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Abstract

This paper aims to present a structured variational inference algorithm for switching linear dynamical systems
(SLDSs) which was initially introduced by Pavlovic and Rehg [14]. Starting with the need for the variational ap-
proach, we proceed to the derivation of the generic (model-independent) variational update formulas which are
obtained under the mean field assumption. This leads us to the derivation of an approximate variational inference
algorithm for an SLDS. The details of deriving the SLDS-specific variational update equations are presented.

1 Introduction

Switching Linear Dynamical System (SLDS) models have been studied in a variety of problem domains. Represen-
tative examples include computer vision [2, 11, 14, 15, 16], computer graphics [21], speech recognition [4, 13, 18],
econometrics [8], machine learning [7, 10], biology [12] and statistics [20]. While there are several versions of SLDS
in the literature, this paper addresses the model structure depicted in Figure 2. An SLDS model represents the nonlinear
dynamic behavior of a complex system by the switching among a set of linear dynamic models over time. In contrast
to HMM's, the Markov process in an SLDS selects from a set of continuously-evolving linear Gaussian dynamics,
rather than a fixed Gaussian mixture density. As a consequence, an SLDS has potentially greater descriptive power.
Offsetting this advantage is the fact that exact inference in an SLDS is intractable, which complicates estimation and
parameter learning [9].

The structured variational inference method for SLDS was first introduced by Pavlovic and Rehdiidiigh,
the presentation in [14, 16] is rather brief and hence, understanding the presented method needs substantial knowledge
of both SLDS and variational methods. In addition, the derivation was based on a constrained SLDS with a fixed
measurement model. This paper aims to provide the knowledge-base to facilitate the understanding of the variational
inference method for SLDS [14, 16], and present thorough derivations of more generic variational inference formulas
for an unconstrained SLDS model. We also demonstrate that the constrained model can be easily obtained as a special
case of the generic variational inference formulas, and show that the results match those reported by Pavlovic and
Rehg [14].

1The variational methods presented by Gharahmani and Hinton [7] is very closely related to the variational method presented in this paper.
However, the involved model is slightly different.



2 Need for Variational methods

In the probabilistic inference framework, we aim to evaluate a posterior proba®ttyZ) on the hidden variabldd
given a set of visible (evidence) variabléss follows :

P(H[Z) = @)

The joint probabilityP(Z,H) on a set of all variables on r.h.s. of (13) can be obtained exactly for an arbitrary set
of valuesZ,H once the priors and the conditional dependencies of the model are properly set up. Thus, inference on
the hidden nodebl is straightforward once we can compute the evideP@®). It may look simple. However, the
the evidence given a model can be evaluated only through the exhaustive enumeration/integration of all the possible
values for the hidden variablés w.r.t the joint probability (model) :

Pz) — /H P(Z,H) )

In general, the integration in (2) becomes computationally intractable for several reasons. First, the hidden vari-
ablesH are continuous variables but there may not be an analytical solution available for (2). Second, the interdepen-
dencies within and across the hidden varialtlemay be exponentially complex, i.e., (it can even form a complete
graph from the graph theoretical point of view), which will cause exponential increase in the number of enumerations
for the concatenated hidden variable values. Clearly, albeit the hidden variables are discrete, once the number of
variables is above some thresholds, the necessary enumeration would be intractable. Third, it is probable that the num-
ber of variables will monotonically increase with time in case we need to deal with the inference tasks on a temporal
model. In such cases, the number of variables will increase linearly with time, which will become intractable soon with
few exceptions such as Kalman filtering or RTS smoothing for linear dynamical system [1, 19] or forward-backward
algorithm for HMM [17]. Consequently, one has to resort to an alternative approach to compute the posterior in (13)
in case the evaluation of evidence in (2) is intractable.

As mentioned above, for most realistic models the joint postd®{@; H) is intractable and consequently, the
integration in (2) cannot be performed analytically. A common approach to overcome this intractability is to use
sampling techniques such as Markov Chain Monte Carlo (MCMC) to evaluate the integral. Such techniques, while
providing any level of accuracy desired, tend to be slow in general.

Variational methods evaluate the integral (2) by computing an approximating distribution to the actual joint pos-
terior. The approximating distribution is chosen so that the integration becomes easy to perform and can be handled
analytically. In the process, a tractable approximating distribution to the posterior over hidden vePigb|E$ is
also obtained. In this case it is said that a posterior on hidden variables has been learned. Hence, variational learning
can be seen as almost a side effect of the use of variational techniques to compute the evidence of a model.

