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Abstract—Localization from sensor measurements is a Vvisible. In urban areas the view of the satellites can be
fundamental task for navigation. Particle filters are among  plocked by tall buildings or even foliage [4].
the most promising candidates to provide a robust and real- To deal with the problems of GPS or similar intermit-

time solution to the localization problem. They instantiate tently available sensors. manv current svstems fuse th
the localization problem as a Bayesian filtering problem and y ' y y e

approximate the posterior density over location by a weighted in_formation cpming from multiple, complimentary Sensors.
sample set. In this paper, we introduce map-based priors for Simple solutions use a cascade of sensors, with GPS

localization, using the semantic information available in maps ysually being the primary one. [4] use GPS and compass
to bias the motion modt_el toward areas of _higher probabil_ity. information, [5] uses GPS and vision, [6] use GPS and
We showlthat s.uch priors, u.nder a partlculgr assumption dead reckoning. Others have proposed fusing multiple
, can easily be incorporated in the particle filter by means X : . <
of a pseudo likelihood. The resulting filter is more reliable ~S€Nsors using Extended Kalman filters [3], or fusing sensor
and more accurate. We show experimental results on a GPS- information from vision and inertial trackers [7]. However,
based outdoor people tracker that illustrate the approach and  dead reckoning is prone to drift over time and can quickly
highlight its potential. accumulate considerable error. Vision-based sensors, on the
other hand, typically need a large amount of data about
the environment, and are not robust to lighting and abrupt
motion changes.
In this paper we introduce map-based priors for lo-
calization. Localization from sensor measurements is & Map-Based Priors for Localization
fundamental task for navigation, but in many applications The main contribution of this paper is the introduction
the available sensor readings are sometimes unreliable @k maps as a prior in a Bayesian filtering paradigm. We
not available altogether. As an example, at Georgia Tedise the semantic information available in maps to bias the
we are designing a system to localize blind people inmotion model toward the areas of higher probability. The
urban environments based on GPS, but it is well knowmelative probabilities of different areas of the map reflect
that GPS is often unreliable in urban environments, e.gqur beliefs about both the person and the environment. We
due to satellite obstruction. A redeeming feature of urbamay assign a higher probability to the edges of a sidewalk
environments, however, is that often high quality maps off we observe that blind people tend to walk more on the
the area are available, and hence the question arises whethdges of a sidewalk than in its center. Similarly, blocked
we can use the information contained in these maps to aid #ff roads would have higher probability for a pedestrian
the tracking process. Our solution is to use a priori availabléhan regular roads, and paths that lead to centers of social
maps to define a probability distribution over locations andnteraction will be more probable than those leading to
use that to augment the motion model in a Bayesian filteringreas of low interest. Given no other information except
framework. The theory is valid for any Bayesian filteringsuch a probability map, a motion model, and the initial
framework, but the current paper is mostly concerned witlposition and orientation of a person, we can estimate the
its implementation within a particle filter, a sampling-basedhort-term trajectory of this person by considering the
implementation of the Bayesian filter [1], [2]. most probable behavior. We show that such priors, under
assumption of a particular mathematical form, can easily

. be incorporated in the particle filter by means of a pseudo
A. Localizing Robots and People likelihood.

I. INTRODUCTION

There is an extensive literature on localizing both robots
and people. A good overview of the robot localization and=- Related Work
mapping literature can be found in [2]. Localization and Maps have been used previously for robot localization.
tracking of people has been explored most thoroughly ihaser range data [8], [9] or odometry [10] can be matched
the Augmented Reality (AR) community. While systemsto an existing reference map to estimate location and orien-
for indoors tracking have produced good results, outdodation. For example, [1] have used maps of the environment
tracking has proved to be a more challenging problem [3lwhich differentiate between obstacles and paths, but only
Most current applications do real-time outdoor trackingor the process of culling useless particles. One observation
with a combination of GPS, dead reckoning and visioris that sighted people generally walk more in the center of
based techniques. GPS is not always reliable, since itorridors. This can be realized by constraining the particles
accuracy depends crucially on the number of satellite® move on a Voronoi diagram of the space [11].



