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Figure 1. RANSAC can be significantly sped up if modified to take advantage of additional grouping information between features,
e.g., as provided by optical flow based clustering. Left: one of the two images for which we seek epipolar geometry, with inlier and
outlier correspondences overlaid in blue and red respectively. Middle and Right: Two largest groups of tentative correspondences after
clustering based on feature locations and optical flows. Notice their inlier ratios are much higher than the average ratio in the entire image.

Abstract
We present a novel variant of the RANSAC algorithm

that is much more efficient, in particular when dealing with
problems with low inlier ratios. Our algorithm assumes
that there exists some grouping in the data, based on which
we introduce a new binomial mixture model rather than
the simple binomial model as used in RANSAC. We prove
that in the new model it is more efficient to sample data
from a smaller numbers of groups and groups with more
tentative correspondences, which leads to a new sampling
procedure that uses progressive numbers of groups. We
demonstrate our algorithm on two classical geometric vi-
sion problems: wide-baseline matching and camera resec-
tioning. The experiments show that the algorithm serves
as a general framework that works well with three possi-
ble grouping strategies investigated in this paper, includ-
ing a novel optical flow based clustering approach. The
results show that our algorithm is able to achieve a signifi-
cant performance gain compared to the standard RANSAC
and PROSAC.

1. Introduction
A common problem in computer vision and many other

domains is to infer the parameters of a given model from
data contaminated with noise and outliers. RANSAC [7]
and its many variants [21, 16, 13, 14, 1, 3, 17, 22] have
been a popular choice for solving such problems, owing to
their ability to operate in the presence of outlier data points.
The original RANSAC algorithm works in a hypothesis-

testing framework: it randomly samples a minimum set of
data points from which the model parameters are computed
(hypothesis) and verified against all the data points to de-
termine a fitting score (testing). This process (a trial) is re-
peated until a termination criterion is satisfied.

As the inlier ratio drops, RANSAC becomes exponen-
tially slower. For problems with moderate inlier ratios,
RANSAC is fairly efficient. For instance, for computing
camera poses from points with known 3D positions (cam-
era resectioning) using the 6-point DLT algorithm [10], it
only takes about 60 trials to find the correct parameters with
a 95% confidence from data points contaminated with 40%
outliers. However, with a 20% inlier ratio, it requires over
45, 000 trials to achieve the same confidence. Such low in-
lier ratios exist in many practical problems. For instance,
for the very same resectioning problem when dealing with
internet images [19], one image of interest may observe tens
or hundreds of known 3D points, and many of those point
correspondences are spurious. For these problems, the stan-
dard RANSAC would simply fail because of the extraordi-
narily large number of trials needed.

In this paper, we make an assumption that there exists
a grouping of the data in which some of the groups have
a high inlier ratio while the others contain mostly outliers.
Most problems of interest have such natural groupings. For
example, in the case of wide-baseline matching, one can
group the tentative correspondences according to optical
flow. The motivation of optical flow based clustering comes
from the fact that it is fairly easy for a human to distinguish
inliers from outliers in an image such as Figure 1, without



calculating the underlying epipolar geometry: the optical
flow supplies a strong clue and can be used to group the ten-
tative correspondences. Another natural grouping is derived
from image segmentation, as in Figure 3.2: only segments
visible in both images will contain inlier correspondences.
The same grouping assumption exists in camera resection-
ing. Typically, the geometries of known 3D points in the
target image were recovered from their 2D measurements
in previously visited images. Hence those 3D points can
be grouped according to which visited images they come
from. All these examples have one thing in common that
they reveal a correlation between the inlier probabilities of
individual data points.

If such a grouping can be identified we propose a novel
algorithm to exploit it, GroupSAC, improving on RANSAC
and its variants by using a hierarchical sampling paradigm.
In GroupSAC, we first randomly select some groups and
then draw tentative correspondences from those groups.
We will show that doing so is beneficial in that minimum
sample sets drawn from fewer groups have a substantially
higher probability of containing only inliers. Because its
theoretical justification relies on several modeling assump-
tions, we adopt the design used in PROSAC [2] and only
change the order in which minimum samples are consid-
ered. Hence the method gracefully degrades to the classical
RANSAC if the assumed model for the data is wrong.

