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Abstract
Switching Linear Dynamic System (SLDS) models are a populartechnique for modeling complex nonlinear dynamic

systems. An SLDS provides the possibility to describe complex temporal patterns more concisely and accurately than an
HMM by using continuous hidden states. However, the use of SLDS models in practical applications is challenging for
several reasons. First, exact inference in SLDS models is computationally intractable. Second, the geometric duration model
induced in standard SLDSs limits their representational power. Third, standard SLDSs do not provide a systematic way to
robustly interpret systematic variations governed by higher order parameters.

The contributions in this paper address all three challenges above. First, we present a data-driven MCMC sampling
method for SLDSs as a robust and efficient approximate inference method. Second, we present segmental switching linear
dynamic systems (S-SLDS), where the geometric distributions are replaced with arbitrary duration models. Third, we extend
the standard model with a parametric model that can capture systematic temporal and spatial variations. The resulting
parametric SLDS model (P-SLDS) uses EM to robustly interpret parametrized motions by incorporating additional global
parameters that underly systematic variations of the overall motion.

The overall development of the proposed inference methods and extensions for SLDSs provide a robust framework to
interpret complex motions. The framework is applied to the honey bee dance interpretation task in the context of the on-going
BioTracking project at Georgia Institute of Technology. The experimental results suggest that the enhanced models provide
an effective framework for a wide range of motion analysis applications.

1 Introduction

A challenging problem in computer vision is to infer the behavioral patterns that are being exhibited by a target in a segment
of video. Even if we assume that targets can be reliably tracked, we still face the difficult problem of interpreting behavior.
Manual interpretation by skilled operators, as is common indomains such as biology, is a time-consuming and error-prone
process. Thus, it is desirable to develop methods that automatically infer the behavioral patterns of the targets. In addition,
in applications where there is large variability in the behaviors, we need a framework in which we canlearn these behaviors
from examples.

In particular, we are interested in two inference tasks thatare of central importance. The first, ’labeling’, is to automatically
segment the motion sequences according to different behavioral modes. The second task is what we call ’quantification’,by
which we mean the identification of global parameters that underly a given motion, e.g., the direction of a pointing gesture.
These two inference tasks are not independent: a better understanding of the systematic variations in data can improve the
labeling results, and vice versa.

1.1 Biotracking

.
The application domain which motivates this work is a new research area which enlists visual tracking and AI modeling

techniques in the service of biology [2, 3]. The current state of biological field work is still dominated by manual data
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Figure 1: (a) A bee dance is in three patterns : waggle, left turn, and right turn. (b) The box in the middle is a tracked bee.

Figure 2: An example honey bee dance trajectory. The track isautomatically obtained using a vision-based tracker and
manually labeled afterward. Key :waggle, right-turn , left-turn

interpretation, a time-consuming and error-prone process. Automatic interpretation methods can provide field biologists with
new tools for the quantitative study of animal behavior. A classical example of animal behavior and communication is the
honey bee dance, depicted in a stylized form in Fig.1(a). Honey bees communicate the location and distance to a food source
through a dance that takes place within the hive. The dance isdecomposed into three different regimes: “turn left”, “turn
right” and “waggle”. The length (duration) and orientationof the waggle phase corresponds to the distance and the orientation
to the food source. Figure 1(b) shows a dancer bee that was tracked by a previously developed vision-based tracker [21].
After tracking, the obtained trajectory of the dancing bee is manually labeled as “turn left”, “turn right” or ”waggle” and is
shown in Figure 2.

The research goals in this application domain are three-fold. First, we aim to learn the motion patterns of honey bee dances
from the obtained training dance sequences. Second, we should be able to automatically segment new dance sequences
into three dance modes reliably, i.e., the labeling problem. Finally, we face a quantification problem where the aim is to
automatically deduce the message communicated, in this case: the distance and orientation to the food source. Note that
both the labels and the global parameters are unknown, hencethe problem is one of simultaneously inferring these hidden
variables.

1.2 A Model-Based Approach

We take a model-based approach, in which we employ a computational model of behavior in order to interpret the data. In
our case the motions are complex, i.e. they are comprised of sub-behaviors. The model we use should be expressive enough
to accurately model the individual sub-behaviors, while atthe same time able to capture the inter-relationships between them.

Hence, the basic generative model we adopt is the Switching Linear Dynamic System (SLDS) model [35, 36, 37]. In an
SLDS model, there are multiple linear dynamic systems (LDS)that underly the motion, one for each behavioral mode that
we assume. We can then model the complex behavior of the target by switching within this set of LDSs. In contrast to an
HMM, an SLDS provides the possibility to describe complex temporal patterns concisely and accurately. SLDS models have
become increasingly popular in the vision and graphics communities as they provide an intuitive framework for describing
the continuous but non-linear dynamics of real-world motion. For example, it has been used for human motion classification
[35, 36, 37, 39] and motion synthesis [47].
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1.3 Contributions

In this paper, we present a framework that learns behavioralpatterns from data and provides robust inference methods that
label the motion sequences while simultaneously quantifying the global parameters, significantly extending the scopeand
modeling power of standard SLDS models. When applying the standard SLDS model to the complex task of interpreting
honey bee behavior, it quickly becomes clear that there are severe limitations in the original SLDS model that limit its
applicability on real tasks. In this paper we discuss these three major problems and address them by extending the model in
two novel ways, as well as providing robust inference methods for each of these.

We discuss the three main limitations of the original SLDS model in Section 3, previewing each of the three main con-
tributions along with related work in those areas. In Section 4, we introduce a data-driven MCMC-based inference method
to address the intractability of exact inference in SLDSs. In Section 5, we present the segmental extension of a standard
SLDS model, the “segmental SLDS” model (S-SLDS) with enhanced duration modeling capabilities. Then, in Section 6,
we advance a parametric extension of SLDS (P-SLDS) which is able to infer systematic variations in the data. We combine
S-SLDSs and P-SLDSs in Section 7 and show how we can learn and perform inference in the resulting parametric segmen-
tal SLDS (PS-SLDS). Finally, in Section 8, we describe the experimental data and demonstrate the improved labeling and
quantification capabilities of the enhanced SLDS model through the experimental results on the honey bee dance decoding
tasks.

2 Background

2.1 Linear Dynamic Systems

Figure 3: A linear dynamic system (LDS)

An LDS is a time-series state-space model consisting of a linear Gaussian dynamics model and a linear Gaussian obser-
vation model. The graphical representation of an LDS is shown in Fig.3. The Markov chain at the top represents the state
evolution of the continuous hidden statesxt. The prior densityp1 on the initial statex1 is assumed to be normal with mean
µ1 and covarianceΣ1, i.e.,x1 ∼ N (µ1, Σ1).

The statext is obtained by the product of state transition matrixF and the previous statext−1 corrupted by zero-mean
white noisewt with covariance matrixQ:

xt = Fxt−1 + wt wherewt ∼ N (0, Q) (1)

In addition, the measurementzt is generated from the current statext through the observation matrixH , and corrupted by
zero-mean observation noisevt:

zt = Hxt + vt wherevt ∼ N (0, V ) (2)

Thus, an LDS modelM is defined by the tupleM
∆
= {(µ1, Σ1), (F, Q), (H, V )}. Exact inference in an LDS can be done

exactly using the RTS smoother [5], an efficient belief propagation implementation. For further details on LDSs, the reader
is referred to [5, 27, 41].

2.2 Switching Linear Dynamic Systems

In an SLDS we assume the existence ofn distinct LDS modelsM
∆
= {Ml|1 ≤ l ≤ n}. The graphical model corresponding

to an SLDS is shown in Fig.4. The middle chain, representing the hidden state sequenceX
∆
= {xt|1 ≤ t ≤ T }, together with
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Figure 4: Switching linear dynamic systems (SLDS)

the observationsZ
∆
= {zt|1 ≤ t ≤ T } at the bottom, is identical to an LDS in Fig.3. However, we nowhave an additional

discrete Markov chainL
∆
= {lt|1 ≤ t ≤ T } that determines which of then modelsMl is used at every time-step. We call

lt ∈M the label at timet andL a label sequence.
In addition to a set of LDS modelsM , we specify two additional parameters: a multinomial distribution π(l1) over the

initial label l1 and ann × n transition matrixB that defines the switching behavior between then distinct LDS models. In

summary, a standard SLDS model is defined by the tupleΘ
∆
=

{

π, B, M
∆
= {Ml|1 ≤ l ≤ n}

}

.

Switching linear dynamic system (SLDS) models have been studied in a variety of research communities ranging from
computer vision [36, 35, 37, 30, 8, 43], computer graphics [43, 47, 39], tracking [6], signal processing [12, 13] and speech
recognition [40], to econometrics [22], visualization [48], machine learning [25, 17, 31, 32, 33, 20], control systems[45] and
statistics [42]. While one can find several versions of SLDS in the literature, our work is most closely related to the model
structure and extensions described in [36, 35, 37, 31, 32, 33].