D. Overview B. Particle Filters

The remainder of this paper is organized as follows: Particle filters [1], [13], [14] take an importance sampling
in the next section, Section Il, we present the problenfPProach to implement the Bayes filter (3). They approxi-

of localization as an instance of the Bayesian filteringMate the posteridP(x1|Z11-1) as a weighted sample set,

problem and describe particle filters; Section Il discusses N .
map-based priors and a sampling technique with theoret- P(X-1|Z11-1) = Z‘wﬁlé(xt(?l,xt_l) 4
ical justification; Section IV contains experimental results i=

gtljasérz;tll(;]r?ethe improved performance of our method OV€lvhere Iocationxf?1 and Weightwt(g1 are the information

stored inith particle, andN is the number of samples.
The importance sampling approach is applied to sample
efficiently from the posterior density (3) [14]. In the im-
portance sampling approach, we sample frompigposal

A. The Bayes Filter distribution and we weight each sample with the relevant

weight. In the case of the localization, the proposal distribu-

_ The localization problem can be expressed as a Bayesiggp, js the predictive density (2) and the individual weight
filtering prob_lem [;], [12]. Location |sTtyp|caII¥ repres_gnted is obtained from the measurement moBé&|x;). Thus, the

as a three-dimensional vector[x,y,8]" encoding position first step to estimate the current posterior denBit|Z:+)
and_ orientation, but can be more general, e.g., full 3':Pecursively from the previous posteri®(x._1|Zu1_1) is
position ar_ld attitude with respect to a refe_rence frame._ Ity compute the predictive distribution from which we can
the Bayesian framework, we want to obtain the posteriogficiently sample. With the given representation, we can

density P(x|Z11) over the current statg conditioned on  4pnroximate the empirical predictive distribution (2), i.e.,
all measurementg;+ = {z|i = 1..t} up to timet. By Bayes ine mixture model :

rule this is expressed (up to a constant factor) as the product
of a likelihood P(z|x%) and a priorP(x|Z;1-1) obtained N 0
recursively from measuremenfs;_1 up to timet — 1: P(x|Z11-1) = iZ\V"tfl':)(xdxtfl) )

Il. LOCALIZATION

Above, the mixture coefficients are the sample weights
P(x[Z11) O P(z]x)P(%|Z11-1) (D WY, and the mixture componeR(x|x",) is the motion
model for each samplx{?l. This empirical predictive dis-
tribution is then used as the proposal distributi@fx;) for
Ithe importance sampling, from which we obtain unweighted

We refer to P(z|x%) as the measurement modehs it
describes the probability of making observatignwhen
the person is at locatior. Thus, the measurement mode W .
is selected to capture the error characteristics of the seR@mpPIesq”™ :

sor. The predictive distribution Px|Z;1-1) denotes the _ N _

probability of a person being in the locatiog at timet Rf‘) ~Q(x) = Zw@lP(xdxfgl) (6)
given the history of sensor measuremenyts 1. We obtain i=

the predictive distribution by integrating tmeotion model To sample from (6), one first chooses a comporieat

P(%[%-1) over the posterioP(x-1|Z11-1) : random, according to the weightg;, and then sample
from the corresponding compond?(oqxt(gl). This is done
P(X|Z11-1) = P(X|%_1)P(%_1]Z11-1) (2) N’times, whereN’ can equal tdN, or can be adapted to the
%1 complexity of the hypothesis or available processing power

; o)\
The motion modeP(x|x_1) encodes the dynamics of the [15]. The unwelghted_ samples }_1:1, are then upgraded
to the current posterioP(x|Z1+), yielding the importance

target as a conditional density of the current locatien ) )
givenx_1. Note that this motion model can be conditionedVeightsw;:
on additional information such as a control inputat time

t, but for the sake of notational simplicity we leave this v kP@RPEY 214 1) o
implicit below. w = 0 ~kP@IR")  (7)
Combining (1) and (2) we obtain thgayes filter Q™)

Thus, the current posterid?(x|Z11) is approximated by
P(x|Z11) = ktp(zdxt)/x( P(x|%_1)P(%_1|Z11-1) (3) the following newly obtained weighted sample set :
-1

N .
where k is a normalizing factor. Thus, the posterior P(Xt|21:t)%ZWt(J)5(Xt(J)7Xt) (8)
P(x|Z11) over location is recursively obtained from the =1

previous posterioP(x_1|Z11-1), by integrating the pre- The key advantage of particle filters is that they can
defined model of the target dynamics and the sensor megepresent arbitrary posterior probability distributions, and
surements. can deal with arbitrarily complex measurement models.



I11. M AP-BASED PRIORS 2) The locationx andx;_1 belong to the distinct prob-
ability zones. In this case, the map-based priors for

o ) _ the locations differP(x|M) # P(x_1|M).

