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Abstract

We introduce parametric switching linear dynamic
systems (P-SLDS) for learning and interpretation of
parametrized motion, i.e., motion that exhibits systematic
temporal and spatial variations. Our motivating example
is the honeybee dance: bees communicate the orientation
and distance to food sources through the dance angles and
waggle lengths of their stylized dances. Switching linear dy-
namic systems (SLDS) are a compelling way to model such
complex motions. However, SLDS does not provide a means
to quantify systematic variations in the motion. Previously,
Wilson & Bobick presented parametric HMMs [21], an ex-
tension to HMMs with which they successfully interpreted
human gestures. Inspired by their work, we similarly ex-
tend the standard SLDS model to obtain parametric SLDS.
We introduce additional global parameters that represent
systematic variations in the motion, and present general
expectation-maximization (EM) methods for learning and
inference. In the learning phase, P-SLDS learns canoni-
cal SLDS model from data. In the inference phase, P-SLDS
simultaneously quantifies the global parameters and labels
the data. We apply these methods to the automatic inter-
pretation of honey-bee dances, and present both qualitative
and quantitative experimental results on actual bee-tracks
collected from noisy video data.

1. Introduction

One of the challenging problems in computer vision is
the interpretation of video data. Even assuming that tar-
gets can be tracked reliably, we encounter the problem of
interpreting the resulting trajectories. Manual interpreta-
tion, as is often done in domains such as biology, is a time-
consuming and error-prone process. Thus, it is desirable
to develop methods that automatically interpret the tracks
produced by video analysis. In this paper we restrict our-
selves to two tasks that are of central importance in video
interpretation. The first task is labeling, which is to auto-
matically segment the motion according to different behav-
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Figure 1: (Left) Three stylized modes of a bee dance.
(Right) A vision-based bee tracker.

ioral modes. The second task is quantification, by which
we mean the estimation of global parameters that underly a
given motion, e.g. the direction of a pointing gesture.

We take a model-based approach, in which we employ
a parameterized computational model of behavior in or-
der to interpret the data. In the case where motions are
complex, e.g. they are comprised of sub-behaviors, the
model should be expressive enough to capture the inter-
relationships between the sub-behaviors while it should also
be able to model individual sub-behaviors accurately. In
this context, a Switching Linear Dynamic System (SLDS)
model [14, 15] seems compelling. In an SLDS model, there
are multiple linear dynamic systems (LDS) that underly the
motion. We can then model the complex behavior of the tar-
get by switching within this set of LDSs. In comparison to
HMM, SLDS provides the possibility to describe complex
temporal patterns concisely and accurately. SLDS models
have become increasingly popular in the vision and graph-
ics communities because they provide an intuitive frame-
work for describing the continuous but non-linear dynam-
ics of real-world motion. For example, it has been used for
human motion classification [15, 16], and motion synthesis
[22].

Nevertheless, standard SLDS models do not provide a
means to quantify systematic temporal and spatial varia-
tions with respect to a fixed (canonical) underlying behav-
ioral template. The example that motivates us is the honey-
bee dance. Bees communicate the orientation and distance
to food sources through the (spatial) dance angles and (tem-



poral) waggle lengths of their stylized dances which take
place in a hive, as illustrated in Fig. 1.

Previously, Wilson and Bobick presented parametric
HMMs [21]. In a PHMM, parametric observation mod-
els are conditioned on global observation parameters, such
that globally parameterized gestures can be recognized. By
estimating the global parameters PHMMs have been used
to successfully interpret human gestures, showing superior
recognition performance in comparison to standard HMMs.

Inspired by this work, we extend the standard SLDS
model in a similar manner, resulting in parametric SLDS.
We introduce additional global parameters that underly sys-
tematic variations of the overall target motion. Moreover,
while PHMM only introduced global observation parame-
ters which cause spatial variations, we additionally intro-
duce dynamic parameters which induce temporal variations.

