametric S-SLDS modwésgiobal dynamic parameteds; are associated with
the duration models of S-SLDSs, and Eq.19 is not directhiepple because label transitions occur between segments.

Hence, once we obtain the Viterbi labdl$ the label sequence is converted into a list of segments[i.e= U.‘js:'lsj where
55 2 (I;,d;), as described in Section 5.1. Then, the dynafiié¢{ for parametric S-SLDSs can be evaluated as follows :

||

L(®q) = > logP(s;|®a)

Jj=1

s
= ) log Dy (d;) (21)
j=1

The observationC LH for parametric S-SLDSs is equally evaluated as in Eq. 20. détailed machinery in the M-step
will depend on the application domain. In case the paramétrims are linear in the global parametérsthe M-step is
analytically feasible. Otherwise, alternative optimiaatmethods can be used to maximize the non-lin&&# function, as
described in Section 6.2.

7 Modeling the Honey Bee Dance

The goal in our application is to build a vision system that paiably label the motion sequences with simultaneousigua
tification. To achieve this, we model the honey bee dancegjusparameterized segmental SLDS (PS-SLDS) model. The

bee dance is parameterized by both classes of global panéhe global dynamics parameter@@té {Pai|l <1<n}

is chosen to be correlated with the average duration of eacbedregimes whene = 3. The global observation parameter
d, is set to be the angle orientation of the bee dance.

7.1 Canonical parameters

The canonical parameters in honey bee dances are definedittupke of a set of initial label distribution, semi-Markov
segmental Markov transition matri®, LDS model parameter&/ and variances in durations in each behavioral mades
ie., © 2 {TF,B,]\/[ 2 {M|1 <1<n}, X 2 {Z1<i< n}}. Note that the canonical parameter tuplds fixed once

it is learned from data, as mentioned in Section 6. The choficanonical parameters are validated from the background
knowledge on honey bee dances. For example, it is reasotweddsume that the initial label distributiarand the segment
label transition matrix3 between different dance regimes do not vary across the dateeences. In addition, the dancer
bees try to regulate its waggle durations to convey corraotd messages. Hence, the degrees of variations in dgrafion
each dance regime are assumed to be constant. Hence, thegraex and represented as the variaites
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1) (5) (6)

Figure 16: Bee dance sequences used in the experimentsd&aohtrajectory is the output of a vision-based trackdrleka
1 and 2 give the global motion parameters for each of the nueaksequences. KeylIEGLE| FTTi Ta

7.2 Dynamics model

We set the global dynamic parametet ¢ model®, ; to be the average duratien of /th dance regime, i.e® = {1 <
I < n}. Accordingly, each parameterized duration modej®f S-SLDSs are modeled as Gaussian distributions as follows

Di(ct) = N(m; %) (22)

Above, the duration meam, is a global dynamic parameter which is re-estimated at elZzbfyteration in P-SLDS learning
(described in Section 6.3) while the variancgis a fixed canonical parameter. Then, the explicit durati@dehin Eq.
22 is discretized into a histogram with maximum duratiorgkenD;*** = 100. In the video database, a dance regime
with extremely long duration lasted for about 75 frames. Silie choice of the maximum duration lend®#*** would be
sufficient to represent the duration model. Once the histogituration modeD; is learned, we convert the model into an
NSTFU,; , as discussed in Section 5.2.

The M-step update for a dynamics param@igy can be obtained by differentiating the dynami€ in Eq.23 :

L'(Pg) = Zlog Dy, (d;)
Jj=1
N
= > log Dy(d;)
1=1 \Vi;=I
N
= 1 (dj _ Mz)2
= 5 Z Z log > + > 23)
1=1 \Vi;=l
dlog P(L|®a) _ 2%, o) _

O X

Zv —1d;
1=l
new J

H (24)
|st]

In fact, the M-step Eq.24 for the global dynamic parameters” 2 {pe*”|1 < 1 < n} turn out to be equivalent to

Is|

re-estimating the mean durations of distinct dance phasesthe obtained segmented label sequdtice U285
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7.3 Observation model

The observation data are time-series sequences of vegtess [z, yt,cos(@t)7sin(é‘t)]TWherecvt,yt and 6, respectively
denote the 2D coordinates and the heading angle of a tracketkdbee at timé The angle of zero corresponds to the
direction of positive x-axis and the angle increases claiely. The triangular function elements in the observatioere
introduced to make the system be able to learn the locatiearigint rotating motions. Note that the observed temgorar
heading anglé, differs from the global dance angle,.