When localizing either a robot or a person in a known he fi h q ) - M
environment, it would be beneficial to be able to use thd" the Irst case the augm%pt_e r’rotlon m %th—l’ )
available semantic information in maps to bias the motioff (N Same as the unconditional motion mal 0k % 1)-
model P(x|%_1) toward the areas of higher probability. This is because the local transition assumption will allow

The map in figure 1 shows the probability of being in athe transition to be unaware of the global rmdp

region with colors. The zone with the brighter color is However, in the s_econd case of the inter-zone transition,
the area with the high probability while the zone withthe augmented motion mod®(x|x1,M) should be ad-
the darker color is the area with the low probability.JUSted by the relatl\F{e ratlo of the map-based priors between
The black zones denote the zero probability areas whiche two locationsg )ixf‘l“\; . This results in an augmented
may include the bu||d|ngs and shrubs if we consider 0n|)rnoti0n model which is biased toward the the areas of hlgher
outdoor localization. Note that the map can either contaiRfobability. In general, the inside-zone transition case is

information about the outdoor or indoor environments o@ Special case of the inter-zone transition case with the

A. Localization with Map-based Priors

both. Denoting the map b1, the Bayes filter (3) in this map-based prior faﬁ%% equal to one. Thus, under
case now depends dv : the particular assumption, we obtain the augmented motion
model :
POx|Z1. M) = kP(zl) [ P0x%-1,M)P(%-1(Z12-1.M)
Xt—1
. ) P(x[M) g
where now theaugmented motion model(®|x_1,M) is P(x[x-1,M) = aP(x[%-1)(5r )" (10)
o . I P(%-1|M)

conditioned on the information in the méyp. . B

The use of pre-existing maps generates a more informed = 0P [x-1)P(% M) (11)

posteriorP(x|Z;1,M) by exploiting knowledge about the . .
environment. For example, people tend to walk on th&vhere thea; is a normalizing constant anfél denotes the

sidewalks rather than on the road or on the grass, robof§lative importance of the map-based priepx|M) with
tend to stay away from objects due to on-line obstacl&eSPect to the unconditional motion mod|x1).

avoidance methods, etc. There is another justification for the resulting augmented
However, there are two potential difficulties : motion model (11), based on the Gibbs distributibfx) :
1) While it is feasible to either hand-build or learn a
map-based prioP(x|M) over locationsx, it is not P(x) A & EX (12)

immediately obvious how to combine this informa-
tion with the unconditional motion mod@l(x(x-1)  The Gibbs distributionE(x) is interpreted as an energy
to obtain the augmented motion modRélk |%-1,M).  function of P(x). The x that maximizesP(x) equals the

2) Depending on the nature of the augmented motioR that minimizes the energy functiok(x). Thus, the
model P(x | 1,M), evaluating the integral in (9) is augmented motion model can be obtained by defining its

potentially much more difficult. energy functionE(x) which can also be interpreted as the
Below we show that both difficulties are overcome using g@enalty function. Natural phenomenon prefers lower energy
particular form for the augmented motion model. states and accordingly there is less penalty in such states.

Thus, the energy function of the augmented motion model
P(x|%—1,M) represents the penalty at the poiataround
the specific locationg_; given the mapM. Again, if we
A map-based prioP(x|M) and the unconditional motion focus on the local transitions only, we can claim that the
modelP(x|x_1) can be combined in an augmented motiorpenalty at a locatiork is the linear sum of the penalty
model P(x|x_1,M) if we require the augmented motion which is unconditioned on map and the penalty that
model to be applied ttocal transitions The local transition results from the inter-zone transition.
assumption over the augmented motion model states thatThe assumption cédditive penaltyresults in the follow-
the transition from the previous locatiop ; to the current  ing augmented motion model :
location % occurs only locally, i.e. the model considers
only the short transitions between two close locations
and the transition ig not influgnced by thg global map P(x|x_1,M) = af exp{logP(x |x_1) + B'logP(x|M) }
structures. Under this assumption, all possible transitions (13)
can be classified into two cases : Above, o’ is a normalizing constant arféf is a parameter
1) The current locationx, and the previous location that balances the map-based prldi|M) the uncondi-
X_1 are in the same probability zone. Thus, thetional motion modelP(x|%_1). The assumption of the
map-based priors for the two locations are equaladditive penalty model is intuitively appealing, and the
P(xIM) =P(x_1|M) . resulting model in (13) equals the model (11) exactly.