2.3 Learning and Inference in SLDS

The EM algorithm [10] can be used to obtain the maximum-likelihood parameterŝΘ. The hidden variables in EM are the
label sequenceL and the state sequenceX . Given the observation dataZ, EM iterates between the two steps:

• E-step : Inference to obtain the posterior distribution

f i(L, X)
∆
= P (L, X |Z, Θi) (3)

over the hidden variablesL andX , using a current guess for the SLDS parametersΘi.

• M-step : maximize the expected log-likelihoods with respect to Θ:

Θi+1 ← argmax
Θ

〈log P (L, X, Z|Θ〉fi(L,X) (4)

Above,〈·〉W denotes the expectation of a function(·) under a distributionW . The intractability of the exact E-step in Eq.3
motivates the development of approximate inference techniques discussed in more detail below.

3 Contributions and Related Work

In this paper, we address three limitations of the standard SLDS model: (1) intractability of exact inference in SLDSs, (2)
limitations in duration modeling, and (3) absence of a systematic way to quantify global parameters. We propose novel
solutions to address these problems. First, we introduce a Data-Driven MCMC (DD-MCMC) inference method to investigate
the exact posterior of SLDSs in the presence of intractability. Secondly, a segmental SLDS model is proposed to improve the
limited duration modeling power of standard SLDSs. Finally, we introduce a parametric extension of SLDSs that provide a
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systematic means to quantify the embedded global parameters. In the sections below we discuss each of these contributions
along with the related work that provided the inspiration for them.

The BioTracking project [2, 3] is an interdisciplinary research initiative between biology and multi-robot systems. One
of the authors’ previous work on automatic labeling of honeybee dances using HMMs [14] is most closely related to the
work in this paper. However, in [14], the honey bees were tracked via a color segmentation tracker and HMMs were learned
from two dimensional observations, i.e. locations of the bees. In contrast, the real-world dancer bee tracks are automatically
obtained from a set of noisy video data by using a previously developed appearance tracker [21]. In addition, SLDSs are used
to learn and infer the motion patterns of bees and new DD-MCMCmethod and novel SLDS extensions are presented in this
work.

In comparison to our previous conference publications on this topic [31, 32], the current paper extends the SLDS model
to include duration modeling, and presents the detailed learning and inference mechanisms for parametric segmental SLDS
which combines the advantages of two extended models, i.e.,S-SLDS and P-SLDS.

3.1 Robust inference via Data-Driven Markov Chain Monte Carlo Sampling

Inference in an SLDS model involves computing the posteriordistribution on the hidden states, which consists of the (dis-
crete) switching state and the (continuous) dynamic state.In the Biotracking application which motivates this work, the
discrete state represents distinct honey bee behaviors while the dynamic state represents the bee’s true motion. Givenvideo-
based measurements of the position and orientation of the bee over time, SLDS inference can be used to obtain a MAP
estimate of the behavior and motion of the bee. In addition toits central role in applications such as MAP estimation,
inference is also the crucial step in parameter learning viathe EM algorithm [37].

It is known that the exact inference in SLDS is intractable asthe size of Gaussian mixtures increases exponentially with
time [24]. Thus, there have been research efforts to derive efficient approximate inference methods. The early examples
include GPB2 [5], and Kalman filtering [8], and the pseudo-EMalgorithm [42]. More recent examples include a variational
approximation [17, 35, 37, 33], an approximate Viterbi method [36, 35, 37], expectation propagation [48], iterative Monte
Carlo methods [12], sequential Monte Carlo methods [13], and Gibbs sampling [40]. Approximate inference in SLDS models
has focused primarily on two classes of techniques: stage-wise methods such as approximate Viterbi [37] or GPB2 [5] which
maintain a constant representational size for each time step as data is processed sequentially, and structured variational
methods which approximate the intractable exact model witha tractable, decoupled model [17, 33, 37].

While these approaches are successful in some application domains, such as vision and graphics, they do not provide any
mechanism for fine-grained control over the accuracy of the approximation. In fields such as biology where learned models
can be used to answer scientific questions about animal behavior, scientists would like to characterize the accuracy of an
approximation and they may be willing to pay an additional computational price for getting as close as possible to the true
posterior. In our initial stage of experiments, we observedthat the existing approximation methods, e.g., an approximate
Viterbi method and etc., demonstrated poor labeling performance. In such cases, it is necessary to validate the capacity of
the model to verify whether such a poor labling result is due to the approximation method itself or the inherent limitation of
the model not being able to represent the temporal phemomenon adequately.

We describe a novel proposal distribution for Data-driven MCMC inference in Section 4, originally presented at AAAI
[31]. In situations where a controllable degree of accuracyis required, Markov-Chain Monte-Carlo (MCMC) methods are
attractive. Standard MCMC techniques, however, are often plagued by slow convergence rates. We therefore explore the use
of Rao-Blackwellization [9] and the Data-Driven MCMC paradigm [44] to improve convergence. The Data-Driven MCMC
approach has been successfully applied in computer vision [23, 44] and robotic mapping [38].

3.2 Improved Duration modeling

The duration modeling capabilities of a standard SLDS are limited by the Markov assumption which is imposed upon the
transitions at the discrete switching states. As a consequence of Markov assumption, the probability of remaining in a given
switching state follows a geometric distribution :

P (d) = ad−1(1− a) (5)
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Above,d denotes the duration of a given switching state anda denotes Markov transition probability to make a self-transition
which has a value between zero and one. As a consequence, a duration of one time-step come to possess the largest probability
mass.

In contrast, many natural temporal phenomena exhibit patterns of regularity in the duration for which a given model or
regime is active. In such cases the standard SLDS model wouldbe inappropriate to effectively encode the regularity of
durations in data. A honey bee dance is an example: a dancer bee will attempt to stay in the waggle regime for a certain
duration to effectively communicate a message. In such cases, it is clear that the actual duration diverges from a geometric
distribution.

Figure 5: A realistic Gaussian and a limited geometric duration model. Models are learned from the data shown as the
overlayed histogram.

For example, we learned a duration model for the waggle phaseusing a realistic Gaussian density and a conventional
geometric distribution from one of the manually labeled dance sequences depicted in Figure 16. Figure 5 shows the learned
geometric and Gaussian distributions for comparison. It can be observed that the learned geometric duration model does
not exhibit any pattern of regularity in durations. Hence, standard SLDS models are inappropriate for data which exhibits
temporal patterns that deviate from geometric distributions.

The limitation of a geometric distribution was also previously addressed by the HMM communities, and HMM models
with enhanced duration capabilities were introduced [15, 26, 34]. HMMs has been widely studied by the speech recog-
nition and the machine learning communities to enhance its duration modeling capabilities. The variable duration HMM
(VD-HMM) was introduced in [15]: state durations are modeled explicitly in a variety of PDF forms. Later, a different
parameterization of the state durations was introduced where the state transition probabilities are modeled as functions of
time, which are referred to as non-stationary HMMs (NS-HMM)[26]. It has since been shown that the VD-HMM and the
NS-HMM are duals [11]. Ostendorfet.al.provides an excellent discussion on segmental HMMs [34].

We adopt similar ideas to arrive at SLDS models with enhancedduration modeling. The resulting segmental SLDS model
is described in Section. 5.

3.3 Inference on global parameters

The standard SLDS does not provide a systematic way to quantify temporal and spatial variations with respect to a fixed
(canonical) underlying behavioral template. E.g., the dynamics and observations of a pointing gesture would vary based
on the speed of the motion and the direction being pointed at.In many applications we are more interested in these global
underlying parameters rather than the exact categorization of the sub-motions.

Previously, Wilson & Bobick presented parametric HMMs [46]. In a PHMM, the parametric observation models learned
are conditioned on global observation parameters, such that globally parameterized gestures can be recognized. PHMMs
have been used to interpret human gestures, showing superior recognition performance in comparison to standard HMMs.
A similar approach was taken in the style-machines work by Brand and Hertzmann [7]. A transformation-invariant learning
approach for static images were addressed in [16].
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We extend the standard SLDS model in a similar way, resultingin a parametric SLDS (P-SLDS) model. As in a PHMM,
the P-SLDS model we propose incorporates global parametersthat underly systematic spatial variations of the overall tar-
get motion. In addition, while PHMM only introduced global observation parameters which cause spatial variations, we
additionally introduce dynamic parameters which capture temporal variations.

As mentioned earlier, the problem of global parameter quantification and labeling can be simultaneously solved. Hence,
we formulate expectation-maximization (EM) methods for learning and inference in P-SLDS and present it in Section 6.

4 Inference via Data-Driven MCMC

In this section, we introduce a novel sampling-based methodthat theoretically converges to the correct posterior distribution
on label sequencesP (L|Z). Faster convergence is achieved by incorporating a data-driven approach where we introduce
proposal priors and label-cue models.