We use the following parameterized observation matiek |l;, z+, ®,),

Zt o~ N(R(@O)Hl; T, V}Aﬁ) (25)

whereR(®,) is the rotation matrix, and—ll; and Vi denote the observation parameters of Litle component LDS, cor-

responding to label, of the Viterbi sequencé. We also definev(®,) to denote the projected-then-rotated vector of the
corresponding state; :

ar(®y) 2 R(D,)Hy,m (26)
Given all this, we obtain the observatidlCH L£*(®,) =
5 ([ = @)V [ - (@) 27)
=1 b [HED)

where we have omitted redundant constant terms. Intujtitee optimization in (27) is to find an updated dance angle
®i+1 which minimizes the sum of the expected Mahalanobis digtsbetween the observations and the projected-then-
rotated states; (®,)’s. However, as the non-linearities are involved due to atron, there is no analytical solution for
this maximization problem where Eq.27 involves quadratangular function terms, e.gsin(®,)2. Thus, we perform 1D
gradient ascent on the obtained functional.

8 Experimental Results

The experimental results show that PS-SLDS provides lleliglobal parameter quantification capabilities along virith
proved recognition abilities over the standard SLDS. Thelancer bee tracks obtained from the videos are shown if6:ig.
The vision-based tracker we used [21] is shown in Fig.1(b@netthe dancer bee is automatically being tracked in thengree
rectangle.

We performed experiments with 6 video sequeheéth length 1058, 1125, 1054, 757, 609 and 814 frames, réispbc
Once the sequence observatighare obtained, the whole trajectories were preprocessetimasway that the mean of each
track is located at (100,100). Note from Fig.16 that theksaare noisy and much more irregular than the idealizedzetyli
dance prototype shown in Fig.1(a). The red, green and blleescoepresent right-turn, waggle and left-turn phasese Th
ground-truth labels are marked manually for the compar&mhlearning purposes. The dimensionality of the contisuou
hidden states was set to be four.

Given the relative difficulty of obtaining this data, whicadto be labeled manually to allow for a ground-truth conguar;
we adopted a leave-one-out (LOO) strategy. The parameatetsaned from five out of six datasets, and the learned model
is applied to the left-out dataset to perform labeling amautianeous quantification of angle/average waggle duraix
experiments are performed using both PS-SLDS and the sthasd®S, switching the test data sequence. The PS-SLDS
estimates of angle/average waggle durations (AWD) aretlirebtained from the results of global parameter qualratiiioe.
Onthe other hand, the SLDS estimates are heuristicallyreiddy averaging the transition numbers or averaging thding
angles at the inferred “waggle” segments.

1The experimental data used in this work are availablewstw. cc. gat ech. edu/ ~borg/ij cv_pssl ds.
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8.1 Learning from training data

The parameters of both PS-SLDS and standard SLDS are lefnomedhe data sequences depicted in Fig. 16. The standard
SLDS model parameters were learned as described in Sec8ofi2e canonical parameters tuple described in Section 7.1
are all learned solely based on the observatigngithout any restriction on the parameter structures. Hawmethe prior
distributionz on the first label was set to be a uniform distribution.

To learn the PS-SLDS model parameters, the ground truth lvaggles and AWDs were evaluated from the data. Then,
each sequence was preprocessed (rotated) in such a waggh@aggle directions head to the same direction based on the
evaluated ground truth waggle angles. Such preprocessisgerformed to allow PS-SLDS model to learn the canonical
parameters which represent the behavioral template ofaheed Note that six sets of model parameters are learned via
LOO approach and the global angle of the test sequence iswwirkin the learning phase a priori. In addition to the model
parameters learned by the standard SLDS, PS-SLDS learitmadtduration model®, and semi-Markov transition matrix
B, as described in Section 5.

8.2 Inference on test data

In the test phase, the learned parameter set was used ttheflabels of the left-out test sequence. An approximaterbit
(VI) method [35, 37] and variational approximation (VA) rhets [17, 35, 37, 33] were used to infer the labels in standard
SLDSs. The initial probability distributions for the VA niedd were initialized based on the VI labels. Simply, VI label
were trusted by a probability of 0.8 and the other two labe&vary time-step are assigned probability of 0.1 respelstiv

For the inference in PS-SLDS, VI method was used due to itpl&iity and speed. Our initial experiments indicated that
it is rather difficult to measure the per-computation ber@fibD-MCMC method over VI or VA method when PS-SLDS
model is adopted. As described in Sec. 4.4, the scalabityd of DD-MCMC method in PS-SLDS remains as future
work and we devote the experimental result section to coempabS and PS-SLDS models based on computationally less-
demanding VI and VA methods. In addition, the inference ltesan labels which are obtained via VA method complicates
the update of global duration model parameters describEdir24 and hence omitted in the experiments for PS-SLDS.