B. Augmented Motion Model



== Ground Truth == Ground Truth
*## Weighted mean of particles : : ### Weighted mean of particles
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Fig. 1. Tracking without using a map prior on the first dataset. Note thakig. 2. Tracking using a map-based prior on the first dataset. Compared
the particle trace is almost coincident with the GPS trace. with Figure 1, the tracker now prefers to stay on the heavily traveled areas
of the map such as sidewalks (white in the map). The resulting path is
much closer to the ground-truth path, as a result of mediating the noisy

. S ) GPS data with map-based prior.
C. Incorporating Map Priors in the Bayes Filter ata with map-based prior

Plugging the new motion model (11) into the augmented
Bayes filter (9), the map prior factdP(x|M)® can be for outdoors localization. The GPS receiver used to gather
moved out of the integral, as it does not dependxon: the data is a handheld Garmin GPS 72s receiver that has
an error of less than 15 meters 95% of the time. Data from
GPS is converted from Latitude/Longitude coordinates to

_ K B )
P(x|Z11,M) = k'P(z[x)P(x|M)"P (x| Z11-1,M) ~ (14) map coordinates using the assumption that the curvature of

where the Earth is negligible over the small region of interest.
, Two GPS datasets were gathered on the Georgia Tech
P (x|Z11-1,M) :/Xt 1P(Xt|xt—1)P(Xt—1|Zlit—l’M) campus, and used as the test data for the localization

] o ) ] ] _ . with/without map-based priors. In addition, we assume a
is the predictive density without taking the map prior intog,ssian measurement model for the GPS.
account . This has the same form as Equation 3 on page 2,

but now with an additional factoP(x|M)® that mediates o .
the information given by the map prid(x|M). B. Building the Map Prior

The implication of the particularly simple form of the The areas in the maps fall into one of the six possible
augmented filter (14) is that incorporating the map priozones and are shown in different colors as in Figure 1. The
in the particle filter is straightforward. We can proposeareas, corresponding colors and the assigned probabilities
samples from the same proposal den€ity) (6), and sim- are as follows in order of decreasing probability : sidewalks
ply augment the likelihood weight with a fact®(x|M)®?  (white, 60%), parking lots and blocked off roads (light gray,

derived from the map prior: 30%), lawns (gray, 5%), roads (dark gray, 5%), shrubs (very
i i ; dark gray, 0%) and buildings (black, 0%). The ratio of two
, (1) (1) (1)
W = k'P(z[%")P(x |M)_BP/(Xt |Zl?t—1’M)(15) probabilities determines how easily a particle can cross the
Q()?t(‘)) boundary of two areas. The relative importance r&tim
_ |<{/P(Zt|>?t(j))P(>?t(j)|M)B (16) Equation 11 is set to be 1.0 in all the experiments.

In other words, we have exactly the same particle filter a3 Data set 1

before, but now we multiply each importance weight by an= ) )
additional map derived factor ®&|M)®. Figures 1 and 2 show that results obtained using the map-

based prior approach are more accurate, stable and keep
closer to the actual path most of the time. The blue crosses
) are the trace of the actual GPS readings, the green line
A. Experimental Setup is the ground truth, and the red crosses are the weighted
We show results on two different datasets collectednean of the particle cloud at each time step. In figure 1,
with a GPS receiver in outdoor environments. The Globalve show the behavior of the particle filtarithout using
Positioning System (GPS) is widely known as a solutiora map prior. Due to erroneous GPS readings the particles

IV. RESULTS



pass through the shrubs at the bottom left and pass throu
the building at the left center. In addition, the particles
pass through the lawns during most of the path in th
upper right. By using the map-based priors we can see |
2 that the particles avoid passing through the shrubs ar
buildings, and stay on the center of the sidewalks most ¢
the time. The advantage of the map priors is most clearl.
evident when the GPS readings are noisy and unstable. T
tends to happen around tall buildings, where the satelli
reception gets bad. On the left side of figure 2, we can s
that the particles correctly follow the sidewalk where th
GPS readings erroneously indicate that the person is goi
through a building or shrubs. In this case the particles te
to follow the sidewalk, since it is the highest probability
area within the GPS error radius.