In this paper, we formulate and present expectation-
maximization (EM) methods for learning and inference. In
the learning phase, P-SLDS learns canonical dynamics from
motion data where the individual dynamics may vary due
to different underlying global parameters, but we assume
these parameters known. In the inference phase, P-SLDS
interprets new data, quantifying the global parameters while
simultaneously labeling the data.

The remainder of this paper is organized as follows. The
standard SLDS model and learning and inference methods
are described in Sec. 3. In Sec. 4, we introduce P-SLDS,
extending standard SLDS to include global parametric vari-
ations. Accordingly, the learning and inference methods for
P-SLDS are presented. Lastly, in Sec. 5 we apply P-SLDS
to the honeybee dance, and Sec. 6 presents experimental re-
sults, comparing the labeling and quantification capabilities
of P-SLDS with SLDS.

2. Previous Work

Switching linear dynamic system (SLDS) models have
been studied in a variety of research communities rang-
ing from computer vision [3, 14, 12], computer graphics
[19, 22], and speech recognition [17] to econometrics [8],
machine learning [5, 10, 6, 13], control systems [20] and
statistics [18]. SLDS provides natural framework to in-
terpret complex dynamic phenomena. However, exact in-
ference in SLDS is intractable [9]. Thus, there have been
research efforts to derive efficient approximation schemes.
An early example is GPB2 [1, 3]. More recent examples
include a variational approximation [15], expectation prop-
agation [23], sequential Monte Carlo methods [4], Gibbs
sampling [17] and Data-Driven MCMC [13]. The SLDS
learning problem is studied from the control systems per-
spective in [20].

In the computer vision community, Pavlovi¢ et al. [14]
applied SLDS to human motion analysis. They intro-

duced both an approximate Viterbi method and a variational
approximation method and compared these methods with
GPB2 and HMMs. In related work, North et al. explored
the use of switching component models to automatically
classify the motion patterns of rigid objects or human body
motions [12]. Howard and Jebara have proposed a tree-
structured extension of SLDS and applied it to the classi-
fication of football plays [6]. The graphics community has
modeled video and motion capture data with a set of switch-
ing components to obtain dynamic textures [19] and motion
textures [22]. SLDS models have also been used to quantify
the naturalness of human motion [16].

Parametric HMM (PHMM) models were introduced and
applied to human gesture recognition in [21]. In related
work, Brand and Hertzmann [2] introduced style machines,
a kind of parametric HMM in which the observation model
is parameterized by style variables. Style machines were
used to learn a set of common dance styles from a varying
set of dance sequences and to synthesize novel motions.

3. SLDS Background

A switching linear dynamic system (SLDS) model de-
scribes the dynamics of a complex physical process by
switching between a set of linear dynamic systems (LDS).
Each LDS describes a local dynamic process which is as-
sumed to be linear and Gaussian, and transitions between
LDS models are described by a Markov transition matrix.

3.1. Linear Dynamic Systems
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Figure 2: Linear dynamic system (LDS)

We first review linear dynamic systems. An LDS is a
time-series state-space model that consists of a linear dy-
namics model and a linear observation model. The repre-
sentation of an LDS as a graphical model is shown in Fig. 2.
The top Markov chain represents the state evolution of the
continuous hidden states z;. The prior density p; on the
initial state x; is assumed to be normal with mean p; and
covariance X1: w1 ~ N (1, X1).

The state x, is obtained by the product of the state tran-
sition matrix F' and the previous state x;_; corrupted by the
additive white noise w;, zero-mean and normally distributed



with covariance matrix Q:
xy = Fry_q1 + w, where wy ~ N(0,Q) (D

In addition, the measurement z, is generated from the cur-
rent state x; through the observation matrix H, and cor-
rupted by white observation noise v;:

2t = Hxy + vy where v, ~ N(0,V) 2)
Thus, an LDS model M is defined by the tuple M 2
{(111,%1), (F,Q), (H,V)}. Exact inference in an LDS can
be done efficiently through Kalman-smoothing [1].