3 Variational method

To evaluate the evidend®(Z) and equivalently to assess the postefgH|Z) as exactly as possible, variational
methods find a functional form of a lower bound for the eviddh@) and maximize that functional until it converges.

The lower bound functional associates variational approximation distribQbh) which is an approximate posterior

for the target (true) posterid?(H|Z). However, as mentioned earlier, we should be able to handle the updates (lower
bound maximizations) analytically by carefully selecting the variational distribufigd). Generally, variational
methods take divide-and-conquer approach, i.e. we have an approximate pd3terjoof a factored form where

the factors are either a set of clusters or even fully factorized individual variables with which analytical updates are
feasible. Then, we update the factors@(H) iteratively until they all converge. In this way, the lower bound is
guaranteed to improve monotonically, and we can obtain a good approximation for the evidence once it converges.



3.1 Lower bounding the evidence

Variational methods use Jensen’s inequality to construct a lower bound to the log evidence of the model. This is done
as follows :

logP(Z) — log /H P(Z,H)

= log / Q(H)Péz(;_:_;)

P(Z7 H)
> / Q(H & @3)

whereQ(H) is an arbitrary distribution on the hidden variables used to construct the lower bound, and the last relation
is obtained using Jensen’s inequality. This bound can also be alternately obtained as

P(Z,H)
P(H[2)

) Q(H)P( H)
= [ aHsg B

_ (Z,H) )
= /Q )iog (H) */Q 2
(Q) +KL(Q[|P) (4)

logP(Z)

where we have made use of the fact tfipQ(H) = 1. KL(Q||P) is the KL-divergence betwedp(H) and the posterior
over hidden variableB(H|Z). Since the KL-divergence is always positive (or, of course, zer(Q) is a lower bound
on the evidence, which confirms our result from (3).

Note that the sum in the right hand side of (4) is constant since it is the log evidence of the model. Hence, we
can proceed to approximate the evidence by minimizing the KL-divergen¢®}®) or by maximizing the lower
bound£(Q), both of which are equivalent and yield the same result. In either case the optimization is performed wrt
theQ(H) distribution. The approximate posterior on the hidden variables that is obtained using variational learning is
then given by

P*(H|Z) = argmax £(Q)=argmin KL (Q||P) (5)
Q(H) Q(H)

In this document, we will take the approach of maximizing the lower batif@@) since this is more popular.

3.2 Deriving the variational updates

From the preceding discussion, it can be seen that learning the posterior on the hidden variables (and evaluating
the evidence) through a variational approximation can be done by maximizing the lower bound on the log evidence.
However, maximizingZ(Q) without any constraints o®(H) is fruitless. To see this, we differentiatg Q) wrt Q(H)

after adding a Lagrangian term that ensures @(&t) is a proper distribution, and set the derivative to zero :

dQC(jH)<L(Q)+)\(1—/HQ(H)>> = logP(Z,H)—logQH)—1-A=0 (6)

Hence,

QH) O P(ZH)



Obviously, the true joint distribution maximizes the bound but this is exactly the distribution that we were trying
to avoid having to work with in the first place. Also note that we have not introduced any approximations in the above
derivation.

To makeQ(H) tractable, we make the assumption, called rinean field assumptiorthat all the variables in
the setH are independent, so th@(H) can be factored into the distributions on the individual variabled jin.e.

Q(H) =i Qi(Hi) Vis.t.Hi € H. In making this assumption, we constr&diH ) to those distributions that adhere to
the independence assumptions.

Given the mean field assumption, we can write the lower bound on the log evidence:

" P(Z,H)
/H<|jQ.<H.>> 09— S
/H<r|Qi(Hi)> 0gP(ZH) ~ ¥ | Q(H)IogQi(H) (7)

which in turn can be written by separating out the termQiifH;) as

/Q, ) (logP(Z,H)) ) ~qi(Hi) /Q, )logQi(H;) + other terms (8)

L(Q)

where (log P(Z,H))NQi(Hi) is the expectation of the log joint posterior wrt to the product of all @seexceptQ;.
We can maximize the bound by performing the maximization wrt to €adhdividually. In detail, we perform the
maximization for 8 wrtQ; in exactly the same fashion as (6) :

(logP(Z,H)) .qH) —109Qi(Hi) —1-A = 0 )

Finally, we get the variational update equation for every factor/clgtet; ) under the mean field assumption :
1

Qi(Hi) = expllogP(Z,H)) q ) (10)

Above, ¢ denotes a normalizing constant. Note that these equations are coupled sin€g dagends on all the
others. The set of equations obtained using (10) are also dademtipoint equationsas they describe the properties
that should be maintained between the components in the decoupled mean field model. @idaisibutions are
iteratively updated using the corresponding fixed point equations in (10).