All MCMC methods work similarly [18]: they generate a sequence of sampleswith the property that the collection
of samples approximates the desired target distribution. To accomplish this, aMarkov chainis defined over the space of
interest. The transition probabilities are set up in a very specific way such that thestationary distributionof the Markov chain
is exactly the target distribution. This guarantees that, if we run the chain for a sufficiently long time, the sample distribution
converges to the target distribution.

4.1 Rao-Blackwellized MCMC

In our solution, we propose to pursue the Rao-BlackwellisedposteriorP (L|Z), rather than the joint posteriorP (L, X |Z).
The effect is the dramatic reduction of sampling space fromL, X to L. This results in an improved approximation on
the labelsL, which are exactly the variables of interest in our application. This change is justified by the Rao-Blackwell
theorem [9]. The Rao-Blackwellisation is achieved via the analytic integration on the continuous statesX given a sample
label sequenceL(r). In this scheme, we can compute the probability of ther th sample labelsP (L(r)|Z) up to a normalizing
constant via the marginalization of the joint PDF :

P (L(r)|Z) ∝

∫

X

P (L(r), X, Z) (6)

Note that we omit the implicit dependence on the model parametersΘ for brevity. The joint PDFP (L(r), X, Z) in the r.h.s.
of Eq.6 can be evaluated via the inference in the time-varying LDS with the varying but known parameters. Specifically, the
inference over the continuous hidden statesX in the middle chain of Fig.4 can be performed by RTS smoothing[5]. The
resulting posterior is a time-series of Gaussians onX and can be effectively integrated out.

We use the Metropolis-Hastings (MH) algorithm [19, 29] to generate a sequence of samplesL(r). The pseudo-code for
the algorithm is shown in Algorithm 3 in Appendix A.

4.2 Learning and Inference

We propose to use a Data-Driven paradigm [44] where the cues present in the data provide an efficient MCMC proposal
distributionQ. It is crucial to provide an efficient proposalQ, which results in faster convergence [1]. Even though MCMC
is guaranteed to converge, a naive exploration of the high dimensional state spaceL is prohibitive. Thus, the design of a
proposal distribution which enhances the ability of the sampler to efficiently explore the space with high probability mass is
motivated. Our data-driven approach consists of two phases: learningandinference.

In the learning phase, we collect temporal cues from the training data. Then, a set of models of cues which we call
’label-cue models’, i.e.{P (c|li)|1 ≤ i ≤ n}, are learned based on the collected cues in a supervised manner. For example,
the change of heading angles is derived as a cue in the honey bee dance application. From the stylized dance in Fig.1(a),
we observe that the heading angles will jitter but stay constant on average during the waggling, but generally increase or
decrease during the right turn or left turn phases. Thus, a cue ct for a frame is set to be the change of heading angles within
the corresponding window. Note that the heading angles are measured clockwise.
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——————- time : 660 frames —————————————————->

Left turn~N(−5.77; 2.72) Waggle~N(−0.10; 3.32) Right turn~N(5.79; 2.83)

Figure 6: Learning phase. Three label-cue models are learned from the training data. See text for detailed descriptions.

Figure 7: Inference phase. Raw proposal priors are evaluated based on the collected temporal cues.

Figure 8: Final proposal priors and the ground truth labels.Key : waggle, right-turn, left-turn .

Specifically, a cue window slides over the entire angle data while it collects cues as shown at the top of Fig.6. Then, the
collected cues are classified according to the training labels. Then, the label-cue (LC) models are learned in the form ofthree
Gaussians in our example, as shown at the bottom of Fig.6. Theestimated means and the standard deviations show that the
average change of heading angles are -5.77, -0.10 and 5.79 radians, as expected.

In the inference phase, we first collect the temporal cues from the test data without access to the labels as shown at the
top of Fig.7. Then, the proposal priors are evaluated based on the collected cues and the learned label-cue models. By a
proposal priorP (l̃t|ct), we denote the distribution on the labels which is a rough approximation to the true posteriorP (lt|Z).
However, the raw proposal prior often over-fits test data as shown in Fig.7. Thus, we use the smoothed estimates as the final
proposal priors, shown in Fig.8. At the bottom of Fig.8, the ground truth labels are shown below the final proposal priors for
comparison. The obtained priors provide an excellent guideto the labels of the dance segments.

Afterwards, the obtained proposal priorsP (L̃) is used to construct the data-driven proposalQ. Then, MH algorithm
balances the whole MCMC procedure in such a way that the MCMC inference on labels converges to the true posterior
P (L|Z). The details of learning and inference in DD-MCMC method aredescribed in Appendix A.

4.3 Experimental Results

The DD-MCMC is a Bayesian inference algorithm. Nonetheless, it can be used as a robust labeling method. The MAP label
sequence are taken from the discovered posterior distribution P (L|Z) where the label of MAP sequence at each time step is

the individually most likely label inP (L|Z). The resulting MCMC MAP labels, the ground-truth, and the approximate
Viterbi labels for two data sequences in the database are shown from the top to bottom in Fig. 9. It can be observed that
DD-MCMC delivers solutions that concur very well with the ground truth. On the other hand, the approximate Viterbi

labels at the bottom over-segments the data (insertion errors). The insertion errors of approximate Viterbi highlightone of
the limitations of the class of deterministic algorithms for SLDS. In this respect, the proposed DD-MCMC inference method

8



(a) Sequence 1

(b) Sequence 2

Figure 9: DD-MCMC MAP, ground truth, Viterbi labels.

is shown to improve upon the Viterbi result and provide more robust labeling (inference) capabilities.

Some errors between the MAP labels and the ground truth occurdue to the systematic irregular motions of the tracked
bees. In these cases, even an expert biologist will have difficulty figuring out all the correct dance labels solely based on the
observation data, without access to the video. Consideringthat SLDSs are learned exclusively from the observation data, the
results are fairly good.

Figure 10: Posterior distributionP (L|Z) is discovered from sequence 1. The heading angle of a bee is superimposed on the
figure as an indicator of a dancer’s dance mode. Key :waggle, right-turn, left-turn

To further analyze the inference capabilities of a standardSLDS withinin our application, we investigated the posterior
distributionP (L|Z) which is discovered from the first sequence using the proposed DD-MCMC inference, see Fig.10. The
discovered posterior shows that most of the over-segmentations are induced due to the strong noise in the data. As an example
of an extreme systematic noise, around the two fifths from theright in Fig.10, the tracked bee systematically side-walksto the
left due to the collision with other bees around it for about 20 frames while it was turning right. Consequently, the MCMC
posterior shows the two eminent hypotheses for those frames: 70% turn-left and 30% turn-right roughly, and it results inthe
over-segmentation of the data where it appears at the top color strip in Figure 9(a).

4.4 Discussion

While DD-MCMC inference method improves upon the Viterbi method, the results are still not completely satisfactory for
the bee dance application. DD-MCMC MAP label results still introduce several over-segmentations. In addition, it can be
observed that the average waggle duration based on MCMC MAP labels diverges significantly from the ground truth.

From the visuallized posterior in Fig.10, we notice two limitations of standard SLDS model in our bee application. First,
we observe that the limited duration modeling power of SLDS weakens its labeling capabilities on bee data. It can be
observed that a slight noise introduces an over-segmentation even though such noise appears only for a few frames. Secondly,
the absence of systematic means to quantify global parameters should be addressed. The estimation of global dance angle
and average waggle duration solely dependent on labeling estimates can severely deviate from the ground truths. Moreover,
it is certain that the global information can provide a better cue for overall labeling processes.

Accordingly, we introduce segmental SLDS and parametric SLDS as the robust extensions to resolve the problems men-
tioned above.

It should be noted that DD-MCMC method is still computationally demanding although it is an efficient solution in the
space of MCMC methods. For example, it proposed approximately 4,000 samples to converge in one of the experiments
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above. As each proposed label sequence requires temporal smoothing step for Rao-Blackwellised inference, the computation
required for every samples is approximately identical to that of an approximate Viterbi (VI) method. As a consequence, DD-
MCMC method consumed approximately 4,000 times more computation than VI method. The models to be introduced in the
following sections are shown to reflect the characteristicsof the honey bee dance data more tightly and were able to produce
satisfactory results using VI or a variational approximation method. Additionally, theoretical justification of computational
complexity of data-driven MCMC methods is still an on-goingarea of research in spite of its success in hard computer vision
problems. Hence, we plan to investigate the scaling issue ofthe proposed DD-MCMC method in the extended models in the
future and adopt computationally less-demanding approximation inference methods in the following sections.

5 Segmental SLDS

We introduce the segmental SLDS (S-SLDS) model, which improves on the standard SLDS model by relaxing the Markov
assumption at a time-step level to a coarsersegment level. The development of S-SLDS model is motivated by the regularity
in durations being exhibited by the honey bee dances. As discussed in Section 3.2, a dancer bee will attempt to stay in
the waggle regime for a certain duration to effectively communicate a message. In such a case, the geometric distribution
induced in standard SLDSs is not an appropriate choice to model the duration patterns. Fig. 5 shows that a geometric
distribution accords the highest probability on the duration of only one time step. As a result, the inference in standard
SLDSs is susceptible to over-segmentation due to the noise in data.