[ Particle \ Var | 5m \ 10m \ 15m |
500 3.01/243/20| 2.96/2.37 /20| 2.96/2.48/ 16
1000 3.03/242/20| 298/2.41/19] 2.98/251/16
1500 3.03/243/20| 298/2.44 /18] 2.98/2.46/ 17

TABLE |
RMSERESULTS FOR THE FIRST DATASETTHE ROWS ARE THE
NUMBER OF PARTICLES USED AND THE COLUMNS ARE THE ASSIGNED
GPSVARIANCES. EACH CELL SHOWS THREE ESTIMATES THE RMSE
OF THE NO-MAP VERSION LOCALIZATION IN METER, MAP-PRIOR
BASED LOCALIZATION IN METER AND THE PERCENTAGE OF
IMPROVEMENT BY USING MAP-PRIORS

§| = Ground Truth
#| *** Weighted mean of particles
*%% GPS

Fig. 3. (a) Left. Tracking without map priors.
(b) Right. Tracking results with map priors.

To obtain a more quantitative evaluation of our methodmay be limited. For the results shown in figures 1 and 2 the
we systematically varied several key parameters and tabdumber of particles are set to be 500 and the GPS variance
lated the results. Table | shows the root mean squared errggsset to be 5 meters.

(RMSE) of each experiment along with different values for

the number of particles and GPS variance. The RMSE gives

a measure of how much the estimated path differs from thg- Data set 2

ground truth: The second dataset shows a similar improvement in

tracking due to the use of map-based priors. Figure 3(a)

(17) shows the tracking result without map-based priors and
the result in figure 3(b) is obtained by applying the map-

RMSE in equation 17 is calculated by summing the squarg@@sed priors. On the top right of 3(a) we note that, similar

distances of each estimated locatibnfrom the ground to the first dataset, the particles follow the GPS through

trutht;, which is estimated by interpolating between knownfn€ buildings, while the particles in 3(b) stay in the higher

waypoint locations, and dividing by the total number of dateProbability area nearby. Similarly, the particles in 3(a) go

pointsn. into shrubs and the road at the bottom of the map due to the

It is evident that the map-based priors perform betteffoneous GPS readings, but the particles in 3(b) constantly
when the error of measurement model is set to be 18fay near the center of the sidewalks. Both trajectories
meters or less. This is expected since the Garmin GP¥viate from the true green path at the top right of the
receiver is known to have an error <15 meters 95% ofap, due to the extremely bad GPS readings. The number
the time, which under our Gaussian measurement modgf particles are set to be 500 and the GPS variance is set
assumption translates to a variance of approximately 71§ Pe 5 meters for the results in figures 3(a) and 3(b).
meters. Moreover, a larger number of particles does not

RMSE= —zill('ri]_ti)z

seem to bring additional positive effect; the RMSE of map

4 L i ) Particle \ Var | 5m \ 10 m \ 15 m |
prior based localization is relatively static for a constan 500 27173537 16] 2027343/ 15| 3857347710
GPS variance. This is because 500 particles can efficiently 1000 406/356/12| 401/342715| 3.847359/7
approximate the posterior in Equation 8 without need 1500 4.09/356/13] 403/339/16| 3.88/369/5

for additional number of particles which leads to more
processing requirements. This is a particularly encouraging
result for a mobile application where processing resources

TABLE 11
RMSERESULTS FOR THE SECOND DATASET



The RMSE results with different parameter settings areery appropriate to model the systematic errors associated
summarized in table Il. As in table I, the results show thevith GPS.
overall advantage of our map-based priors approach. As a future application of the proposed localization tech-
Even though the advantage of using the map-based priorgjue, we plan on integrating the algorithm into the Georgia
is evident in the figures, the RMSE does not always reflectech System for Wearable Audio Navigation (SWAN), a
this. For example, one of the results (using 1500 particlesobility tool for the visually impaired. The SWAN system
and 15 meters GPS variance) in table 1l shows only avill provide guidance both outdoors and indoors, with GPS
5 percent performance improvement by using map-priorserving as the primary sensor outdoors and computer vision
There are two reasons for this. Firstly, the errors betweeas the primary sensor indoors. In conjunction with inertial
the estimated and the true path are small for most of theensors and the map-based priors discussed in this paper,
path in both datasets, since the GPS tends to follow thae expect an effective and successful practical application,
ground truth closely in open areas. This outweighs thef benefit to a great number of people.
larger errors in some sections of the path, and brings the
overall RMSE for the two trajectories, which are generated ACKNOWLEDGMENTS

with/without map-based priors, closer. Secondly, the RMSE g gythors would like to acknowledge graduate students

calculates error based solely on the distance between thg < Fiedler and Jeffrey Lindsay for their assistance in
estimated and true locations and does not take into acco thering real-time GPS data with the SWAN system.