The optimization performed above is unconstrained regarding the form €] thstributions. The form of th€
distributions is given by the form of the true joint posted®{Z,H) from (10). However, it is also possible to assume
some parametric distribution for th@ and constrain the optimization to this family. If the parametric form of the
distributions is written agj;(Hi|Ai), the optimization performed above can be modified to directly obtain the values
of the A;, referred to as theariational parametersinstead of theQ;. Such a direct optimization is only tractable
if the lower bound in (7) can be computed relatively efficiently. This is turn is possible if the log joint posterior
logP(Z,H) is a polynomial and the parametric distributid@gHi|A;) have only a few moments. If these conditions
are satisfied, variational learning can be reduced to a simultaneous, (possibly) non-linear minimization problem on
the variational parameters. We show a specific example of such variational approximate inference for switching linear
dynamic systems (SLDSs). We first describe SLDSs and the notations to be used in Section 4. Then, we proceed and
present the structured variational inference method for SLDSs in Section 5.

4 Switching Linear Dynamic Systems

A switching linear dynamic systems (SLDS) model describes the dynamics of a complex physical process by the
switching between a set of linear dynamic systems (LDS).



4.1 Linear Dynamic Systems

686 ¢

Figure 1: A linear dynamic system (LDS)

An LDS is a time-series state-space model[1, 19] that comprises a linear Gaussian dynamics model and a linear
Gaussian observation model. The graphical representation of an LDS is shown in Fig.1. The Markov chain at the top
represents the state evolution of the continuous hidden staf€le prior densityp; on the initial state; is assumed
to be normal with meary and covarianc&y, i.e.,x; ~ AN (Xo, Zo).

The statex is obtained by the product of state transition (system) m&rand the previous state ; corrupted
by the additive white noise, zero-mean and normally distributed with covariance mafrix

% = FX_1+W wherew ~ A((0,U) (11)

In addition, the measurementis generated from the current statehrough the observation matrkt, which is then
corrupted by the white observation noige

z = Hx + v wherev; ~ A((0,R) (12)

Thus, an LDS modeW is defined by the tupl# 2 {(x0,20), (F,U),(H,R)}. Exact inference in an LDS can be done
efficiently using the RTS smoother [1, 19].

4.2 Switching Linear Dynamic Systems

Figure 2: Switching linear dynamic systems (SLDS)

An SLDS is a natural extension of an LDS, where we assume the existendistinct LDS modeli £ {Mj|1<
i < n}, where each modd¥j; is defined by the LDS parameters. The graphical model corresponding to an SLDS

is shown in Fig.2. The middle chain, representing the hidden state seqlsie%qwl <t < T}, together with the
observationg £ {z|1 <t < T} at the bottom, is identical to an LDS in Fig.1. However, we now have an additional

discrete Markov chait £ {lf|]1 <t < T} that determines which of themodelsM; is being used at every time-step.
We calll; € M thelabel at timet andL alabel sequence



In addition to a set of LDS modeM, we specify two additional parameters: a multinomial distributifia) over
the initial labell; and am x n transition matrixB that defines the switching behavior betweenrtlagstinct LDS mod-

els, i.e.Bjj £ P(l;]l;). In summary, an SLDS model is completely defined by the t(ﬂ)%{n, B,M e {Mjli = 1..n}}.

4.3 Learningin SLDS via EM

The EM algorithm [3] can be used to obtain the maximume-likelihood paramétefsan SLDS. The hidden variables
in EM are the label sequenteand the state sequenXe Given the observation daia EM iterates between the two
steps as in Algorithm 1.

Algorithm 1 EM for Learning in SLDS
e E-step : Inference to obtain the posterior distribution :

fi(L,X) 2 P(L,X|Z,0) (13)
over the hidden variabldsandX, using a current guess for the SLDS parame®rs
e M-step : Maximize the expected log-likelihoods :

©'"! — argmax (logP(L,X,Z|®) i x -
m :

Above, (-), denotes the expectation of a functibhunder a distributioV. The exact E-step in (13) is proved to
be intractable[9] and motivates the development of approximate inference techniques.