In an S-SLDS, the durations are first modeled explicitly and then non-stationary duration functions are derived from them.
Both of them are learned from data. As a consequence, the S-SLDS model has more descriptive power in modeling duration,
and more robust inference capabilities than the standard SLDS. Nonetheless, we show that one can always convert a learned
S-SLDS model into an equivalent standard SLDS, operating ina different label space. Hence, as a significant advantage we
are able to resuse the large array of approximate inference and learning techniques developed for SLDSs.

5.1 Conceptual view on the generative process of S-SLDS

Figure 11: A schematic sketch of an S-SLDS with explicit duration models.

Conceptually, in an S-SLDS, we deal with segments of finite duration, i.e. each segmentsi
∆
= (li, di) is described by

a tuple of labelli and durationdi. Within each segment a fixed LDS modelMl is used to generate the continuous state
sequence for the durationdi. Similar to SLDSs, we take an S-SLDS to have an initial distribution π(l1) over the initial
label l1 of the first segments1, and ann × n semi Markov label transition matrix̃B that defines the switching behavior
between the segment labels. The tilde denotes that the matrix is a semi-Markov transition matrix. Additionally, however, we
associate each labell with a fixedduration modelDl, represented as a multinomial. We denote the set ofn duration models

asD
∆
= {Dl(d)|1 ≤ l ≤ n}, and refer to them in what follows asexplicit duration models. In summary, an S-SLDS is

defined by a tupleΘ
∆
=

{

π, B̃, D
∆
= {Dl|l = 1..n}, M

∆
= {Ml|l = 1..n}

}

.
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A schematic depiction of an S-SLDS is illustrated in Fig.11.The top chain in the figure is a series of segments where

each segment is depicted as a rounded box. In the model, the current segmentsi
∆
= (li, di) generates a next segmentsi+1

in the following manner: first, the current labelli generates the next labelli+1 based on the label transition matrix̃B; then,
the next durationdi+1 is generated from the duration model for the labelli+1, i.e. di+1 ∼ Dli+1(d). The dynamics for the
continuous hidden states and observations are identical toa standard SLDS : a segmentsi evolves the continuous hidden
statesX with a corresponding LDS modelMli for the durationdi, then the observationsZ are generated given the labelsL
and the continuous statesX .

5.2 Graphical Representation of S-SLDS

In this section we present a graphical representation of S-SLDSs, transforming the conceptual generative model described in
Section 5.1 into a concrete model that uses conventional model switching at every time-step. To maintain the same duration

semantics, we introducecounter variablesC
∆
= {ct|1 ≤ t ≤ T }. The resulting graphical model of S-SLDS is illustrated

in Fig.12, and is identical to the graphical model of an SLDS in Fig.4, but with additional top-chain representing a series of
counter variablesC.

Figure 12: Graphical representation of an S-SLDS

The counter chainC maintains an incremental counter which evolves based on a set of non-stationary transition functions

(NSTFs)U
∆
={Ul(c)|1 ≤ l ≤ n}. An NSTFUl for the current labellt defines the conditional dependency of the next counter

variablect+1 given the current counter variablect and the labellt :

Ul(ct) = P (ct+1|ct, l)

The system can either increment the counter, i.e.ct+1 ← ct + 1, or reset it to one, i.e.ct+1 ← 1. If the counter variable
ct+1 is reset, then a label transition occurs, i.e. a new segment is initialized. A new labellt+1 is chosen based on the label
transition matrixB. If the counter simply increments, then the new label is set to be the current labellt, i.e. lt+1 ← lt.

Figure 13: Evaluating an NSTF (right) from an explicit duration model (left).

While the explicit duration modelsD introduced in Section 5.1 are more understandable and readily obtained from the
labeled data, it is necessary to transform the explicit duration modelsD into an equivalent NSTFsU to incorporate the
knowledge in durations into a framework based on graphical models. To do this, we can observe that the explicit duration
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Figure 14: Inference in S-SLDS.

modelsD and the NSTFsU are analogous to the duration models of VD-HMMs [15] and NS-HMMs [26] respectively.
Hence, we can exploit the duality between the VD-HMMs and NS-HMMs, which appeared in [11]. The equivalent NSTFs
U are exactly evaluated from the explicit duration modelsD as follows :

Ul(ct) = 1−



Dl(ct)/

Dmax
l
∑

d=ct

Dl(ct)



 (7)

Above,Dmax
l denotes the maximum duration allowed for thel th model. Intuitively, the latter composite term on the r.h.s.

denotes the probability to reset the counter variablect+1. It represents the ratio of the probability of current duration ct over
the sum of durations equal or greater thanct in the corresponding duration modelDl. An example is illustrated in Fig.13 to
show the evaluation of an NSTF from an explicit duration model.

In summary, an S-SLDS model is completely defined by a tupleΘ
∆
=

{

π, B̃, U
∆
= {Ul|1 ≤ l ≤ n}, M

∆
= {Ml|1 ≤ l ≤ n}

}

where the NSTFsU are obtained from the explicit duration modelsD.

5.3 Learning in a Segmental SLDS

Learning in S-SLDS is analogous to learning in SLDS, using EM. The initial distributionπ, and LDS model parameters
M are learned in exactly the same manner as in SLDS. However, itis necessary to learn the additional duration modelsD
and the semi-Markov transition matrix̃B. These two additional model parameters only influence the label sequenceL, and
hence the ML estimates of these two parameters can be evaluated from a segmental representation of the label sequenceL,
i.e.,L = ∪

|s|
j=1sj . The specific functional forms of ML estimation depends on the choice of duration models. An example

is demonstrated in Section 7 where we learn the duration models in Gaussian forms from the honey bee dance sequences.
However, Gaussian models encode proabilities for non-existing negative durations as well. Hence, only positive part of the
learned Gaussian models were used in our work. Note that the choice on the form of probability distributions depend on the
duration characteristics of data. For example, Gamma or log-normal distributions which only encode probability regions on
positive durations can be adopted.

5.4 Inference for Segmental SLDSs

Below we demonstrate that an S-SLDS can be always converted to an equivalent SLDS. This is an important advantage as
it allows us to readily reuse the large array of approximate inference algorithms discussed in Section 2.3. In other words,
the inference in S-SLDS is identical to that of the standard SLDS, simply with additional conversion from an S-SLDS to its
corresponding SLDS.

The overall idea of inference is depicted in Figure 14. In step 1, we convert an S-SLDS model into an equivalent SLDS
model. Then, we perform step 2 (inference) using any of the approximate inference algorithms for the standard SLDSs. Once
the parameters of the equivalent standard SLDS are learned via EM, the obtained SLDS model is converted back to S-SLDS
model and the inference in S-SLDS concludes.

The model conversion from an S-SLDSs to an equivalent SLDS ispossible by applying the standard technique of merging
multiple discrete variables into meta variables. Specifically, all possible pairs of a labellt and a counter valuect are merged

and form a set of “lc” variables whereLC
∆
= {(l, ci)|1 ≤ l ≤ n, 1 ≤ ci ≤ Dmax

l }. To obtain a complete SLDS model, an
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equivalentn′ × n′ transition matrixB′ wheren′ ∆
=

∑n
l=1 Dmax

l is constructed from the semi-Markov transition matrixB̃
and the NSTFsU , as follows :

B′
(li,ci),(lj ,cj)

=







Uli(ci) increment
B̃li,lj (1− Uli(ci)) reset

0 otherwise
(8)

In Eq. 8, the three cases differ as follows : (increment)li = lj andcj = ci + 1. (reset)cj = 1. (otherwise) all other cases.
In addition, the initial label distributionπ′ for the equivalent SLDS can similarly be constructed from the S-SLDS initial
distributionπ :

π′(li, ci) =

{

π(li) if ci = 1
0 otherwise

Nonetheless, it is important to note that the naive reuse of the learning and inference algorithms for SLDS to S-SLDS may
induce substantial increase in computational overhead. The efficient implementation and increased computational overheads
are discussed below.

5.5 Computational Considerations

As mentioned above, an equivalent SLDS can always be constructed from an arbitrary S-SLDS. However, if we reuse
the original learning and inference algorithms for SLDSs ina naive manner the cost of inference will be on the order of

O(TD2
max|L|

2) for S-SLDSs, while it takesO(T |L|2) for SLDSs without duration models, whereDmax
∆
= max{Dmax

l }nl=1,
i.e. the number of all meta variables. Thus, there is a considerable computational overhead, by a factor ofO(D2

max). This
increased asymptotic running time overhead applies to the approximate inference algorithms with HMM-type components
in general, e.g. approximate Viterbi [37] and a variationalmethod [37, 17, 33], as they require the computations between all
possible state pairs from the previous time-step to the nexttime-step.