3.2. Switching Linear Dynamic Systems

Figure 3: Switching Linear Dynamic System (SLDS)

A switching LDS is a natural extension of an LDS,
whege we assume the existence of n distinct LDS models
M = {M;]1 <l < n}, where each model M is de-
fined by the parameters described in Sec. 3.1. The graph-
ical model corresponding to an SLDS is shown in Fig. 3.
The middle chain, representing the hidden state sequence
x 2 {z|1 < t < T}, together with the observations
z 2 {z|1 < t < T} at the bottom, is identical to the
LDS in Fig. 2. However, we now have an additional dis-
crete Markov chain L 2 {l;|]1 <t < T} that determines
which of the n models M; is being used at every time-step.
We call [; € M the label at time t and L a label sequence.

In addition to the set of LDS models M, we spec-
ify two additional parameters: a multinomial distribution
s E P(ly) over the initial label I; and an n X n transi-
tion matrix 7" that defines the switching behavior between
the n distinct LDS models, i.e. T;; = P(l;|l;). In sum-
mary, an SLDS model is completely defined by the tuple
02 {W,T,M 2 {M|1 <1< n}} which we refer to as

the canonical parameters.
3.3. Learning an SLDS via EM

The expectation-maximization (EM) algorithm [11] can
be used to learn the maximum-likelihood (ML) parameters

O:
62 argmax P(Z|0O)
e

The hidden variables in EM are the label sequence L and
the state sequence X, i.e. the top and the middle chain in
Fig. 3. Given the observation data Z, EM iterates between
the following two steps:

e E-step: obtain the posterior distribution
fi(L.X) £ P(L,X|2,6) 3)

over the hidden variables L and X, using the current
estimate for the SLDS parameters ©°.

e M-step: maximize the expected log-likelihoods
i+1
et argrgax (log P(L, X, Z|®) yi(1.x) 4
Above, (-),, denotes the expectation of a function (-)
under a distribution p. As discussed in Sec. 2, the exact

E-step in Eq. 3 is intractable and therefore approximate
inference methods must be employed.

4. Parametric SLDS

Figure 4: Parametric SLDS (P-SLDS)

We now develop the parametric SLDS (P-SLDS) model,
where the discrete state transition probabilities and output
probabilities are parameterized by a set of global parame-
ters & = {P4, ®,}. The parameters ¢ are global in that
they affect the entire sequence in a systematic way. The
graphical model for P-SLDS is shown in Fig. 4. Note that
there are two classes of global parameters: the dynamics
parameters ¢, and the observation parameters .

The dynamics parameters ®, represent the factors that
cause temporal variations. The different values of the dy-
namics parameters ¢, result in different switching behav-
iors between the behavioral modes. For example, in the



bee-dance, a food source that is far away leads a dancer
bee to stay in each dance regime longer in order to make
a larger dance. In contrast, the observation parameters ®,
represent factors that cause spatial variations. A good ex-
ample is a pointing gesture, where the overall arm motion
changes as a function of the pointing direction.

The canonical parameters © represent the common un-
derlying behavioral templates. Note that the © parameters
are embedded in the conditional dependency arcs in Fig. 4.
In the bee dancing example, the canonical parameters may
describe the prototyped stylized bee dance. However, the
dynamics of individual bee dances vary systematically from
the prototype dance due to the changing food source loca-
tions. These are the variations that are represented by the
global parameters.

Note that the discrete state transitions in the top chain
of Fig. 4 are instantiated by © and ®,, and the observation
model at the bottom is instantiated by © and ¢4, while the
continuous state transitions in the middle chain are instanti-
ated solely by the canonical parameters ©. In other words,
the dynamics parameters ¢, vary the prototyped switching
behaviors and the observation parameters ®, vary the pro-
totyped observation model. For a given data set, estimation
of the global parameters effectively identifies the discrepan-
cies between the observations and dynamics of the data and
the behavioral template which is defined by the canonical
parameters.

