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Abstract

We introduce an extension of switching linear dy-
namic systems (SLDS) with parameterized duration
modeling capabilities. The proposed model allows arbi-
trary duration models and overcomes the limitation of a
geometric distribution induced in standard SLDSs. By
incorporating a duration model which reflects the data
more closely, the resulting model provides reliable infer-
ence results which are robust against observation noise.
Moreover, existing inference algorithms for SLDSs can
be adopted with only modest additional effort in most
cases where an SLDS model can be applied.

In addition, we observe the fact that the duration
models would vary across data sequences in certain do-
mains, which complicates learning and inference tasks.
Such variability in duration is overcome by introduc-
ing parameterized duration models. The experimental
results on honeybee dance decoding tasks demonstrate
the robust inference capabilities of the proposed model.

1. Introduction

One of the challenging problems in computer vision
is the interpretation of video data. Even assuming that
targets can be reliably tracked, we encounter the prob-
lem of interpreting the tracks obtained. Manual inter-
pretation, as is often done in domains such as biology,
is a time-consuming and error-prone process. Thus,
it is desirable to develop methods that automatically
interpret the data. In this paper we are mostly inter-
ested in “labeling”, which is to automatically segment
motion according to different behavioral modes.

We take a model-based approach, in which we em-
ploy a computational model of behavior in order to in-
terpret the data. The basic generative model we adopt
is the Switching Linear Dynamic System (SLDS) model
[15, 16]. In an SLDS model, there are multiple linear

dynamic systems (LDS) that underly the motion. We
can then model the complex behavior of the target by
switching within this set of LDSs. SLDS models have
become increasingly popular in the vision and graphics
communities as they provide an intuitive framework for
describing the continuous but non-linear dynamics of
real-world motion. For example, they have been used
for human motion classification [15, 16, 17] and motion
synthesis [21].

Nevertheless, the modeling capabilities of a standard
SLDS are limited by the Markov assumption which is
imposed upon the switching process. This process gov-
erns the transitions between LDSs and makes it possi-
ble for an SLDS to represent nonlinear dynamics. As
a consequence of the Markov assumption, however, the
probability of remaining in a given switching state fol-
lows a geometric distribution with the property that
a duration of one time step has the largest probabil-
ity mass. Hence, if we perform inference with stan-
dard SLDSs, the result is often an over-segmentation
of the labels due to the excessive importance attached
to short durations.

Therefore, the use of a more flexible duration mod-
eling technique is required for reliable video interpreta-
tion. However, naive introduction of a duration model
can cause another problem. In certain domains, the
duration patterns vary across data sequences due to
the distinct motion characteristics being exhibited by
the targets : some targets may move slowly with rare
motion switchings while other targets switch their mo-
tions frequently. In such cases, the use of a fixed du-
ration model can lead to inaccurate results when the
temporal patterns of a target differ substantially from
the duration patterns encoded in the model.

In this paper, we present a parameterized duration
model for SLDSs and overcome the problems men-
tioned above. Specifically, the proposed model im-
proves on standard SLDSs by relaxing the Markov as-
sumption at a time-step level to a coarser segment level.
The durations are first modeled explicitly and then



non-stationary duration functions are derived from
them, both learned from data. Consequently, the pro-
posed model has more descriptive duration modeling
power and more robust inference capabilities than stan-
dard SLDSs. Moreover, we show how we can reuse the
existing inference algorithms for SLDSs in the proposed
model. In addition, we adaptively find the correct du-
ration model of a test sequence using an EM algorithm
which is a modified version of the inference algorithm
presented in [13]. First, the sequence is labeled in the
E-step and the duration model is re-estimated in the M-
step, simultaneously improving both estimates in turn.

The remainder of this paper is organized as follows.
The standard SLDS model and the notations to be used
are described in Section 2. In Section 3, we introduce
the duration model for SLDSs, which formulates the
proposed model as a semi-Markov model. Then we
show the parameterization of the duration model and
an EM-based inference algorithm for the model. Fi-
nally, we demonstrate improved interpretation capa-
bilities through experimental results on the honeybee
dance decoding tasks.