Nonetheless, we can still maintain linear efficiency w.r.t.the maximum durationDmax by exploiting the sparseness of
the constructed SLDS matrixB′. It can be observed from Eq.8 that the SLDS matrixB′ is mostly sparse, i.e. only a few
transitions are allowed between the states inLC. In fact, only|L| + 1 transitions allowed for everylc state. The allowable
transitions include the resets to|L| labels and one increment transition. Hence, we can achieve an overall performance of
O(TDmax|L|2) via exploiting this fact, which results in reduced overheadby a factor ofO(Dmax). The number is derived
from the fact that there are totalO(Dmax|L|) states at timet − 1, and the number of transitions allowed for each state to
time t reduces toO(|L|) from O(Dmax|L|). This reduction in complexity allows us to incorporate a duration model with a
largeDmax and maintain computational efficiency. As a consequence, wecan adopt the more powerful duration modeling
capabilities of an S-SLDS at the cost of a modest complexity increase over the standard SLDS model.

In case of the presented DD-MCMC method, the complexity of the method in S-SLDS is a topic of on-going research.
This is partly due to the fact that the straightforward use ofDD-MCMC would not be the optimal choice, as the Markov
Chain properties in S-SLDS has very regularized structure and the proposed DD-MCMC method does not exploit this fact.
Hence we plan to present the research results on this issue elsewhere in the future.

6 The Parametric SLDS Model

The idea of parametric extension of SLDSs (P-SLDS) described in this section originally appeared in [32].
As discussed in Section 3.3, the standard SLDS does not provide the means to quantify global variations. Hence, the

development of a framework which can decode the global parameters w.r.t. the canonical behavioral template is necessitated.
For example, honey bees communicate the orientation and distance to food sources through the (spatial) dance angles and
(temporal) waggle durations of their stylized dances whichtake place in a hive, and the communication messages of dances
are exactly the variables of interest in our bee application.

Moreover, it should be noted that the superior global parameter estimates, which are closer to ground truth, can provide
improved labeling capabilities and vice versa, i.e. the labeling and quantification problems are not independent. For example,
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it can be observed in Fig.1(a) that an angle estimate which isvery close to the ground truth would provide a strong cue for
the labeling of the overall motions. Hence, a parametric SLDS (P-SLDS) which provides a means to quantify the global
variables and solves both labeling and quantification problem in an iterative manner is introduced.

The resulting P-SLDS learns canonical behavioral templates from data with additional information on the associated
global parameters. A P-SLDS effectively decodes the globalparameters while it simultaneously labels the sequences. This
is done using an expectation-maximization (EM) algorithm [10, 28], presented in detail below.

6.1 Graphical representation of P-SLDS

Figure 15: Parametric SLDS (P-SLDS)

In P-SLDSs, the discrete state transition probabilities and output probabilities are parameterized by a set of global param-
etersΦ = {Φd, Φo}. The parametersΦ are global in that they systematically affect the entire sequence. The graphical model
of P-SLDS is shown in Fig.15. Note that there are two classes of global parameters : the dynamics parametersΦd and the
observation parametersΦo.

Thedynamics parametersΦd represent the factors that cause temporal variations. The different values of the dynamics
parametersΦd result in different switching behavior between behavioralmodes. E.g., for the bee-dance, a food source that
is far away leads a dancer bee to stay in each dance regime longer to make a larger dance, which will result in less frequent
transitions between dance regimes. In terms of S-SLDS model, the global dynamics parameters are associated with duration
models. In contrast, theobservation parametersΦo represent factors that cause spatial variations. A good example is a
pointing gesture where the indicating direction changes the overall arm motions.

Additionally, the canonical parametersΘ represent the common underlying behavioral template. Notethat the canonical
parametersΘ are embedded in the conditional dependency arcs in Fig.15. In the bee dancing example, the canonical parame-
ters describe the prototyped stylized bee dance. However, the individual dynamics in the different bee dances systematically
vary from the prototyped dance due to the changing food source locations which are represented by the global parametersΦ.

In detail, it can be observed that the discrete state transitions at the top chain of Fig. 15 are instantiated byΘ andΦd, and
the observation model at the bottom is instantiated byΘ andΦd while the continuous state transitions in the middle chain are
instantiated by solely the canonical parametersΘ. In other words, the dynamics parametersΦd vary the prototyped switching
behaviors, and the observation parametersΦo vary the prototyped observation model, in a systematic manner. The intuition
behind the quantification of global parameters is that they can be effectively discovered by finding the global parameters that
best describe the discrepancies between the new observations and the behavioral template.

The graphical model of P-SLDS necessitates parameterized versions of an initial state distributionP (l1|Θ, Φd), a discrete
state transition tableP (lt|lt−1, Θ, Φd) and an observation modelP (zt|lt, xt, Θ, Φo). There are three possibilities for the
nature of the parameterization: (a) the PDF is a linear function of the global parametersΦ, (b) the PDF is a non-linear
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Algorithm 1 EM1 for Learning in P-SLDS
• E-step 1: obtain the posterior distribution

f i
L(X)

∆
= P (X |Θi, D̄) (9)

over the hidden state sequenceX , based on a current guess of the canonical parametersΘi.

• M-step 1: maximize the expected log-likelihood :

Θi+1 ← argmax
Θ

〈

log P (L̄, X, Z̄|Θ, Φ̄
〉

fi
L
(X)

(10)

function ofΦ, and (c) no functional form for PDF is available. In the latter case, a neural network may be used as suggested
in [46].

In the following Sections, 6.2 and 6.3, we discuss learning and inference in P-SLDS assuming that functional forms are
available.

6.2 Learning in P-SLDS

In the learning phase, P-SLDS learns a canonical behavior template from motion data where the individual dynamics may
vary due to different underlying global parameters, but we assume these parameters known in our training data.

Learning in P-SLDS entails estimating the P-SLDS canonicalparametersΘ, given the datāD
∆
=

{

Φ̄ = {Φ̄d, Φ̄o}, L̄, Z̄
}

where the datāD comprises a set of global parametersΦ̄ = {Φ̄d, Φ̄o}, a label sequencēL, and the observations̄Z. The upper
bars indicate that the values are known. We employ EM [10, 28]with the continuous statesX as the only hidden variables to
find an ML estimate of the canonical parametersΘ̂, as described before.

The E-step in Eq.9 is equivalent to inference in an LDS model.In more detail, as the global parametersΦ̄, the current
P-SLDS parametersΘi, the label sequencēL, and the observations̄Z are all known, the inference over the continuous hidden
statesX in E-step can be performed by Kalman-smoothing [4]. Given the posterior distributionf i

L(X) in Eq. 9 we then
update the parametersΘi+1.

In case the parameterized dependencies are linear functions of the global parametersΦ, M-step in Eq.10 can be analytically
solved. However, in case the parametric dependencies are non-linear, an exact M-step is often infeasible and needs to be
solved by alternative optimization methods, e.g., conjugate gradient or Levenberg-Marquardt methods.

6.3 Inference in P-SLDS

We use the learned P-SLDS canonical parametersΘ to perform the quantification of the global parametersΦ and the inference
on the label sequenceL (labeling), given exclusively the observationsZ̄. Note that the canonical parameter setΘ is fixed
once they are learned from the training datasetD̄, and we now interpret a distinct dataset relying on an inference where
neither the global parametersΦ nor the label sequenceL is known.

As in [46], we use EM to quantify the optimal global parameters Φ̂ as shown in Algorithm 2. Note that we perform EM1
in Section 6.2 ’Learning’ to learn the canonical model parametersΘ, while EM2 in Section 6.3 ’Inference’ is performed to
estimate the global parametersΦ with simultaneous inference on the labelsL. More details on EM2 are described below. In
the following sections, we use the abbreviation ”LLH” to denote log-likelihood.

6.3.1 E-step 2

The exact E-step in Eq.12 is known to be intractable [35, 36].Thus, we need to rely on the approximate inference methods.
Here, we present a derivation of E-step based on approximateViterbi (VI) method [35]. Note that the choice of VI method
does not harm the generality of the framework although it delivers more concise derivation. At everyith EM iteration,
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Algorithm 2 EM2 for Inference in P-SLDS
• E-step 2 : obtain the posterior distribution:

f i
I(L, X)

∆
= P (L, X |Z̄, Θ, Φi) (12)

over the hidden label sequenceL and the state sequenceX , using a current guess for the global parametersΦi.

• M-step 2 : maximize the expected log-likelihood:

Φi+1 ← argmax
Φ

〈

logP (L, X, Z̄|Θ, Φ)
〉

fi
I
(L,X)

(13)

the joint posterior over the hidden variablesL andX is approximated by a peaked posterior over theX with the obtained
pseudo-optimal label sequenceL̂i :

P (L, X |Z̄, Φi) = P (X |L, Z̄, Φi)P (L|Z̄, Φi)

≈ P (X |L̂i, Z̄, Φi)δ(L̂i) (11)

f i
I(X)

∆
= P (X |L̂i, Z̄, Φi)δ(L̂i)

Note that the implicit conditional dependence on the fixed canonical parametersΘ is omitted for clarity.