The graphical model of P-SLDS necessitates parameter-
ized versions of an initial state distribution P(l1]|0, ®g4), a
discrete state transition table P(l;|l;—1,0,®,) and an ob-
servation model P(z|ly, x4, 0, ®,). In general, there are
three possibilities for the nature of the parameterization: (a)
the PDF is a linear function of the global parameters ®, (b)
the PDF is a non-linear function of ®, and (c) no functional
form for the PDF is available. In the latter case, a neural
network may be used, as discussed in [21]. In our devel-
opment of learning and inference methods for P-SLDS in
Sec. 4.1 and 4.2, we will assume that functional forms are
available.

4.1. Learning in P-SLDS

Learning in P-SLDS involves estimating the P-SLDS pa-
rameters ©, given the data D 2 {® = {0y, 0.}, L, Z}.
The elements of D are: a set of global parameters & =
{®4,®,}, alabel sequence L, and the observations Z. The
upper bars indicate that the values are known. We employ
EM to find an ML estimate of the canonical parameters Oin
the presence of the hidden continuous states X. The steps
are outlined in Algorithm 1.

The E-step in Eq. 5 is equivalent to inference in an LDS
model. In more detail, as the global parameters ®, the cur-
rent P-SLDS parameters O, the label sequence L, and the

e E-step 1: obtain the posterior distribution
f1(X) = P(X|©", D) (5)

over the hidden state sequence X, based on the current
estimate of the canonical parameters ©°.

e M-step 1: maximize the expected log-likelihood :

i+1 L,X,Z]0,8
o  argmax <1ogP(L,X,Z|@,<I>>f,L;(X) (6)

Algorithm 1: EMI1 for Learning in P-SLDS

observations Z are all known, the inference over the con-
tinuous hidden states X in the E-step can be performed by
Kalman smoothing. Given the posterior distribution f} (X)
from Eq. 5, the M-step produces an update for the parame-
ters ©7+1,

In the case where the parameterized dependencies are
linear functions of the global parameters ®, the M-step in
Eq. 6 can be solved analytically. However, in the case
where the parametric dependencies are non-linear, an exact
M-step is usually infeasible and must be obtained by alter-
native optimization methods, such as conjugate gradient or
Levenberg-Marquardt.

4.2. Inference in P-SLDS

Given the observations Z, we can use the learned P-
SLDS canonical parameters O to estimate the global param-
eters ® and infer the label sequence L. Note that the canon-
ical parameters © are fixed after they are learned from the
training dataset D. The addition of the global parameters
makes it possible to adapt the model to the specific char-
acteristics of each observation sequence, resulting in im-
proved estimation of the hidden labels.

The EM method for estimating the optimal global pa-
rameters ¢ is shown in Algorithm 2. Note that we use EM1
to learn the canonical model parameters © and EM2 to es-
timate the global parameters ® and the hidden labels L. We
now describe the details of EM2. In the following sections,
we use LLH to denote the log-likelihood.

4.2.1. E-step 2

Approximate inference methods are required since the ex-
act E-step in Eq. 8 is known to be intractable [9]. We adopt
the approximate Viterbi method described in [15], as it is
simple and fast, and is usually comparable to other methods
in the quality of its estimates. At every i*" EM iteration,
the joint posterior over the hidden variables L and X is ap-
proximated by a peaked posterior over X with the obtained




e E-step 2 : obtain the posterior distribution :
JH(L.X) £ P(L,X|2,6,%") ®)

over the hidden label sequence L and the state se-
quence X, using the current estimate for the global
parameters ®°.

e M-step 2 : maximize the expected log-likelihood:

P — argmax <logP(L,X,Z|®, <I>)>f,;(L x) 9)
@ I

Algorithm 2: EM2 for Inference in P-SLDS

pseudo-optimal label sequence Lt

P(L,X|Z,®) = P(X|L,Z,®)P(L|Z,®"

P(X|L, Z,0")8(L") )

Q

fi(X%) £ P(X|L', Z,2")5(L")
Note that the implicit conditional dependence on the fixed
canonical parameters © is omitted for clarity.