4.4 Alternative approximate methods for inference in SLDS

Other than the variational inference method, previous work on SLDSs introduced various alternative approximate
inference schemes. The early examples include GPB2 [1], and Kalman filtering [2]. More recent examples include
an approximate Viterbi method [16, 15], expectation propagation [22], sequential Monte Carlo methods [6], iterative
Monte Carlo methods [5], Data-Driven MCMC [12] and Gibbs sampling [18].

5 Structured Variational Approximation for SLDS

This section describes a structured variational approximations for switching linear dynamic system (SLDS) [13, 14].
The graphical representation of a standard switching linear dynamic system (SLDS) is shown in Fig.3. There is a
switching between the discrete statgsthe label sequence, at the top chain. Additionally, the states generate an
observation with the switching measurement models, which is represented by the arcs from a discrigteo sate
corresponding observation noge

The exact inference in SLDS is proved to be intractable [9]. By exact inference, we mean the exact evaluation
of P(L,X|Z). Thus, we instead rely on an approximate variational inference technique to evaluate the approximate
posteriorP(L, X|Z).

To approximate an intractable exact posteR0L, X,|Z), we use an approximate posterf@tL, X) which can be
factorized into two separate distributio@sL) andQ(X) based on the presented mean field assumption :

PL,X]Z) ~ Q(LX)=Q(L)Q(X) (15)



Figure 3: Switching Linear Dynamic System (SLDS) with a fixed measurement model.

Given the factorized forms in (15), we can obtain the update steps fodfbthandQ(X) using the generic update
formula (10) :

QX) « éexp(logP(L,X,Z»Q(L) (16)

QL) « C—texp(log P(L,X,Z))ox) a7)

The update formulas (16) and (17) look deceptively simple. In fact, a significant amount of work is involved
in actually obtaining the expected joint log-likelihodd ) 2 (logP(L,X,Z)) wrt Q(L) or Q(X). In the following
discussion, we expand the log-likelihoddin (18) and present the detailed derivations of each update formula in the
separate subsections.

The joint log-likelihood£Z 2 logP(L,X,Z) of an SLDS model can be written as :

L = logP(L)+logP(X|L)+logP(Z|L,X)

Then, L can be expressed in a slightly more expanded form using the notation introduced in Section 4 :

L = logP(l3|m) + ilog P(lt[li-1,B)
t=
5[y () a)] onind o)
_;ti{ [(Xt ~FRo1) Ut (e - Fltxtfl)] +log|Uy |+ nlog(2n)} (18)

_% T {[(Zt—HhXt)/Rl:l(zt—HhXt)] +Iog|R|[|+n|og(2n)}
=

The matrices with superscripts or subscripts in (18) denote that the matrices are associated with the corresponding
LDS components.



5.1 Update forQ(X).
To solve (16) to updat®(X), we need to evaluate the expectation of (18) @t ) :

(Lo = 1 {x’1<<281))—1> X1_2x’1<(281))—lxé|1)> + <X(()|1)/ (zgl))—lxgl)> }
Q(l1) Q(ly)
T

2 Q(l1)
_;t {)4 <U|:1>Q(|t) X =24 <U':1F" >Q(It) X1t X <F'1U[1Fh >Q<h) XH} (19)
S ! 5—
;t= {4 <R:1>Q<'t> -2 <R':1H't >Q(|t) XX <H't R >Q(It) Xt}

Above, the PDF)(l1) andQ(ly) are the marginalized densities of curr€){L). The notation= denotes that the
two terms on the left and right sides are equivalent up to a constant. It can be observed that the form of the expected
log-likelihood in (19) has the form of the joint log-likelihood function of a time-varying LDS. Thusassimeén
advance that the expected Iog-likeliho()fj)Q(L) can be re-expressed as (21) by introducing a set of new variational
parameterdy, and investigate the relevant parameters. The set of variational parametmesdefined in (20) :

Ax - {{Q‘}Ll’{F't}tT:y{Ut}tT:Za{'ft}thzﬁA(o’io} (20)
gy = 3 [0a=%0) (o) " 0a—0)
l LN ~

*% [(thlftxtfl) Ut_l(Xt*Ftthl)} 1)

14 N -
_Et; [(zt —Hix) R (% — Htxt)}

Every component in the variational parametggscan be obtained exactly and efficiently by matching the coeffi-
cients of every term in (19) and (21). The procedure presented in Algorithm 2 provides an simple and efficient way to
do so.