In addition, we show that GroupSAC can be improved
upon if the chosen grouping has the property that larger
groups tend to have higher inlier ratios. For instance, if we
cluster according to optical flow as in Figure 1, most out-
liers are classified into smaller clusters because their flow
is more random, while the the inliers tend to be consistent
with each other and hence clustered into larger groups. As
a result, the larger size of a group often indicates a higher
inlier ratio. The ranking on groups so obtained can be inte-
grated into GroupSAC to further improve its efficiency.

There is a lot of previous work along the lines of modify-
ing the sampling strategy of standard RANSAC. It is usually
achieved by making use of various types of prior informa-
tion. NAPSAC [15] modifies the sampling strategy to se-
lect nearby points to deal with high-dimensional problems.
Lo-RANSAC [4] conducts additional sampling among po-
tential inliers. GASAC [18] adopts ideas from genetic al-
gorithms to form samples with more likelihood of being all
inliers. [20] suggests the use of additional prior information
regarding absolute accuracy of each data point to guide the
sampling procedure. PROSAC [2] uses relative accuracy
information among the data points. Our algorithm differs
from existing methods in the sense that we consider correla-
tions between the inlier probabilities of the individual data
points. While using additional prior information, existing
algorithms have always assumed that data points are statis-
tically independent, i.e., no correlation among the probabil-
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Figure 2. An example of the wide-baseline matching problem.
The inlier correspondences are colored in green, and the outliers
are in red. The region G2 in the left image contains part of the
scene also visible in the right image. Hence this region not only
contains more tentative correspondences (3 v.s. 1), but also has a
higher inlier ratio (66.7% v.s. 0%).

ities of the data points being inliers has been exploited.
2. Group Sampling

In this section, we improve on the simple binomial model
used in RANSAC by introducing a binomial mixture model
for the case when a grouping in the data can be identified.
This model suggests a novel hierarchical sampling scheme,
which we term group sampling. The properties of group
sampling are investigated, which establish the foundation
of GroupSAC to be introduced in Section 3.

2.1. Simple Binomial Model of RANSAC
In the standard RANSAC algorithm and many of its vari-

ants, the probability of a data point x being an inlier is
assumed to obey an i.i.d. Bernoulli distribution, i.e., the
inlier probability of one point is assumed independent of
any other data point. In RANSAC we consider the prob-
lem of estimating the parameters of a given model from N
data points {xj} , j = 1 . . . N , contaminated with noise and
outliers. We assume that the minimum number of points
needed for computing the model parameters is m. For any
minimum sample set S with m points, we have

IS ∼ B(m, ε) (1)

where IS is the number of inliers in S, and B(m, ε) is
the binomial distribution in which ε is the parameter of a
Bernoulli trial, i.e., the inlier probability of the set S in
the RANSAC context. Therefore, the probability of all the
points in S being inliers, P (IS = m), is given by:

P (IS = m) =
mY

j=1|xj∈S

P (Ij) = εm (2)

where Ij is an indicator variable signifying xj is an inlier.
Although a lot of previous work has recognized the fact

that ε is not necessarily the same for different data points,
and has exploited this non-uniform property to speed up the
sampling procedure [20, 2], in most if not all cases the inlier
probabilities of different data points in those approaches are
still considered independent of each other.

2.2. Binomial Mixture Model of GroupSAC

In this paper we make use of the fact that, for many prob-
lems, there exist groupings among the data points with the



property that the groups tend to have either a high or a low
fraction of inliers. One such example is the wide-baseline
matching problem as shown schematically in Figure 2, in
which the data points are the tentative correspondences be-
tween feature points in two images. Some regions in the
first image will overlap with the scene seen from the sec-
ond image, hence the corresponding point groups (G2 in
Figure 2) have a high chance to contain inliers, while the
non-overlapping regions (G1 in Figure 2) contribute no in-
liers. More examples from real image data will be discussed
in Section 5.