4.2.2. M-step 2

Using the approximate posterior fi(X) obtained in Eq. 7,
the expected complete log-likelihood (LLH) in Eq. 9 is ap-
proximated as:

1>

LH(D) EL: /X log P(L, X, Z|®)P(L, X |Z, ®")

Q

/ log P(L*, X, Z|®) fi(X) (10)
X
Using the chain rule, this factors as:

P(L,X,Z|®) = P(L'|®4)P(X,Z|L},®,) (11)

Note that we now only condition on relevant global param-
eters, e.g. the label sequence Liis only conditioned on ®.
Substituting (11) into the expected LLH L1(P) (10), we
obtain a more succinct form of £¢(®) in which the term
log P(L?|®) is moved outside the integral:

£i(3) = logP(L[®y)+ /X log P(X, Z|14, ®,) fi(X)
= LN(Qg) + LY(D,) (12)

Here we introduced two convenience terms, the dynamic
log-likelihood L(®,) and the observation log-likelihood
L(D,):

L'(Pq)
L'(P,)

log P(L'|®,) (13)

/ log P(X, Z|L',®,) fi(X)  (14)
X

>

In Eq. 12, we can observe that the total expected LLH
L(®) is maximized by independently updating the global
observation parameters ®, and dynamic parameters ®4, i.e.
we obtain the updated global parameters ®;"' and ®%+! by
maximizing the dynamic LLH L£%(®,) and the observation
LLH LY(D,) respectively.

Now we can further factorize the dynamic LLH L(P4)
from Eq. 13 and the observation LLH L%(®,) from Eq. 14,
obtaining:

R |Z] L
L(®q) = log P(lj|®q) +1og ) Pl 1, ®a) (15)
t=2
£i(@) = [ roa{PZIX. I8 )PXIE)} (X)

/X log P(Z|X,L*, ®,) fi(X)
1]

Z/ IOgP(5t|$t7lAti#I’o)f[i(J?t)’ (16)
t=17"t

where the term f(x;) denotes the marginal on z; from the

full posterior fi(X), i.e. fi(z,) 2 Jx e, FHEXD.

The details of the M-step will depend upon the applica-
tion domain. In the case where the parametric forms are
linear in the global parameters @, the M-step is analytically
feasible. Otherwise, alternative optimization methods can
be used to maximize the non-linear £LLH function, as de-
scribed in Section 4.1.

5. Bee Dance Modeling

We have applied the P-SLDS model to the honeybee
dance, with the aim of providing field biologists with a new
tool for the quantitative study of insect behavior. Measure-
ments of real-world dancer bee tracks are obtained from
video data using a previously developed tracker [7], see Fig.
1. Given the stylized nature of the bee dance, we adopt an
approach which decomposes the dance into three different
regimes : “turn left”, “turn right” and “waggle”, illustrated
in Fig. 1.

The bee dance is parameterized by both classes of global
parameters. The global dynamics parameter set @, £
{®q,i|]1 < i < n}is chosen to be correlated with the aver-
age length of each dance regimes where n = 3. The global
observation parameter ®, is set to be the angle of orienta-
tion of the bee dance.

The specific form of the parameterized discrete state
transition table, T'(®4) = P(li|li—1, 0, ®y), is given by

1—Pg;
T(D4)i; = { P

n—1

il =1

otherwise a7



In Eq. 17, row i of the Markov transition matrix 7'(®,)
depends on the global dynamics parameter ®,; where
T(®g);, 2 P(l|l;,®q,). Here ®4,; denotes the proba-
bility of a transition out of state . The M-step update for
each @4 ; can be obtained by differentiating LLH in Eq. 15
and normalizing to obtain

v awran W

The term C4 (i) above denotes the self-transition counts
from the state ¢ to itself in the current Viterbi label sequence
L, and whereas C () denotes the transition counts from
state 7 to all others.