With the components obtained under this scheme, one can easily prove that (19) and (21) are équisent
results in Algorithm 2 are slightly more involved than the update formulas reported by Pavlovic and Rehg, Eq.(6) in
[14]. This is due to the fact that Pavlovic and Rehg [14] adopbrstrainedSLDS model with a fixed measurement
model. Thus, the derivation presented in this section is more general in the sense that it is derived without such
constraints. The derivation of variational inference method for a constrained SLDS model is described in Section 5.3.

Now, we can observe that the expected Iog-likelih@ﬁ%(u is exactly equivalent to the joint log-likelihood of a
time-varying LDS with the set of obtained variational paramekgrsThe corresponding model is illustrated in Fig.4.

Thus, we perform RTS-smoothing on a time-varying LDS with the obtained variational parameters which are

actually the series of varying LDS paramet&ss= {{F}}Ll,{ﬂt}thl,{L]t}tT:?{lft}tT:z,)‘(O,io}. In other words,
we simply evaluat®(X|Ax, Z). Finally, we updat&(X) :

QX) «— P(X[Ax,Z) (22)

?In fact, there are B+ 1 terms in (19), and there are only 4/ariational parameters in (21). Hence, the presented algorithm is not exact.
However, it is often the case that the priors are uninformative Gaussians with very large covariances. Thus, the slight loss in exactness for the priors
does not affect the performance of the algorithms in general. In case an SLDS has a strong prior, this can be easily resolved by introducing an
additional variational parameter. However, that complicates the derivations and is omitted for the brevity of the presentation.



Algorithm 2 Variational parameters to upda@X).

Obtaimix £ {{R}_; {F} Ly {0 }Lp {R) s %0, S0 as follows
Fort=Tto1ldo

—1 —1
R H<<F<t >Q<.>>
He — R (R H,
Q(lt)
-1 ' -1 CALBLA _
0t s oy + (i g, =R A
- / - _E - ! o _AB-1G <
<Uh >>Q<1)+<Ft+1u't+1ﬁ‘“>o<t+1> F”1U‘+1Ft+l+<H'tR‘t H">Q(h> AR 2st<T
ﬁHo«qﬁa 2<t<T
Q(lt)
$-1,_ [y-1 Fu-1 _EGSE H R-IH _ARA _1q
ot = (v >Q(|2>1+< 2 EZ>Q<Iz) 10; "2+ (H.R, '1>Q<I1> Sl t
o3 (1)) L, 010) _
o) ),
.\:'(Jir)
R,

Figure 4: Time-varying LDS with a set of variational paramefeys

5.2 Update forQ(L).

We now solve (17) to updat@(X). We again expand (18) into an involved form up to a constant :

T
Liax) = Iog(m1)+t;IogP(ltllt71)

_% < [(xl_xg'”)/ (zg'ﬂ)*l (xl—xg'”)} +|ogzg'1>>

=5 2 ([0~ Foea) Ut = Foxen)| +log U)o (23)
.

5.3 ([(@ - o0 R @ - Hoo] g R )

Q(x1)

As before,Q(x1) andQ(x) denote the marginalized densities of the current RK). From the form of (23),
we can observe that it has a form of the joint log-likelihood function of a Hidden Markov Model (HMM). Readers



not familiar with the concepts of the likelihood of a staté-) are referred to Rabiner and Juang’s tutorial [17]. An
equivalent HMM can be found by setting the observation log-likelihoods;ldg as follows :

1 {<dxl(i)’ (zé”)_ldxl(i>>
-3 {<dx‘(i)luild”(i)>o<xt> " <dz‘(i)/wldz‘(i)>q<x¢>

Above, F,U;, Hj, R; denote the parameters of ttie LDS model. The notationdx;,dx anddz used in (24) are
defined as follows dxq (i) 2 (xl - xg>), dx (i) 2 (x — Fix_1) anddz (i) 2 (z — Hix).
The log-likelihood value log;(i) can be effectively evaluated using the sufficient statistie),(xx_),(x)

+{dz (i) R dz(| +log|zy) Ri} t=1
o, " (GRORIZD) o +logizg'|R

loge (i) (24)

+IogUi|Ri|} t>1

from Q(X). The set of values; (i) comprise the variational parametevs 2 {q(i)|1 <i <n}{_, for an equivalent
HMM. The graphical representation of the equivalent HMM is illustrated in Fig.5.