More precisely, we assume that the probability of the in-
lier ratios in those groups can be modeled by a two-class
mixture: the high inlier class (e.g., the overlapping region
G2 in Figure 2) and the lower inlier class (e.g., the non-
overlapping region G1). An obvious candidate to model
each class is the beta distribution [6], the conjugate prior to
the binomial distribution. However, the inlier ratio of the
second class is usually close to zero, and we found that a
mixture of two delta distributions suffices to model most
problems, with the advantage of being simpler. In particu-
lar, we assume that the inlier ratio εi in any given group Gi

is drawn from the following mixture

εi ∼ πhδ(ε0) + πzδ(0) (3)

where πh and πz are the mixture weights for the high inlier
class and the zero inlier class, with inlier ratios ε0 and 0
respectively. Hence the probability of having IGi

inliers in
group Gi can be derived as

P (IGi) =

Z
εi

P (IGi |εi)P (εi)

=πhP (IGi |εi = ε0) + πzP (IGi |εi = 0) (4)

In other words, the distribution on the number of inliers IGi

in any given group is now a mixture of bimonials:

IGi
∼ πhB(|Gi| , ε0) + πzB(|Gi| , 0) = πhB(|Gi| , ε0)

(5)
where |Gi| is the number of data points in group Gi. Note
that inliers are yielded by only a fraction πh of the groups,
referred to as inlier groups. So far we assume that each data
point is associated with one group, whereas the multiple as-
sociation case is introduced in Section 6.

2.3. Group Sampling

To deal with data points that can be grouped as described
in Section 2.2, we introduce a novel hierarchical sampling
scheme, namely group sampling, which is a two-step pro-
cess: we first choose k groups yielding a configuration
G = {Gi}, i = 1 · · · k, and then draw data points from
the union of the groups Gi in G. It is worth noting that the
sampling strategy in RANSAC can be considered as a spe-
cial case of group sampling in which all data points belong
to the same group.

In group sampling, the probability of all the points in S
being inliers can be computed as well. First, consider the
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Figure 3. The proportions of combinatorial numbers from
1,2,3...,7 groups, relevant for m = 7 when estimating a fun-
damental matrix. The number is less than 3% when sampling
from one or two groups (the offset piece), and 20% from no more
than three groups. In practice, GroupSAC finds an inlier sample
from at most two or three groups, which results in large savings in
computation time.

easier case in which a set Si contains |Si| samples (at least
one) from a single group Gi. From Eq. (5), the probability
of all points in Si being inliers is given by

P (ISi = |Si|) = πhε
|Si|
0 (6)

Note that πz does not appear above, as B(|Si| , 0) = 0.
More generally, if a minimum sample set S = S1∪· · ·∪

Sk is drawn from configuration G = {Gi}i=1···L, i.e., Si ⊂
Gi, the probability of S containing only inliers is given by:

P (IS = m) =

|G|Y
i=1

P (ISi = |Si|) = π
|G|
h εm0 (7)

in which |G| = k is the number of the groups in configura-
tion G. Note that the difference between Eq. (7) and Eq. (2)
is the factor π|G|h and the use of the inlier probability ε0 for
high inlier groups rather than the global ε.

2.4. Fewer Groups are Better

Under the assumptions made above, it is obvious from
Eq. (7) that sampling data points from fewer groups yields
a higher probability of obtaining an all-inlier sample S, as
shown in the following corollary:

Corollary 2.1. Given two minimum sample sets S1 and S2

drawn from configurations G1 and G2 respectively, we have

|G1| ≥ |G2| ⇒ P (IS1 = m) ≤ P (IS2 = m). (8)

Proof. Based on Eq. (7), we may write the inlier probabili-
ties of S1 and S2 as

P (IS1 = m) = π
|G1|
h εm0 and P (IS2 = m) = π

|G2|
h εm0 . (9)

We conclude the proof by noting that 0 < πh ≤ 1.

3. GroupSAC
In this section we present GroupSAC, a variant of

RANSAC that gains additional efficiency by exploiting the
properties of a grouping of the data points. GroupSAC is
based on the same hypothesis-testing framework as that in
the standard RANSAC, except for a new sampling scheme
based on groupings.



3.1. GroupSAC Algorithm
To enable sampling from fewer groups, GroupSAC

draws samples from increasing numbers of groups but is
still able to achieve the same random sampling as in stan-
dard RANSAC, i.e., each minimum sample set has the same
chance of being sampled, when the computation budget is
exhausted. Inspired by PROSAC [2], we use a heuristic or-
dering of group configurations without estimating the actual
values of the mixture model parameters in Eq. (5).

More specifically, GroupSAC goes through all possible
configurations in the order of their cardinalities. Let K be
the total number of groups among all the data points, and
all the configurations can be divided into R = min(m,K)
subsets {Ck}k=1,...,R such that

Ck = {Gu| |Gu| = k} (10)

Accordingly, GroupSAC starts sampling from C1 until it
finally reaches CR. For each subset Ck, GroupSAC goes
through each configuration Gu by drawing minimum sam-
ple sets from it. By the end of the R-th stage, all the config-
urations will have had their opportunity to be selected. The
process can be summarized as below:

Algorithm 1 The GroupSAC Algorithm
Sort all the configurations according to Eq. (10) and (17).
Repeat the following
• Check the maximum rounds for the current configuration
Gu Eq. (11). If reached, move to Gu+1.