The parameterized observation model P(z¢|l;, z¢, ®,) is
defined by

2 o~ N(R(Qo)Hj e, Vi), (19)

where R(®,) is the rotation matrix, and H;, and V;, denote

the observation parameters of the Z}/th component LDS, cor-
responding to label I of the Viterbi sequence L. We also
define a4 (®,) to be the projected-then-rotated vector of the
corresponding state x;:

1>

(@) R(®,)H, (20)

Combining Eq. 19 and 20, we obtain the observation
LLH LY(D,) =

12

=3 (o= @) Vi [z — a(@,)]) 1)
t=1

fize)

where we have omitted redundant constant terms. Intu-
itively, the goal in optimizing Eq. 21 is to find an updated
dance angle ®%! which minimizes the sum of the expected
Mahalanobis distances between the observations z; and the
projected-then-rotated states «;(®P,). Since nonlinearities
are involved as a consequence of the rotation, there is no
analytic solution to the maximization problem in Eq. 21.
Therefore, we perform 1D gradient ascent to obtain a nu-
merical solution.

6. Experimental Results

Our experimental results show that P-SLDS provides re-
liable global parameter estimation capabilities, along with
improved recognition performance in comparison to stan-
dard SLDS models. Six dancer bee tracks obtained from
video are shown in Fig. 5. Fig. 1 displays a video frame
from the automatic vision-based tracker [7] which was used
to obtain the tracks in Fig. 5. The rectangular bounding
boxes denote tracked bees.

We performed experiments using 6 video sequences with
lengths 1058, 1125, 1054, 757, 609 and 814 frames. The
tracker produces a time-series sequence of vectors z; =
[t yt, cos(6y), sin(et)]Twhere x4,y and 6; denote the 2D
coordinates and the heading angle at time ¢, respectively.
Note that the observed heading angle 6, differs from the
global dance angle ®,. Note from Fig. 5 that the tracks
are noisy and much more irregular than the stylized dance
prototype illustrated in Fig. 1. The red, green and blue col-
ors represent right-turn, waggle and left-turn phases. The
ground-truth labels are marked manually for the compari-
son and learning purposes. The dimensionality of the con-
tinuous hidden states was four.

Given the relative difficulty of obtaining this data, which
has to be labeled manually to allow for a ground-truth com-
parison, we adopted a leave-one-out strategy. The parame-
ters are learned from five out of six datasets, and the learned
model is applied to the left-out dataset to perform the an-
gle/average waggle length (AWL) quantification and simul-
taneous labeling. Six experiments are carried out using both
P-SLDS and the original SLDS. The P-SLDS estimates of
angle/AWL are directly obtained from the results of global
parameter quantification. On the other hand, the SLDS es-
timates are obtained for comparison purposes by averaging
the transition numbers and averaging the heading angle over
the inferred waggle segments.

6.1. Qualitative Results

The experimental results show the superior recognition
capabilities of the proposed P-SLDS model over the original
SLDS model. The label inference results for sequences 1,
2, and 6 are shown in Fig. 6. In each figure, the x-axis is
the time in frames and the color encodes the corresponding
label for each video frame. The results for the other three
sequences are comparable to those in Fig. 6.

The superior recognition abilities of P-SLDS can be ob-
served from the presented results. The P-SLDS results
match the ground truth more closely than the SLDS results.
In particular, Sequence 6 (see Fig. 5(6)) is very noisy. It
has very short waggle (green) phases and its dance angle
diverges far from the other sequences. The result is a chal-
lenging inference problem. Nevertheless, P-SLDS detected
several waggle phases correctly while SLDS detected none
(see Fig. 6¢). This is possible because P-SLDS uses the
additional global parameter information to robustly discern
the subtle differences that characterize the dance regimes.