2. Backgrounds

2.1. Switching Linear Dynamic Systems
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Figure 1. Switching linear dynamic systems (SLDS). The
graphical model within the dashed rectangle is an LDS.

An LDS is a time-series state-space model that com-
prises a linear Gaussian dynamics model and a linear
Gaussian observation model. The graphical represen-
tation of an LDS is shown in the dashed rectangle in
Fig.1. The Markov chain in the middle represents the
state evolution of the continuous hidden states x;. Ad-
ditionally, it assumes a prior Gaussian density p; on
the initial state x;. The middle chain is denoted as
X2 {z¢|1 <t < T}, together with the observations

z 2 {#|1 <t < T} at the bottom. The lincar Gaus-
sian conditional dependencies on every edge and the
Gaussian prior p; defines an LDS [1].

An SLDS is a natural extension of an LDS, where

we assume the existence of n distinct LDS models M 2
{M;|1 <1 < n}, where each model M; is defined by the

LDS parameters. However, we now have an additional

discrete Markov chain L 2 {l]1 < ¢ < T} at the top
that determines which of the n models M; is being used
at every time-step. We call l; € M the label at time ¢
and L a label sequence.

In addition to a set of LDS models M, we spec-
ify two additional parameters: a probability distri-
bution m(l;) over the initial label /; and an n X n
transition matrix B that defines the switching be-
havior between the n distinct LDS models. In sum-
mary, a standard SLDS model is defined by the tuple

e {W,B,Mé{Ml\l ngn}}.

2.2. Related work

Switching linear dynamic system (SLDS) models
have been studied in a variety of research communi-
ties ranging from computer vision [3, 12, 13, 15, 16],
computer graphics [17, 21], tracking [2], signal process-
ing [4] and speech recognition [18], to econometrics [9],
visualization [22], machine learning [6, 7, 11], control
[20] and statistics [19].

It is formally proved that the exact inference in
SLDS model is intractable [10]. Thus, there have been
research efforts to derive efficient approximate infer-
ence methods. In this paper, we adopt the approximate
Viterbi algorithm and variational inference method de-
scribed in [15, 16].

The problem of duration modeling in HMMs has
been addressed in the speech recognition communi-
ties, and several extensions to HMM models which pro-
vide enhanced duration modeling have appeared [5, 14].
The contribution of our work is that we validate the
effectiveness of the idea in the SLDS framework and
extend it to a parameterized form.

The idea of parameterized SLDS (P-SLDS) model
appeared in [13] where an EM algorithm to perform in-
ference with unknown global parameters was proposed.
However, P-SLDS still suffers from the restriction to ge-
ometric durations. Our work improves on P-SLDS by
allowing an arbitrary duration model which enhances
the role of global parameters significantly.

3. SLDS with duration model

The duration models of standard SLDSs, i.e. the
probability of remaining in a given switching state, are
limited to a class of geometric distributions P(d) =
a? (1 — a) where d denotes the duration of a given
switching state and a denotes the Markov transition
probability of a self-transition. As a consequence, a
duration of one time-step come to possess the largest
probability mass (see Figure 2(b)).



leftturn , /
' waggle \ - /

Figure 2. (a) A stylized honey bee dance. (b) A histogram
of training data (gray), Gaussian (blue) and a geometric
duration model (red).

In contrast, many natural temporal phenomena ex-
hibit patterns of regularity in the duration over which
a given model or regime is active. In such cases, the
standard SLDS model would be unable to effectively
encode the regularity of durations in data. The honey
bee dance depicted in Fig.2(a) is an example: a dancer
bee will attempt to stay in the waggle regime for a cer-
tain duration to correctly communicate the distance
to the food sources. In such cases, it is clear that the
actual duration diverges from a geometric distribution.