8.3 Qualitative Results

The experimental results show the superior recognitioalo#iies of the proposed PS-SLDS model over the originddSL
model. The label inference results on all data sequencesharen in Fig.17. The four color-coded strips in each figure
represent SDLS VI, SLDS VA, PS-SLDS VI and the ground-tri@hT() labels from the top to the bottom. The x-axis
represents time flow and the color is the label at that coomrding video frame.

The superior recognition abilities of PS-SLDS can be obegtfiom the presented results. The PS-SLDS results are close
to ground truth or comparable to SLDS results in all sequenEspecially, the sequences 1, 2 and 3 are challenging. The
tracking results obtained from the vision-based trackeew®ore noisy. In addition, the patterns of switching in dcamodes
and the durations in each dance regime are more irregulatliesother sequences.

It can be observed that most of the over-segmentationspipaiea in the SLDS labeling results disappear in the PS-SLDS
labeling results. PS-SLDS estimates still introduce som&®, especially in the sequence 1 and 3. However, assuiméng
even an expert human can introduce labeling noise, theitapedpabilities of PS-SLDS are fairly good.

8.4 Quantitative Results

The quantitative results on the angle/average waggleidargtiantification show the robust global parameter quaatitin
capabilities of PS-SLDS. Table.1 shows the errors of PSS&EBtimate, SLDS estimates based on VI and VA methods and
the GT angle, from top to the bottom. The best estimates aenéed in bold fonts. The SLDS estimates are obtained via
heuristics where we averaged the heading angles in theseggi@ith corresponding labels inferred as waggle. All there
values are the difference between estimated results avdrk@oT. values.

Among six tests, PS-SLDS and SLDS shows comparable waggle astimation capabilities. There is no distinguishable
gap in performance between VI and VA methods. In additions, rttaximum error of PS-SLDS angle estimate was 0.11
radians for the fifth dataset, which is fairly good considgithe noise in the tracking results.
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Sequence| 1 2 3 4 5 6
PS-SLDS| -0.09 | 001 | 0.03 | -0.11 | 0.11 | -0.06
SLDSVI | -0.05 | -0.03 | -0.02 | -0.09 | 0.18 | -0.09
SLDSVA | -0.05 | -0.03| -0.02 | -0.09 | 0.18 | -0.09
GT -0.30| -0.25| 1.13 | -1.33| -2.08 | -0.80

Table 1: Errors in the global rotation angle estimates fr@a32.DS and SLDS in radians. Last row contains the GT rotation

angles. Sequence numbers refer to Fig. 16.

Sequence| 1 2 3 4 5 6

PS-SLDS | +13.7 +0.91 +19 | -022 | 04 5.6

SLDSVI | +40.8 | +28.9 | +11.1| -0.44| 3.6 8

SLDSVA | +40.7 | +28.9 | +11.1| -0.44| 3.6 8
GT 51.6 | 46.6364| 214 | 41.1 | 19.4| 32.6

Table 2: Errors in the Average Waggle Duration (AWD) estiesaor PS-SLDS and SLDS in frames. Last row contains the
GT AWD. Sequence numbers refer to Fig. 16.

Sequence| 1 2 3 4 5 6
PS-SLDS| 759 | 924 | 831 | 934 | 904 | 91.0
SLDSVI | 71.6| 829 | 78.9| 929 | 89.7 | 89.2
SLDSVA | 71.9| 82.8| 78.9| 929 | 89.7 | 89.2

Table 3: Accuracy of label inference in percentage. Seqeianmber refer to Fig. 16.

The quantitative results on average waggle duration (AWRngjification show that PS-SLDS can robustly quantify the
global dynamics parameters as well. AWD is an indicator efdistance to the food source from the hive and is a valuable
data to the insect biologists. Table.2 shows the errors e8PI3S estimate, SLDS estimates of VI and VA methods and
the GT AWDs, from top to the bottom. Again, the best estimatesmarked in bold fonts where PS-SLDS estimates are
consistently superior to the SLDS estimates. The SLDS astisare obtained by evaluating means of the waggle dusation
the inferred segments. The results again show that PS-SkfbBates match the ground-truths closely. EspeciallySPBS
AWD estimates are impressively correct for the sequence 2,a8d 5. In contrast, it is observed that the SLDS estimates
are inaccurate. More specifically, the estimates deviatédan the ground truths in most cases except for the sequénce
The reliability of AWD estimates of PS-SLDS model is basedt@robust duration modeling and the canonical parameters
supported by the enhanced models.