the context of the estimated locations. For example, a
the top right part of figure 3(a) the estimates lie inside
a building, and RMSE fails to assign higher error for those

points than 10 estimates that li the same distance awalll [ D8l O, £ ¢ Buwe, g 5, T, e Care
from the ground truth but on the sidewalk, as in the top  and Automation (ICRA)1999.

right of figure 3(b). Hence, even though the results in figure[2] S. Thrun, D. Fox, F. Dellaert, and W. Burgard, “Particle filters for

; ; ; ; mobile robot localization,” inSequential Monte Carlo Methods in
3(b) are Vlsua”y better, there is Only a Sllght decrease in Practice(A. Doucet, N. de Freitas, and N. Gordon, eds.), New York:

RMSE. Springer-Verlag, January 2001. _
In summary, the map-based priors provide an effectivel3] R. Azuma, B. Yohan, R. Behringer, S. Feiner, and S. J. B.Maclntyre,

and efficient means of improving the accuracy of local- NRo?/Cei?é:rd\zlggies in augmented realigpmputers and Graphics

ization schemes. We showed the improved tracking result§] s. Feiner, B. Macintyre, T. Hollerer, and A. Webster, “A touring
qualitatively in figures 2 and 3(b), and quantitatively in machine: Prototyping 3D mobile augmented reality systems for

s _Ari At exploring the urban enviroment,” iAroc of ISWC pp. 74-81, 1997.
tables 1 and II. Specifically, map-prior based localization R. Behringer, “Registration for outdoor augmented reality appli-

produces more logical results in the presence of large sensor’ cations using computer vision techniques and hybrid sensors,” in
noise and brings the estimated path closer to the ground Proceedings of IEEE Virtual Realityop. 244-251, March 1999.
truth [6] A. Helal, S. Moore, and B. Ramachandran, “Drishti: An Intergrated
: Navigation System for Visually Impaired and Disabled,'Hroceed-
ings of the 5th International Symposium on Wearable Computer
(Zurich,Switzerland), October 2000.
V. CONCLUSIONS ANDFUTURE WORK [7] Y. Yokakohiji, “Accurate image overlay on video see-through HMDs
using vision and accelerometers,” iBEE VR pp. 247-254, 2000.
We introduced map-based priors, with which we can [8] J. Borenstein, B. Everett, and L. Fengavigating Mobile Robots:

- . . . . Systems and Techniqued/ellesley, MA: A. K. Peters, Ltd., 1996.
efficiently perform localization using particle filters even [9] G. Borges and M.J.Aldon, “An optimal pose estimator for map-

when the main sensor is inaccurate or unreliable at times. based mobile robot dynamixc localization: Experimental comparison

As th xperimental r | how. even the | lization with the EKF,” in IEEE International Conference on Robotics and
s the e pe ental results show, even the localizatio Automation (ICRA)May 2001.

using nOiS_y sensors results in far more stable local tfaCkin_@m] N. Ayache and O. Faugeras, “Maintaining representations of the
representing the ground truth route more correctly. This  environment of a mobile robot,JEEE Trans. on Robotics and

technique is applicable to variety of applications, including, , {28 % Bty Kaute, and B Schutz, “oronoltrack-

tracking robots and humans. ing: Location estimation using sparse and noisy sensor data,” in
Even though the initial results are promising, there is  IROS 2003. _ _ _
plenty to do in terms of future work. In fact, the system wel12 D: Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian
. . . filtering for location estimation JEEE Pervasive Computingp. 10—
have implemented can be considered a bare-bones version, 19, july 2003.
so improvements in most areas should lead to even bettéf] M. Isard and A. Blake, “Contour tracking by stochastic propagation

results. For example the accuracy of our method relies on of conditional density,” inEur. Conf. on Computer Vision (ECCV)
) ’ pp. 343-356, 1996.

the quality of the probability map. A more realistic and[14] s. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
useful map could be obtained by taking observations of the particle filters for on-line non-linear/non-Gaussian Bayesian track-
area in question over a period of time. Furthermore, a time- ?35 Izl’EoEoEz Transactions on Signal Processingl. 50, pp. 174-188,
dependent map could be built in this way. Such maps shoulgls] c. Kowk, D. Fox, and M. Me#, “Adaptive real-time particle
lead to improvements in the accuracy of the method. Also, filters for robot localization,” inlEEE Intl. Conf. on Robotics and
in our ; ot Automation (ICRA)2003.

particular application, the results we show are not as
good as they could be if we had used a better error model

for GPS. In particular, the Gaussian model we used is not
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