For example, we learned a duration model for the
waggle phase using a realistic Gaussian density and a
conventional geometric distribution from a real world
honey bee dance data. Figure 2(b) shows the histogram
of actual training data (gray bars), the learned geomet-
ric (red) and Gaussian (blue) distributions for compar-
ison. It is observed that the learned geometric dura-
tion model does not exhibit any pattern of regularity in
duration data. Hence, standard SLDS models are in-
appropriate for data which exhibits temporal patterns
that deviate from geometric distributions.

3.1. Duration modeling in SLDS

We introduce a duration model for SLDSs which
improves standard SLDSs by relaxing the Markov as-
sumption at a time-step level to a coarser segment level.
The durations are first modeled explicitly and then
non-stationary duration functions are derived from
them, both learned from data. Consequently, the re-
sulting model has more descriptive power in modeling
the duration, and provides improved inference capabil-
ities. Furthermore, we show that one can reuse a large
array of existing approximate inference algorithms for
standard SLDSs in the resulting model with the advan-
tage of duration modeling.

Conceptually, we deal with segments of finite du-
ration, i.e. each segment s; 2 (l;,d;) is described
by a tuple of label I; and duration d;. Within each
segment, a fixed LDS model M, is used to generate
continuous state sequence for the duration d;. Sim-
ilar to SLDSs, we have an initial distribution (i)
over the initial label [y of the first segment s;, and

Figure 3. A schematic sketch of an S-SLDS with explicit
duration models.

an n x n semi-Markov! label transition matrix B that
defines the switching behavior between the segment
labels. The tilde denotes that the matrix is a semi-
Markov transition matrix. Additionally, however, we
associate each label [ with a fixed duration model Dy,
represented as a histogram. We denote the set of n

duration models as D 2 {D;(d)|1 <1 < n}, and refer
to them as explicit duration models (a term we bor-
rowed from the HMM community [5, 14]). In sum-

mary, the proposed model is defined by a tuple © 2
{ﬂ,B,D Sphi<i<n},ME{ME<I< n}}.
A schematic depiction of the model is given in Fig.

3. The top chain is a series of segments where each
segment is depicted as a rounded box. In the model,

the current segment s; 2 (l;,d;) generates the next
segment s;11 in the following manner: First, the cur-
rent label [; generates the next label /;;; based on the
transition matrix B; then, the next duration d;;; is
generated from the duration model for the label /; 41,
ie. diy1 ~ Dy, (d). The dynamics for the continu-
ous hidden states and observations are identical to a
standard SLDS : a segment s; evolves the continuous
hidden states X with a corresponding LDS model M;,
for the duration d;, then the observations Z are gener-
ated given the labels L and the continuous states X.
Now, we present a formal graphical representation of
the proposed model : the conceptual generative model
depicted in Fig. 3 is transformed into a concrete model
that uses conventional model switching at every time-
step. To maintain the same duration semantics, we
introduce counter variables C' 2 {a]l <t < T}
The resulting graphical model is illustrated within the
dashed rectangle in Fig.4, and is identical to the graph-
ical model of an SLDS in Fig. 1, but with additional
top-chain representing a series of counter variables C

1Semi-Markov models apply the Markov assumption at
coarser segment level rather than at conventional time-step level
: the label [; of the current segment s; only depends on the
previous label I;_1, however, the Markov assumption is not ap-
plied to durations, i.e. two successive durations d; and d;_; are
independent given the labels.



Figure 4. Graphical model within the dashed rectangle is
an SLDS with duration modeling. The global temporal pa-
rameter at the top parameterizes the switching behaviors.

which is analogous to the ideas studied in the speech
recognition community, e.g. see [23].