Finally, Table.3 shows the overall accuracy of the infetadls in percentage, statistics from PS-SLDS and SLDS ¥l an
SLDS VA results from top to the bottom. It can be observed B8SLDS provides very accurate labeling results w.r.t. the
ground truth. Moreover, PS-SLDS consistently improvestandard SLDSs across all six datasets. The overall expetahe
results show that PS-SLDS model is promising and providebast framework for the bee application.

8.5 Discussion

It can be ambiguous to choose the right dimensionality ferttiiden continuous statés. In our experiments, dimension
less than four resulted in poor classification. It is conjead that such a small dimensions does not provide rich Ingsi
space to represent the motion patterns of dancer bees. @thiehand, some experiments with higher dimensions (>10)
suffered from over-segmentations when the model was tldiased on the provided set of training data. The dimension of
four showed the best performance so far. However, the geveeower of the model was tested by simulating the dance
trajectories with fourth dimensional continous states ditdnot result in realistic trajectories yet. It is expecthdt the
more realistic trajectories can be generated with contiswtates in higher imensions @) although the limited amount of
training data is the main bottleneck that does not providrigh generalization power now. The analysis on sensitwity
dimensions and generative power of the model are planneel tegorted elsewhere.
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9 Conclusion

In this paper, we addressed the problem of learning andrinfebehavioral patterns of a target in the video data. In our
approach, SLDSs are investigated as a promising framewonkotdel a complex motion. Accordingly, the labeling and
quantification problems in computer vision are formed astloeel learning problem and inference problem on the hidden
variables in SLDSs.

In our work, we encounter three challenges in proposing atigad system based on a standard SLDS model : (1)
intractability of inference, (2) limited duration modadipand (3) absence of systematic means for quantificationthése
three issues were addressed by introducing three solutibese they can be used in pairs depending on the problend.face

First, we addressed the intractability of inference in Sy introducing a novel data-driven MCMC (DD-MCMC)
method. The proposed method can effectively discover the posterior on the hidden labels even in the presence of
intractability. The observation on the discovered postdeads us to investigate two limitations of SLDSs for sormraepcal
problems : limited duration modeling and lack of systemat&ans to quantify the global parameters.

Second, we presented a segmental SLDS model to enhancerdi®mdunodeling capabilities of SLDSs. The proposed
S-SLDS can incorporate arbitrary duration models whichassupported by the standard SLDSs. Nonetheless, we also
demonstrated that the proposed S-SLDS model can be codvettean equivalent standard SLDS model by introducing
meta variables. Such an equivalency guarantees that the saray of approximate inference algorithms developed for
standard SLDSs are readily reused in S-SLDSs.

Third, parametric SLDS (P-SLDS) is introduced as an extansd provide systematic means to quantify the global
parameters which induce systematic temporal and spatialtieans in the motion. The proposed model can simultangous
infer the hidden labels and the global parameters in artitermanner via the presented EM algorithm.

Finally, the experimental results on real-world honey barog sequences were presented where the honey bee dances
were modeled using a parametric segmental SLDS (PS-SLD8glmobe. combination of P-SLDS and S-SLDS. Both
the qualitative and quantitative results show that the psed enhanced SLDS model can robustly infer the labels arp|
parameters based on the learned model. A large number eBegenentations in labeling which appeared in standard SLDS
disappear in PS-SLDS results. In addition, the results emgthantification abilities of PS-SLDS show that PS-SLDS can
reliably provide estimates which are very close to the gdawnth . 1t was also shown that PS-SLDS consistently impsare
SLDSs in overall accuracy. The consistent results showRBaSLDS improve upon standard SLDSs for the honey bee dance
data and suggest that the three pieces of development imtiiismight be worth being tried for challenging applicaton
individually or in pairs, e.g., PS-SLDS.

We hope that the presented DD-MCMC method, S-SLDS model a84S model are valuable additions to the re-
searches related to motion modeling, behavior recognéi@hSLDSs. The experimental results suggest that the pedpos
methods are promising and provide a concrete framework Yariaty of vision problems where the motions that are being
exhibited in the video are too complex to be modeled by HMMs.
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Appendix A. Data-Driven MCMC for SLDS

A. 1. Metropolis Hastings

Data-driven MCMC method adopts Metropolis-Hastings (Midnfiework [29, 19] to generate samples from arbitrary distri
butions. The pseudo-code for the MH algorithm is shown inodiltpm 3 (adapted from [18]).
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Algorithm 3 Pseudo-code for Metropolis-Hastings (MH)
1. Start with a valid initial label sequendé®).