6.3.2 M-step 2

Using the approximate posteriorf i
I(X) obtained in Eq.11, the expected complete log-likelihood (LLH) in Eq.13 is approxi-

mated as:

Li(Φ)
∆
=

∑

L

∫

X

log P (L, X, Z̄|Φ)P (L, X |Z̄, Φi)

≈

∫

X

log P (L̂i, X, Z̄|Φ)f i
I(X) (14)

Using the chain rule, this factors as:

P (L̂i, X, Z̄|Φ) = P (L̂i|Φd)P (X, Z̄|L̂i, Φo) (15)

Note that we now only condition on relevant global parameters, e.g. the label sequenceL̂i is only conditioned onΦd. Sub-
stituting (15) into the expectedLLH Li(Φ) (14), we obtain a more succinct form ofLi(Φ) in which the termlog P (L̂i|Φd)
is moved outside the integral:

Li(Φ) = log P (L̂i|Φd) +

∫

X

log P (X, Z̄|L̂i, Φo)f
i
I(X)

= Li(Φd) + Li(Φo) (16)

Here we introduced two convenience terms, the dynamic log-likelihoodL(Φd) and the observation log-likelihoodL(Φo):

Li(Φd)
∆
= log P (L̂i|Φd) (17)

Li(Φo)
∆
=

∫

X

log P (X, Z̄|L̂i, Φo)f
i
I(X) (18)

In Eq.16, we can observe that the total expectedLLH Li(Φ) is maximized by independently updating the global observation
parametersΦo and dynamic parametersΦd, i.e. we obtain the updated global parametersΦi+1

d andΦi+1
o by maximizing the

dynamicLLH Li(Φd) and the the observationLLH Li(Φo) respectively.
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Now we can further factorize the dynamicLLH Li(Φd) in Eq.17 and the observationLLH Li(Φo) in Eq.18. Then, we
obtain the fully factorizedLLH terms shown in Eq.19 and 20 where the termf i

I(xt) denotes the marginal onxt from the full

posteriorf i
I(X), i.e. f i

I(xt)
∆
=

∫

X/xt
f i

I(X).

Li(Φd) = log P (l̂1
i
|Φd) + log

|Z|
∑

t=2

P (l̂t
i
|l̂it−1Φd) (19)

Li(Φo) =

∫

X

log
{

P (Z̄|X, L̂i, Φo)P (X |L̂i)
}

f i
I(X)

≡

∫

X

log P (Z̄|X, L̂i, Φo)f
i
I(X)

=

|Z|
∑

t=1

∫

xt

log P (z̄t|xt, l̂t
i
, Φo)f

i
I(xt) (20)

In case we are modeling data with parametric S-SLDS models, the global dynamic parametersΦd are associated with
the duration models of S-SLDSs, and Eq.19 is not directly applicable because label transitions occur between segments.
Hence, once we obtain the Viterbi labelsL̂i, the label sequence is converted into a list of segments, i.e., L̂i = ∪

|s|
j=1sj where

sj
∆
= (lj , dj), as described in Section 5.1. Then, the dynamicLLH for parametric S-SLDSs can be evaluated as follows :

Li(Φd) =

|s|
∑

j=1

log P (sj |Φd)

=

|s|
∑

j=1

log Dlj (dj) (21)

The observationLLH for parametric S-SLDSs is equally evaluated as in Eq. 20. Thedetailed machinery in the M-step
will depend on the application domain. In case the parametric forms are linear in the global parametersΦ, the M-step is
analytically feasible. Otherwise, alternative optimization methods can be used to maximize the non-linearLLH function, as
described in Section 6.2.

7 Modeling the Honey Bee Dance

The goal in our application is to build a vision system that can reliably label the motion sequences with simultaneous quan-
tification. To achieve this, we model the honey bee dances using a parameterized segmental SLDS (PS-SLDS) model. The

bee dance is parameterized by both classes of global parameters. The global dynamics parameter setΦd
∆
= {Φd,l|1 ≤ l ≤ n}

is chosen to be correlated with the average duration of each dance regimes wheren = 3. The global observation parameter
Φo is set to be the angle orientation of the bee dance.

7.1 Canonical parameters

The canonical parameters in honey bee dances are defined to bea tuple of a set of initial label distributionπ, semi-Markov
segmental Markov transition matrixB, LDS model parametersM and variances in durations in each behavioral modesΣ,

i.e., Θ
∆
=

{

π, B, M
∆
= {Ml|1 ≤ l ≤ n}, Σ

∆
= {Σl|1 ≤ l ≤ n}

}

. Note that the canonical parameter tupleΘ is fixed once

it is learned from data, as mentioned in Section 6. The choiceof canonical parameters are validated from the background
knowledge on honey bee dances. For example, it is reasonableto assume that the initial label distributionπ and the segment
label transition matrixB between different dance regimes do not vary across the dancesequences. In addition, the dancer
bees try to regulate its waggle durations to convey correct dance messages. Hence, the degrees of variations in durations of
each dance regime are assumed to be constant. Hence, they arelearned and represented as the variancesΣ.
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(1) (2) (3) (4) (5) (6)

Figure 16: Bee dance sequences used in the experiments. Eachdance trajectory is the output of a vision-based tracker. Tables
1 and 2 give the global motion parameters for each of the numbered sequences. Key :waggle, right-turn, left-turn .

7.2 Dynamics model

We set the global dynamic parameter ofl th modelΦd,l to be the average durationµl of lth dance regime, i.e.,Φd
∆
= {µl|1 ≤

l ≤ n}. Accordingly, each parameterized duration modelsDl of S-SLDSs are modeled as Gaussian distributions as follows:

Dl(ct) = N (µl; Σl) (22)

Above, the duration meanµl is a global dynamic parameter which is re-estimated at everyEM iteration in P-SLDS learning
(described in Section 6.3) while the varianceΣl is a fixed canonical parameter. Then, the explicit duration model in Eq.
22 is discretized into a histogram with maximum duration length Dmax

l = 100. In the video database, a dance regime
with extremely long duration lasted for about 75 frames. Thus, the choice of the maximum duration lengthDmax

l would be
sufficient to represent the duration model. Once the histogram duration modelDl is learned, we convert the model into an
NSTFUl , as discussed in Section 5.2.

The M-step update for a dynamics parameterΦd,l can be obtained by differentiating the dynamicLLH in Eq.23 :

Li(Φd) =

|s|
∑

j=1

log Dlj (dj)

=

N
∑

l=1





∑

∀lj=l

log Dl(dj)





= −
1

2

N
∑

l=1





∑

∀lj=l

log Σl +
(dj − µl)

2

Σl



 (23)

∂ log P (L̂|Φd)

∂µl
=

2
P

∀lj=l
(dj−µl)

Σl
= 0

µnew
l ←

∑

∀lj=l dj

|sl|
(24)

In fact, the M-step Eq.24 for the global dynamic parametersµnew ∆
= {µnew

l |1 ≤ l ≤ n} turn out to be equivalent to

re-estimating the mean durations of distinct dance phases from the obtained segmented label sequenceL̂i = ∪
|s|
j=1sj.
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7.3 Observation model

The observation data are time-series sequences of vectorszt = [xt, yt, cos(θt), sin(θt)]
T wherext,yt andθt respectively

denote the 2D coordinates and the heading angle of a tracked dancer bee at timet. The angle of zero corresponds to the
direction of positive x-axis and the angle increases clock-wisely. The triangular function elements in the observations were
introduced to make the system be able to learn the location-invariant rotating motions. Note that the observed temporary
heading angleθt differs from the global dance angleΦo.

We use the following parameterized observation modelP (zt|lt, xt, Φo),

zt ∼ N (R(Φo)Hl̂t
xt, Vl̂t

) (25)

whereR(Φo) is the rotation matrix, andHl̂t
andVl̂t

denote the observation parameters of thel̂tth component LDS, cor-

responding to label̂lt of the Viterbi sequencêL. We also defineαt(Φo) to denote the projected-then-rotated vector of the
corresponding statext:

αt(Φo)
∆
= R(Φo)Hltxt (26)

Given all this, we obtain the observationLLH Li(Φo) ≡

−

|Z|
∑

t=1

〈

[zt − αt(Φo)]
T

V −1

l̂t
[zt − αt(Φo)]

〉

fi
I
(xt)

(27)

where we have omitted redundant constant terms. Intuitively, the optimization in (27) is to find an updated dance angle
Φi+1

o which minimizes the sum of the expected Mahalanobis distances between the observationszt’s and the projected-then-
rotated statesαt(Φo)’s. However, as the non-linearities are involved due to a rotation, there is no analytical solution for
this maximization problem where Eq.27 involves quadratic triangular function terms, e.g.,sin(Φo)

2. Thus, we perform 1D
gradient ascent on the obtained functional.

8 Experimental Results

The experimental results show that PS-SLDS provides reliable global parameter quantification capabilities along withim-
proved recognition abilities over the standard SLDS. The six dancer bee tracks obtained from the videos are shown in Fig.16.
The vision-based tracker we used [21] is shown in Fig.1(b) where the dancer bee is automatically being tracked in the green
rectangle.