The counter chain C' maintains an incremental
counter which evolves based on a set of non-stationary
transition functions (NSTFs) U é{Ul(c)|1 <1 < n}.
An NSTF U; for the current label I; defines the con-
ditional dependency of the next counter variable c;41
given the current counter variable ¢; and the label I;
: Ui(er) = P(ciz1]ct,1). The system can either incre-
ment the counter, i.e. ¢;41 < ¢; + 1, or reset it to one,
i.e. ¢gp1 < 1. If the counter variable ¢;1; is reset, then
a label transition occurs : a new segment is initialized.
A new label [, is chosen based on the label transition
matrix B. If the counter simply increments, then the
new label is set to be the current label I, i.e. li41 < I4.

While previously introduced explicit duration mod-
els D for the model in Fig. 3 are more intuitive and
readily obtained from the labeled data, it is neces-
sary to transform the explicit duration models D into
an equivalent NSTFs U to incorporate the concep-
tual knowledge about durations into a graphical model
framework in Fig. 4 : two models are equivalent,
but the latter NSTF representation provides a form
in which one can systematically infer the labels at all
time-steps with unknown segmentation points.

The equivalent NSTFs U are exactly evaluated from
the explicit duration models D as follows :

max
Dl

1= | Du(e)/ Y, Diler) (1)

d=c;

Uler) =

Above, D*** denotes the maximum duration allowed
for the [ th model. Intuitively, the latter composite
term on the r.h.s. denotes the probability to reset

the counter variable c¢;y;. It represents the ratio of
the probability of current duration c¢; over the sum of
probability mass in the future, i.e. durations equal or
greater than c;.

In summary, an SLDS with duration mod-

eling is completely defined by a tuple © 2
{mBUS Ul <I<n}, M2 (ML <I<n}]
where the NSTFs U are obtained from the explicit
duration models D.

3.2. Learning and Inference

Learning in the proposed enhanced model is anal-
ogous to learning in SLDS using EM [15, 16]. The
initial distribution 7w and LDS model parameters M
are learned in exactly the same manner as in SLDS.
However, it is necessary to learn the additional dura-
tion models D and the semi-Markov transition matrix
B. These two additional model parameters only influ-
ence the label sequence L, and hence the ML estimates
of these two parameters can be iteratively evaluated
from a segmental representation of the label sequence
L inferred in every E-step, i.e., L = U‘j‘ilsj. The spe-
cific functional forms of ML estimation depends on the
choice of duration models.

Inference in the proposed model is feasible by apply-
ing any existing approximate inference algorithms for
standard SLDSs. This is possible as we can convert the
proposed model with duration modeling into an equiv-
alent SLDS. The model conversion into an equivalent
SLDS is possible by applying the standard technique of
merging multiple discrete variables into meta variables.
Specifically, all possible pairs of a label ; and a counter
value ¢; are merged and form a set of “l¢” variables
where £C & {e)))1 <1 < n,1 <¢ <D} To
obtain a complete SLDS model, an equivalent n’ x n’
transition matrix B’ where n/ 2 >y Dt s con-
structed from the semi-Markov transition matrix B and
the NSTFs U, as follows :

Uy, (¢;) incr.
lel,cl),(lj,(,]) BlL)lJ(l - Ulz (cl)) reset (2)
0 else

In Eq.2, the three cases differ as follows : (increment)
l; =1; and ¢; = ¢; + 1. (reset) ¢; = 1. (otherwise) all
other cases. In addition, the initial label distribution
7’ for the equivalent SLDS is set to be a uniform distri-
bution as there is no guarantee that the target in the
video starts its behavior in the first frame.