2. Propose a new label sequetic®’ from L(") using aproposal density)(L(")"; L(").

3. Calculate thecceptance ratio
() (r). ()
o P12 QO L0Y) (28)
P(L0|Z) QLW L)

whereP(L|Z) is thetarget distribution
4. If a >=1thenaccepL(")’, i.e., L"+1) — L"),
Otherwise, accept(")" with probabilitymin(1, «). If the proposal is rejected, then we keep the previous sampl,
L+ 1),

Intuitively, step 2 proposes “moves” from the previous stndp™ to the next samplé ()" in the space of label sequences
L, which is driven by a proposal distributi@@(L(")'; L()). The evaluation of; and the acceptance mechanism in steps
and4 have the effect of modifying the transition probabilitidstive chain in such a way that its stationary distribution is
exactlyP(L|Z).

A. 2. Learning

In the learning phase, we collect temporal cues from thaitrgidata. Then, a set of models of cues which we call 'laliel-c
models’ are constructed based on the collected cueq,R&:|/;)|1 < i < n}. By a temporal cue,, we mean a cue at time

t that can provide a guess for the corresponding Igbé\ cuec, is a certain statistic obtained by observing the data within
the fixed time range of;. We put a fixed-sized window on the data and obtain cues byidgakside it. For example, the
change of angles are collected as temporal cues in the béeadiom, as illustrated in Fig. 6.

Then, a set of, label-cue modeld.C' 2 {P(c|l;)]1 < i < n} are learned from the classified cues where the cues are
classified with respect to the training labels. Hetesorresponds to the number of existing patterns, the numbleb8s
in our case. Each label-cue mod®{c|/;) is an estimated generative model and describes the distribef cuec given the
labell;. The learned label-cue models are used later for inferenasepto construct proposal priors.

A. 3. Inference

In the inference phase, we first collect the temporal cuas fite test data without access to the labels. Then, the l@arne
label-cue models are applied to the cues and the proposa@ie constructed. A proposal priB(th|ct) is a distribution

on the labels, which is a rough approximation to the trueqrastP(l,|Z). When a cue; is obtained from a test data, we
construct a corresponding proposal prlb(ri;|ct) as follows :

s _ Plaf)
Z?:l P(et]l;)

Above, a proposal prioP(l}|ct) is obtained from the normalized likelihoods of all labelfielprior describes the likeli-

hood that each label generates the cue. By evaluating glirhmosal priors across the test sequence, we obtain a fuf se
proposal priorsP (L) £ {P(l;|et)]1 <t < T} over the entire label sequence. However, the resultinggsalpriors were
found to be sensitive to the noise in the data. Thus, we snthetastimates and use the resulting distribution. The m@go

approach is depicted graphically in Fig.6,7,8 for the cdsh@bee dance domain.

The proposal prior$(L) and the SLDS discrete Markov transition PBFconstitute the data-driven proposal While

the proposal prior?(L) provide the data-driven characteristics, the Markov PBRdds the model characteristics to a
new sample. Consequently, the constructed prog@sabposes samples that nicely embrace both the data andtinsii

P(li]er) (29)
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Markov properties. The proposal scheme comprises two soepgures. First, it selects a local region to update based o
the proposal priors. Rather than updating the entire segueiha previous sample("), it selects a local region in(") and
then proposes a locally updated new samglé). The local update scheme improves the space exploratiabiiies of
MCMC and results in faster convergence. Secondly, the malgwiorsP (L) and the discrete transition PDF are used to
assign the new labels within a selected region. The secepdsts the effect of proposing a sample which reflects both the
data and Markov properties of SLDSs. The choice of the sestaqa product of two PDFs, proposes smoother and more
plausible label sequences in general than other optiogs neixture of two PDFs. The two sub-steps are describedtailde
below.

In the first step, scoring schemes are used to select a laiahraithin a sample. First, the previous sample latiéls
are divided into a set of segments at a regular interval. Thaoh segment is scored with respect to the proposal priors
P(E), i.e. the affinities between the labels in each segment anprtiposal priors are evaluated. Any reasonable affinity and
scoring schemes are applicable. Finally, a segment istedlémr an update via sampling based on the inverted scores.

In the second step, new labé{& are sequentially assigned within a selected segmeng tissnassignment function in
Eq.30 whereBy, i, 2 P(I]I;_,). The implicit dependence &f on ¢, in Eq.29 is omitted for brevity.

(30)

Bz;u;flp([ﬁ) }
i1 By, P(l7)

Above, the first term with the sampling ratibdenotes the probability to keep the previous labeli.e. I} — I;. The
. .. = A .
second term with coefficierit = 1 — 3 proposes a sampling of a new latiel

P(ly) = Bo(l) + 5{
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