We performed experiments with 6 video sequences1 with length 1058, 1125, 1054, 757, 609 and 814 frames, respectively.
Once the sequence observationsZ are obtained, the whole trajectories were preprocessed in such a way that the mean of each
track is located at (100,100). Note from Fig.16 that the tracks are noisy and much more irregular than the idealized stylized
dance prototype shown in Fig.1(a). The red, green and blue colors represent right-turn, waggle and left-turn phases. The
ground-truth labels are marked manually for the comparisonand learning purposes. The dimensionality of the continuous
hidden states was set to be four.

Given the relative difficulty of obtaining this data, which has to be labeled manually to allow for a ground-truthcomparison,
we adopted a leave-one-out (LOO) strategy. The parameters are learned from five out of six datasets, and the learned model
is applied to the left-out dataset to perform labeling and simultaneous quantification of angle/average waggle duration. Six
experiments are performed using both PS-SLDS and the standard SLDS, switching the test data sequence. The PS-SLDS
estimates of angle/average waggle durations (AWD) are directly obtained from the results of global parameter quantification.
On the other hand, the SLDS estimates are heuristically obtained by averaging the transition numbers or averaging the heading
angles at the inferred “waggle” segments.

1The experimental data used in this work are available at :www.cc.gatech.edu/~borg/ijcv_psslds.

19



8.1 Learning from training data

The parameters of both PS-SLDS and standard SLDS are learnedfrom the data sequences depicted in Fig. 16. The standard
SLDS model parameters were learned as described in Section 2.3. The canonical parameters tuple described in Section 7.1
are all learned solely based on the observationsZ without any restriction on the parameter structures. However, the prior
distributionπ on the first label was set to be a uniform distribution.

To learn the PS-SLDS model parameters, the ground truth waggle angles and AWDs were evaluated from the data. Then,
each sequence was preprocessed (rotated) in such a way that the waggle directions head to the same direction based on the
evaluated ground truth waggle angles. Such preprocessing was performed to allow PS-SLDS model to learn the canonical
parameters which represent the behavioral template of the dance. Note that six sets of model parameters are learned via
LOO approach and the global angle of the test sequence is not known in the learning phase a priori. In addition to the model
parameters learned by the standard SLDS, PS-SLDS learns additional duration modelsD, and semi-Markov transition matrix
B̃, as described in Section 5.

8.2 Inference on test data

In the test phase, the learned parameter set was used to inferthe labels of the left-out test sequence. An approximate Viterbi
(VI) method [35, 37] and variational approximation (VA) methods [17, 35, 37, 33] were used to infer the labels in standard
SLDSs. The initial probability distributions for the VA method were initialized based on the VI labels. Simply, VI labels
were trusted by a probability of 0.8 and the other two labels at every time-step are assigned probability of 0.1 respectively.

For the inference in PS-SLDS, VI method was used due to its simplicity and speed. Our initial experiments indicated that
it is rather difficult to measure the per-computation benefitof DD-MCMC method over VI or VA method when PS-SLDS
model is adopted. As described in Sec. 4.4, the scalability issue of DD-MCMC method in PS-SLDS remains as future
work and we devote the experimental result section to compare SLDS and PS-SLDS models based on computationally less-
demanding VI and VA methods. In addition, the inference results on labels which are obtained via VA method complicates
the update of global duration model parameters described inEq. 24 and hence omitted in the experiments for PS-SLDS.

8.3 Qualitative Results

The experimental results show the superior recognition capabilities of the proposed PS-SLDS model over the original SLDS
model. The label inference results on all data sequences areshown in Fig.17. The four color-coded strips in each figure
represent SDLS VI, SLDS VA, PS-SLDS VI and the ground-truth (G.T.) labels from the top to the bottom. The x-axis
represents time flow and the color is the label at that corresponding video frame.

The superior recognition abilities of PS-SLDS can be observed from the presented results. The PS-SLDS results are closer
to ground truth or comparable to SLDS results in all sequences. Especially, the sequences 1, 2 and 3 are challenging. The
tracking results obtained from the vision-based tracker were more noisy. In addition, the patterns of switching in dance modes
and the durations in each dance regime are more irregular than the other sequences.

It can be observed that most of the over-segmentations that appear in the SLDS labeling results disappear in the PS-SLDS
labeling results. PS-SLDS estimates still introduce some errors, especially in the sequence 1 and 3. However, assumingthat
even an expert human can introduce labeling noise, the labeling capabilities of PS-SLDS are fairly good.

8.4 Quantitative Results

The quantitative results on the angle/average waggle duration quantification show the robust global parameter quantification
capabilities of PS-SLDS. Table.1 shows the errors of PS-SLDS estimate, SLDS estimates based on VI and VA methods and
the GT angle, from top to the bottom. The best estimates are accented in bold fonts. The SLDS estimates are obtained via
heuristics where we averaged the heading angles in the sequences with corresponding labels inferred as waggle. All the error
values are the difference between estimated results and known G.T. values.

Among six tests, PS-SLDS and SLDS shows comparable waggle angle estimation capabilities. There is no distinguishable
gap in performance between VI and VA methods. In addition, the maximum error of PS-SLDS angle estimate was 0.11
radians for the fifth dataset, which is fairly good considering the noise in the tracking results.
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(a) Sequence 1

(a) Sequence 2

(a) Sequence 3

(a) Sequence 4

(a) Sequence 5

(a) Sequence 6

Figure 17: Label inference results. Estimates from SLDS andP-SLDS models are compared to manually-obtained ground
truth (GT) labels. Key :waggle, right-turn, left-turn .
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Sequence 1 2 3 4 5 6
PS-SLDS -0.09 0.01 0.03 -0.11 0.11 -0.06
SLDS VI -0.05 -0.03 -0.02 -0.09 0.18 -0.09
SLDS VA -0.05 -0.03 -0.02 -0.09 0.18 -0.09

GT -0.30 -0.25 1.13 -1.33 -2.08 -0.80

Table 1: Errors in the global rotation angle estimates from PS-SLDS and SLDS in radians. Last row contains the GT rotation
angles. Sequence numbers refer to Fig. 16.

Sequence 1 2 3 4 5 6
PS-SLDS +13.7 +0.91 +1.9 -0.22 0.4 5.6
SLDS VI +40.8 +28.9 +11.1 -0.44 3.6 8
SLDS VA +40.7 +28.9 +11.1 -0.44 3.6 8

GT 51.6 46.6364 21.4 41.1 19.4 32.6

Table 2: Errors in the Average Waggle Duration (AWD) estimates for PS-SLDS and SLDS in frames. Last row contains the
GT AWD. Sequence numbers refer to Fig. 16.

Sequence 1 2 3 4 5 6
PS-SLDS 75.9 92.4 83.1 93.4 90.4 91.0
SLDS VI 71.6 82.9 78.9 92.9 89.7 89.2
SLDS VA 71.9 82.8 78.9 92.9 89.7 89.2

Table 3: Accuracy of label inference in percentage. Sequence number refer to Fig. 16.

The quantitative results on average waggle duration (AWD) quantification show that PS-SLDS can robustly quantify the
global dynamics parameters as well. AWD is an indicator of the distance to the food source from the hive and is a valuable
data to the insect biologists. Table.2 shows the errors of PS-SLDS estimate, SLDS estimates of VI and VA methods and
the GT AWDs, from top to the bottom. Again, the best estimatesare marked in bold fonts where PS-SLDS estimates are
consistently superior to the SLDS estimates. The SLDS estimates are obtained by evaluating means of the waggle durations in
the inferred segments. The results again show that PS-SLDS estimates match the ground-truths closely. Especially, PS-SLDS
AWD estimates are impressively correct for the sequence 2, 3, 4 and 5. In contrast, it is observed that the SLDS estimates
are inaccurate. More specifically, the estimates deviate far from the ground truths in most cases except for the sequence4.
The reliability of AWD estimates of PS-SLDS model is based onthe robust duration modeling and the canonical parameters
supported by the enhanced models.

Finally, Table.3 shows the overall accuracy of the inferredlabels in percentage, statistics from PS-SLDS and SLDS VI and
SLDS VA results from top to the bottom. It can be observed thatPS-SLDS provides very accurate labeling results w.r.t. the
ground truth. Moreover, PS-SLDS consistently improves on standard SLDSs across all six datasets. The overall experimental
results show that PS-SLDS model is promising and provides a robust framework for the bee application.