However, it is important to consider an efficient im-
plementation because the naive reuse of existing al-
gorithms may induce substantial computational over-
head : it will result in an additional computational
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Figure 5. Bee dance sequences used in the experiments. Each dance trajectory is the output of a vision-based tracker.

cost factor of O(D2,,,) where D, 4. = max{D"** 7,
i.e. the ratio between the number of all lc states and
original discrete states. This overhead applies to the
inference methods that involve pairwise computations
between two successive time-steps, e.g. approximate
Viterbi [15] or a variational method [6, 15] with orig-
inal overall performance O(|L|?). However, we ob-
serve that only |L| + 1 transitions are allowed for every
lc state : |L| resets and one increment. Hence, we
can achieve an overall performance of O(Dyaz|L|?) =
O(Dmaz|L| x (JL| + 1)) via exploiting this fact, which
results in reduced overhead by a factor of O(Dpaz)-
Consequently, we can adopt the more powerful dura-
tion modeling capabilities at the cost of a modest com-
plexity increase over the standard SLDS model.

3.3. Parameterized duration model

We propose the use of a parameterized duration
model to deal with the varying duration patterns in
data sequences. We refer to this model as PS-SLDS.
In many applications, certain global factors ®; system-
atically vary the duration models D across the data
sequences. For example, honey bees stay in waggle
phase for shorter or longer times depending upon the
individual sequences, i.e. the duration model of waggle
phase can be represented as a Gaussian with varying
means, where the means are proportional to the dis-
tances to the food sources. In such cases, it is impor-
tant to identify the set of correct Gaussian means ®;
to infer correct labels.

Such global temporal parameters ®; can be addi-
tionally encoded into the graphical model framework
where ®; appears at the top of Fig. 4 and influences
the incremental counter chain C'. The depicted graph-
ical model has some similarity to the parametric SLDS
model (P-SLDS) in [13]. The major difference is that
our work improves on P-SLDS by allowing arbitrary
duration models and removing the constraint that the
global temporal parameters ®; be restricted to the class
of geometric distributions.

Inference in PS-SLDS can be performed using the
EM algorithm summarized in Algorithm 1 which is an

(4) () (6)

Algorithm 1 EM for inference in PS-SLDS

e E-step : obtain the posterior distribution on la-
bels L : _ A _
fi(L) = P(L,|Z,0,%;) (3)

over the hidden label sequence L and the state
sequence X, using a current guess for the global
temporal parameters ®;.

e M-step : improve the duration models by maxi-
mizing the expected log-likelihood:

Pt — argmax <logP(L|@7®t)>f}-(L) (4)

t

adapted version of the inference algorithm for P-SLDS
[13]. In the E-step, we infer the labels L given the cur-
rent set of global temporal parameters ®; and the fixed
SLDS parameters © described in Section 2.1. Then, we
update the global temporal parameters ®; by maximiz-
ing the expected log-likelihood based on the obtained
posterior distribution on labels L. Here, (-), denotes
the expectation of a function () under a distribution p.
Hence, we simultaneously improve labeling results and
adaptively find duration models through the iterative
scheme of EM.

4. Experimental Results

The experimental results show that PS-SLDS pro-
vides improved labeling abilities over the standard
SLDS. We used six dancer bee tracks shown in Fig. 5,
which were obtained automatically using a vision-based
tracker [8]. The 6 video sequences were of length 1058,
1125, 1054, 757, 609 and 814 frames, respectively. The
observation data were a time-series sequence of vectors
2t = [z, yr, cos(6y), sin(@t)]TWhere z¢,y; and 6; respec-
tively denote the 2D coordinates and the heading angle
at time ¢. The triangular function elements in the ob-
servations were introduced to make the system to be
able to learn the location-invariant rotating motions.
Note from Fig.5 that the tracks are noisy and much
more irregular than the idealized stylized dance proto-



type shown in Fig.2(a). The red, green and blue col-
ors represent right-turn, waggle and left-turn phases.
The ground-truth labels L are marked manually for the
comparison and learning purposes. The dimensionality
of the continuous hidden states was set to be four.

Given the relative difficulty of obtaining this data,
which has to be labeled manually to allow for a ground-
truth comparison, we adopted a leave-one-out (LOO)
strategy. The parameters are learned from five out of
six datasets, and the learned model is applied to the
left-out dataset to perform labeling. Six experiments
are performed using both PS-SLDS and the standard
SLDS, switching the test data sequence.