6.2. Quantitative Results

Quantitative results for the estimation of the angle and
average waggle length of the dances show the robust global
parameter estimation capabilities of P-SLDS. Table 1 shows



Figure 5: Bee dance sequences used in the experiments. Each dance trajectory is the output of a vision-based tracker. Tables 1
and 2 give the global motion parameters for each of the numbered sequences.
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(b) Sequence 2
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(c) Sequence 6

Figure 6: Label inference results. Estimates from P-SLDS
and SLDS models are compared to manually-obtained

ground truth (GT) labels. Key: fi/iaualsn, \ .

the errors in angle between the ground truth and the P-
SLDS/SLDS estimates. The angle errors of P-SLDS are
acceptable, ranging as they do from 0.03 to 0.13 radians. In
contrast, it can be observed that the SLDS angle estimates,
which are heuristically obtained, are inconsistent. For se-
quence 6, no angle estimate is available as no waggle seg-
ment was detected. The SLDS errors range from 0.04 to
0.71 radians.

Similarly, the quantitative results for average waggle
length (AWL) estimation show that P-SLDS can also ro-
bustly quantify the global dynamics parameters. AWL is an
indicator of the distance to the food source from the hive.
Reliable estimates of AWL are of value to insect biologists.
Table 2 shows the errors in the P-SLDS and SLDS esti-

Sequence 1 2 3 4 5 6

P-SLDS | 0.13 | 0.13 | 0.02 | 0.10 | 0.03 | 0.06

SLDS 0.24 | 0.04 | 0.71 | 0.12 | 0.12 -

GT -0.30 | -0.25 | 1.13 | -1.30 | 0.80 | -2.08

Table 1: Errors in the global rotation angle estimates from
P-SLDS and SLDS in radians. Last row contains the ground
truth rotation angles. Sequence numbers refer to Fig. 5.

Sequence 1 2 3 4 5 6

P-SLDS | -63 | -3.0 | +6.6 | -1.1 | -6.9 | -2.7

SLDS +0.1 | 435.9 | +21.9 | +2.2 | 4.6

GT 579 | 51.2 | 214 | 41.1 | 32.6 | 194

Table 2: Errors in the Average Waggle Length (AWL) esti-
mates for P-SLDS and SLDS in frames. Last row contains
the ground truth AWL. Sequence numbers refer to Fig. 5.

mates, along with the ground truth. The P-SLDS estimates
were obtained from the global dynamics parameters, while
the SLDS estimates were obtained by averaging over the
estimated waggle segments.

The results demonstrate that the P-SLDS estimates
match the ground-truth closely. The absolute errors of P-
SLDS range from 1.1 to 6.9 frames. In contrast, it is ob-
served that the SLDS estimates are inaccurate. More specif-
ically, no estimate from SLDS is available for sequence 6 as
no waggle segment is recognized. In addition, the errors on
sequences 2 and 3 are 35.9 and 21.9 frames respectively,
which indicate that the SLDS estimates are untrustworthy.

7. Conclusions and Future Work

We have introduced the parametric SLDS (P-SLDS)
model, a novel parametric extension of SLDS, and pre-



sented EM algorithms for inference and learning. The addi-
tion of global parameters allows the P-SLDS model to ex-
plain systematic variations in the dynamics and observation
properties of input data. This has three main benefits: First,
we can learn the canonical dynamics and observation mod-
els from training sequences whose individual characteristics
may vary due to global parameter changes.

Second, we can use inference within the P-SLDS model
to estimate the global parameters robustly, leading to im-
proved performance in estimating hidden labels based on
the learned models. Third, in applications such as biotrack-
ing, the global parameters may have intrinsic meaning. This
is the case for the bee dance, where the global parameters
encode information about food source location. Our exper-
imental results with real-world bee dance data demonstrate
the benefits of the P-SLDS framework.

One avenue for future work is to incorporate additional
global parameters, such as affine transformations, into the
P-SLDS model. We also plan to explore the use of the P-
SLDS model in other application domains, such as vision-
based tracking and time-series visualization.
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