8.5 Discussion

It can be ambiguous to choose the right dimensionality for the hidden continuous statesX . In our experiments, dimension
less than four resulted in poor classification. It is conjectured that such a small dimensions does not provide rich hypothesis
space to represent the motion patterns of dancer bees. On theother hand, some experiments with higher dimensions (>10)
suffered from over-segmentations when the model was trained based on the provided set of training data. The dimension of
four showed the best performance so far. However, the generative power of the model was tested by simulating the dance
trajectories with fourth dimensional continous states anddid not result in realistic trajectories yet. It is expectedthat the
more realistic trajectories can be generated with continuous states in higher imensions (≥ 4) although the limited amount of
training data is the main bottleneck that does not provide enough generalization power now. The analysis on sensitivityon
dimensions and generative power of the model are planned to be reported elsewhere.
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9 Conclusion

In this paper, we addressed the problem of learning and inferring behavioral patterns of a target in the video data. In our
approach, SLDSs are investigated as a promising framework to model a complex motion. Accordingly, the labeling and
quantification problems in computer vision are formed as themodel learning problem and inference problem on the hidden
variables in SLDSs.

In our work, we encounter three challenges in proposing a practical system based on a standard SLDS model : (1)
intractability of inference, (2) limited duration modeling, and (3) absence of systematic means for quantification. All these
three issues were addressed by introducing three solutionswhere they can be used in pairs depending on the problems faced.

First, we addressed the intractability of inference in SLDSs by introducing a novel data-driven MCMC (DD-MCMC)
method. The proposed method can effectively discover the true posterior on the hidden labels even in the presence of
intractability. The observation on the discovered posterior leads us to investigate two limitations of SLDSs for some practical
problems : limited duration modeling and lack of systematicmeans to quantify the global parameters.

Second, we presented a segmental SLDS model to enhance the duration modeling capabilities of SLDSs. The proposed
S-SLDS can incorporate arbitrary duration models which is not supported by the standard SLDSs. Nonetheless, we also
demonstrated that the proposed S-SLDS model can be converted into an equivalent standard SLDS model by introducing
meta variables. Such an equivalency guarantees that the large array of approximate inference algorithms developed for
standard SLDSs are readily reused in S-SLDSs.

Third, parametric SLDS (P-SLDS) is introduced as an extension to provide systematic means to quantify the global
parameters which induce systematic temporal and spatial variations in the motion. The proposed model can simultaneously
infer the hidden labels and the global parameters in an iterative manner via the presented EM algorithm.

Finally, the experimental results on real-world honey bee dance sequences were presented where the honey bee dances
were modeled using a parametric segmental SLDS (PS-SLDS) model, i.e. combination of P-SLDS and S-SLDS. Both
the qualitative and quantitative results show that the proposed enhanced SLDS model can robustly infer the labels and global
parameters based on the learned model. A large number of over-segmentations in labeling which appeared in standard SLDSs
disappear in PS-SLDS results. In addition, the results on the quantification abilities of PS-SLDS show that PS-SLDS can
reliably provide estimates which are very close to the ground truth . It was also shown that PS-SLDS consistently improves on
SLDSs in overall accuracy. The consistent results show thatPS-SLDS improve upon standard SLDSs for the honey bee dance
data and suggest that the three pieces of development in thiswork might be worth being tried for challenging applications
individually or in pairs, e.g., PS-SLDS.

We hope that the presented DD-MCMC method, S-SLDS model and P-SLDS model are valuable additions to the re-
searches related to motion modeling, behavior recognitionand SLDSs. The experimental results suggest that the proposed
methods are promising and provide a concrete framework for avariety of vision problems where the motions that are being
exhibited in the video are too complex to be modeled by HMMs.
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Appendix A. Data-Driven MCMC for SLDS

A. 1. Metropolis Hastings

Data-driven MCMC method adopts Metropolis-Hastings (MH) framework [29, 19] to generate samples from arbitrary distri-
butions. The pseudo-code for the MH algorithm is shown in Algorithm 3 (adapted from [18]).
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Algorithm 3 Pseudo-code for Metropolis-Hastings (MH)

1. Start with a valid initial label sequenceL(1).

2. Propose a new label sequenceL(r)′ from L(r) using aproposal densityQ(L(r)′ ; L(r)).

3. Calculate theacceptance ratio

a =
P (L(r)′ |Z)

P (L(r)|Z)

Q(L(r); L(r)′)

Q(L(r)′ ; L(r))
(28)

whereP (L|Z) is thetarget distribution.

4. If a >= 1 then acceptL(r)′ , i.e.,L(r+1) ← L(r)′ .
Otherwise, acceptL(r)′ with probabilitymin(1, a). If the proposal is rejected, then we keep the previous sample, i.e.,
L(r+1) ← L(r).

Intuitively, step 2 proposes “moves” from the previous sampleL(r) to the next sampleL(r)′ in the space of label sequences
L, which is driven by a proposal distributionQ(L(r)′; L(r)). The evaluation ofa and the acceptance mechanism in steps3
and4 have the effect of modifying the transition probabilities of the chain in such a way that its stationary distribution is
exactlyP (L|Z).

A. 2. Learning

In the learning phase, we collect temporal cues from the training data. Then, a set of models of cues which we call ’label-cue
models’ are constructed based on the collected cues, i.e.{P (c|li)|1 ≤ i ≤ n}. By a temporal cuect, we mean a cue at time
t that can provide a guess for the corresponding labellt. A cuect is a certain statistic obtained by observing the data within
the fixed time range ofzt. We put a fixed-sized window on the data and obtain cues by looking inside it. For example, the
change of angles are collected as temporal cues in the bee application, as illustrated in Fig. 6.

Then, a set ofn label-cue modelsLC
∆
= {P (c|li)|1 ≤ i ≤ n} are learned from the classified cues where the cues are

classified with respect to the training labels. Here,n corresponds to the number of existing patterns, the number of LDSs
in our case. Each label-cue modelP (c|li) is an estimated generative model and describes the distribution of cuec given the
labelli. The learned label-cue models are used later for inference phase to construct proposal priors.

A. 3. Inference

In the inference phase, we first collect the temporal cues from the test data without access to the labels. Then, the learned
label-cue models are applied to the cues and the proposal priors are constructed. A proposal priorP (l̃t|ct) is a distribution
on the labels, which is a rough approximation to the true posterior P (lt|Z). When a cuect is obtained from a test data, we
construct a corresponding proposal priorP (l̃t|ct) as follows :

˜P (lt|ct)
∆
=

P (ct|li)
∑n

i=1 P (ct|li)
(29)

Above, a proposal priorP (l̃t|ct) is obtained from the normalized likelihoods of all labels. The prior describes the likeli-
hood that each label generates the cue. By evaluating all theproposal priors across the test sequence, we obtain a full set of

proposal priorsP (L̃)
∆
= { ˜P (lt|ct)|1 ≤ t ≤ T } over the entire label sequence. However, the resulting proposal priors were

found to be sensitive to the noise in the data. Thus, we smooththe estimates and use the resulting distribution. The proposed
approach is depicted graphically in Fig.6,7,8 for the case of the bee dance domain.

The proposal priorsP (L̃) and the SLDS discrete Markov transition PDFB constitute the data-driven proposalQ. While
the proposal priorsP (L̃) provide the data-driven characteristics, the Markov PDFB adds the model characteristics to a
new sample. Consequently, the constructed proposalQ proposes samples that nicely embrace both the data and the intrinsic
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Markov properties. The proposal scheme comprises two sub-procedures. First, it selects a local region to update based on
the proposal priors. Rather than updating the entire sequence of a previous sampleL(r), it selects a local region inL(r) and
then proposes a locally updated new sampleL(r′). The local update scheme improves the space exploration capabilities of
MCMC and results in faster convergence. Secondly, the proposal priorsP (L̃) and the discrete transition PDFB are used to
assign the new labels within a selected region. The second step has the effect of proposing a sample which reflects both the
data and Markov properties of SLDSs. The choice of the secondstep, product of two PDFs, proposes smoother and more
plausible label sequences in general than other options, e.g., mixture of two PDFs. The two sub-steps are described in detail
below.

In the first step, scoring schemes are used to select a local region within a sample. First, the previous sample labelsL(r)

are divided into a set of segments at a regular interval. Then, each segment is scored with respect to the proposal priors
P (L̃), i.e. the affinities between the labels in each segment and the proposal priors are evaluated. Any reasonable affinity and
scoring schemes are applicable. Finally, a segment is selected for an update via sampling based on the inverted scores.

In the second step, new labelsl′t’s are sequentially assigned within a selected segment using the assignment function in

Eq.30 whereBl′t|l
′

t−1

∆
= P (l′t|l

′
t−1). The implicit dependence of̃lt on ct in Eq.29 is omitted for brevity.

P (l′t) = βδ(lt) + β̄

{

Bl′t|l
′

t−1
P (l̃′t)

∑n
l′t=1 Bl′t|l

′

t−1
P (l̃′t)

}

(30)

Above, the first term with the sampling ratioβ denotes the probability to keep the previous labellt , i.e. l′t ← lt. The

second term with coefficient̄β
∆
= 1− β proposes a sampling of a new labell′t.
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