4.1. Learning from training data

The parameters of both PS-SLDS and standard
SLDS are learned from the data sequences depicted
in Fig. 5. The standard SLDS model parameters were
learned in a standard manner without any restriction
on the parameter structures based on the training la-
bels L and observations Z, as described in [15, 16]. The
covariances of duration models and the semi-Markov
transition matrix B were learned from the training data
as well where we additionally provided manually found
global temporal factors, i.e. means of Gaussian dura-
tion models ®;.

4.2. Inference on test data

In the test phase, the set of learned parameters were
used to infer the labels of the left-out test sequence. An
approximate Viterbi method (VI) [15] and variational
approximation (VA) methods [6, 15] were used to infer
the labels in standard SLDSs. The initial probability
distributions for the VA method were initialized based
on VIlabels. Simply, VI labels were trusted by a proba-
bility of 0.8 and the other two labels at every time-step
are assigned probability of 0.1 respectively.

For the inference in PS-SLDS, a VI method was used
in the E-step for labeling. A VI method is adopted as
it is simple and reported to be comparable to the other
methods [15].

The experimental results show the superior recogni-
tion capabilities of the proposed PS-SLDS model over
the SLDSs. The label inference results on all six se-
quences are shown in Fig.6. The four color strips in
each figure represent SLDS VI, SLDS VA, PS-SLDS
VI and the ground-truth (G.T.) labels from the top to
the bottom. The x-axis represents time flow and the
color is the label at that corresponding video frame.

The superior recognition abilities of PS-SLDS can
be observed from the presented results. The PS-SLDS
results on the first three sequences match closer to the
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Figure 6. Label inference results. Estimates from standard
SLDS and proposed models are compared to the manually-
obtained ground truth (GT) labels. Key : waggle (green),
right-turn (red), left-turn (blue).

ground truths than the SLDS results. This is impor-
tant as the sequences 1, 2 and 3 are challenging : the
observation data were more noisy and the patterns of
switching in the dance modes and the durations in
each dance regime are more irregular than the other
sequences. The PS-SLDS results on sequences 5, 6 and
6 were mostly superior or comparable to SLDS results.

It can be observed that most of the over-
segmentations that appear in the SLDS labeling results
disappear in the PS-SLDS labeling results. PS-SLDS
estimates still introduce some errors, especially in the
sequences 1 and 3. However, given that even an ex-
pert human can introduce labeling noise, the labeling
capabilities of PS-SLDS are fairly good.



Sequence 1 2 3 4 5 6

PS-SLDS | 75.9 | 92.4 | 83.1 | 93.4 | 90.4 | 91.0
SLDS VI 71.6 82.9 78.9 92.9 | 89.7 | 89.2
SLDS VA | 71.9 | 82.8 | 78.9 | 92.9 | 89.7 | 89.2

Table 1. Accuracy of label inference in percentage. Se-
quence numbers refer to Figure 5.

Finally, Table.1 shows the overall accuracy of the
inferred labels in percentage, statistics from PS-SLDS
and SLDS VI and SLDS VA results from top to the
bottom. It can be observed that PS-SLDS provides
very accurate labeling results w.r.t. the ground truth.
Moreover, PS-SLDS consistently improves on standard
SLDSs across all six datasets. The overall experimen-
tal results show that PS-SLDS model is promising and
provides robust inference capabilities.

5. Conclusion

We presented a parameterized duration modeling
technique for SLDSs. It overcomes the limitations of
the simple geometric duration models induced in stan-
dard SLDSs, and actively adapts to the duration pat-
terns in the test data effectively.

The learning and inference algorithms for the pro-
posed model were introduced and an efficient imple-
mentation technique was discussed. The proposed
model provides more powerful duration modeling ca-
pabilities than the standard SLDS at a modest cost,
and its benefits have been validated experimentally.
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