Figure 5: HMM with a set of variational parameteiis

The standard forward-backward algorithm for HMM is applied with a set of variational parameteaad the
approximate posterior on the label sequeR@g/T, B, A, ) is obtained. Finally, we updat@(L) :

QL) « P(LmB,AL) (25)

5.3 SLDSs with a fixed measurement model

This section presents the variational method for an SLDS with an additional assumption which constrains the SLDS
model to have éixedmeasurement model. The graphical representation of an SLDS with a fixed measurement model
is shown in Fig.6. It can be observed that the dependencies from every discretetoaleorresponding observation
z are removed. This model has been supported with the argument that the measurements may not depend on the
current states of an object being tracked. Rather, they are dependent on the characteristics of a measurement device
(which does not change with the target’s states)[4].

The overall derivation of the variational updates are analogous to those presented in Section 5.1 and 5.2, resulting
in less involved forms.

First, we again write the expected log-likelihoad) wrt Q(L) upto a constant :

_ 1 1)) L (1)L, a0) () (s00) " (0)
(L) = —{x’< st > x1—2x’< b2 Xy > +<X0 z Xy > }
oY 2™ <° ) Q) ' (0 ) Q) <° ) Q)

;t: {X{, <U"—1>Q<h> % =24 <U't_1F" >Q(It) X1 %1 <H£U|1_1F|t >Q(It) th} (26)



Figure 6: Switching Linear Dynamic System (SLDS) with a fixed measurement model.

Note that the terms with the measurement parameters, lé.&, disappear in (26). Then, we investigate an
equivalent time-varying LDS by introducing a set of variational parameters

Ax £ {{Ut}thzv{'ft}thz’)?O’io} @7)

The target LDS has a joint log-likelihood function below :

(Lo = _% {(Xl—xo) 2 (Xl—Xo)}
|Z| ;L ~
—% [ (6= A1) Ut (x — Fo)| (28)

We observe that (26) and (28) should be equivalent, and find the solutions for the set of variational padmeters
The procedure is described in Algorithm 3.

Algorithm 3 Evaluation of variational parametexg for a constrained SLDS.

Ax s {{Ot}tlzﬂ {ﬁt}:zzaﬁo,io} as follows :
Fort =T to1do

Ut =1 /i (U Dogm o T
<U't >Q(I[) Jr< 195} |1+1Ht+1>Q e RoUniRa 2<t<T

R0 <U.j1F|t>Q(It) 2<t<T

Bt (UMY, + (FIUL ), — PO (=1

Z1
XOHZQ<(Z(I1)) X(()Il)> t=1
Q(l1)

The results in Algorithm 3 matches the update formulas reported by Pavlovic and Rehg, Eq.(6) in [14]. It can be
observed that the variational updates for this constrained SLDS with a fixed measurement model are obtained simply




by removing all the terms regarding the switching measurement models from the more generic derivations presented
in Section 5.1 and 5.2.
As before, we perform RTS-smoothing on a time-varying LDS with the obtained variational paraketers

{{Ot}tT=27 {F‘t}fzz,io,io}, i.e., we evaluat®(X|Ax,Z). The final update of)(X) is identical to (22) :Q(X) «
P(X|Ax, 2).
Again, we can obtain the update formulas @(L) in an analogous manner. While further derivation details are

omitted, the update formulas are shown in Eg.29. Once the variational paraMe@er{sqt(i)}tzl are obtained, we
perform forward-backward algorithm for HMM, and upd&é.) — P(X|Ax,Z).

logar(i) = %<(X1Xg))l(28))l(xlxg))>%'OQZS)I t=1 29)
~3 <(Xt - letfl)/Ui_l(Xt - |:|th1)> —Sloglui|  t>1

6 Conclusion

The structured variational inference method for SLDSs is presented in this paper. Full derivations of the variational
inference method for a generic SLDS is demonstrated, and it is shown that the results reported by Pavlovic and Rehg
[14] can be obtained as a special case once a reasonable constraint on the model structure is added.

The final variational posterid@(LX) ~ Q(L)Q(X), which approximates the exact postefit, X|Z), is obtained
as a side effect while we iteratively improve the expected log-likelihoods of an SLDS rogelrt the factorized
variational posteriorQ(X) andQ(L) in turn. The approximate variational inference method was used in the domain
of human figure tracking [14, 16], and has been reported to be comparable to some of the alternative approximate
inference methods that are described in Section 4.4. However, the competency of the variational inference method
presented here against the competing methods in broad application domains needs to be further investigated. We
expect active contributions toward resolving this question in the near future.
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