• Draw samples from all the groups in Gu such that each
group at least contributes one data point.

• Estimate the parameter of the underlying model.
• Find the inliers for the new model and check the termina-

tion criteria in Section 3.2.

Similar to PROSAC, it is crucial to make the correct
number of trials in each configuration Gu. Assume our
computation budget is T0 trials in total for all possible
M0 =

(
N
m

)
minimum sample sets, and let Tu be the number

of trials for configuration Gu = {Gi}F , in which F is the
set of its group indices. Tu is chosen such that the sampling
ratio of Gu is equal to that of the entire M0 sample sets:

Tu/
‚‚‚ T
i∈F

Gi

‚‚‚ = T0/M0 (11)

where
∥∥∥ ⋂

i∈F
Gi

∥∥∥ refers to the binomial coefficient of picking

points from all the groups in Gu, i.e., each group contributes
at least one point.

In order to compute
∥∥∥ ⋂

i∈F
Gi

∥∥∥ in Eq. (11), we invoke the

inclusion-exclusion principle in combinatorics [9]:‚‚‚\
i∈F

Gi

‚‚‚ =
‚‚‚[
i∈F

Gi

‚‚‚− X
i1∈F

‚‚‚ [
i2∈F\i1

Gi2

‚‚‚+ · · ·

+ (−1)n−2
X

i1,i2∈F

‚‚‚Gi1 [Gi2

‚‚‚+ (−1)n−1
X
i∈F

‚‚‚Gi‚‚‚ (12)

where
∥∥∥ ⋃

i∈F
Gi

∥∥∥ represents the binomial coefficient of pick-

ing points from any one or more groups in {Gi}F :‚‚‚ S
i∈F

Gi

‚‚‚ =
` P

i∈F
|Gi|

m

´
(13)

The proportion of the combinatorial numbers for {Ck} in a
wide-baseline matching example is shown in Figure 3.

3.2. Termination Criteria
Since GroupSAC computes a model from a subset of the

data points in a fashion similar to PROSAC, we adapt the
termination scheme in the latter to our algorithm. First, non-
randomness is checked to prevent the case that an incorrect
model is selected as the final solution because of an acci-
dental support from outliers. To be more precise, we want
the probability that the model to be validated is supported
by j random points is smaller than a certain threshold ψ:
the minimal number of inliers n∗ required to maintain the
non-randomness can be computed as

min{n∗ :

nX
i=n∗

βi−m(1− β)n−i+m
 
n−m
i−m

!
< ψ}, (14)

where β is the probability of an incorrect model from a min-
imum sample set happening to be supported by a point that
is not from the sample set, and n is the number of points
in the current configuration. In our implementation, we use
ψ = 5% for all the experiments.

The second termination condition is that the confidence
that there does not exist another model which is consistent
with more data points is smaller than a given threshold η:

(1− εmG )p ≤ η (15)

where εG is the inlier ratio of the current configuration G,
and p is the number of random sampling trials. Note that
Eq. (15) differs from the counterpart used in the standard
RANSAC algorithm in the sense that only the points in G
are considered. In this case, even if the entire data set has a
low inlier ratio, GroupSAC is still able to terminate before
reaching the maximum number of sampling trials.

4. Integrating Additional Orderings
Above we have shown that fewer groups should be pre-

ferred. Now we argue that in many cases groups with larger
sizes should also be preferred. More specifically, in many
applications there exists a correlation between the number
of points in a group and its probability being an inlier group.
For instance, in camera resectioning, the visited image that
has more tentative correspondences to the known 3D points
in the target image is more likely to be an image with true
correspondences. The same holds for wide-baseline match-
ing problems, in which one can expect more tentative cor-
respondences from the true overlapping regions.

With this heuristic information, it is reasonable to or-
der the groups in each class Ck according to the number of



Figure 4. RANSAC can be significantly sped up if modified to take advantage of additional grouping information between features,
e.g., as provided by image segmentation. Left and Right: two images for which we seek epipolar geometry. Middle: inliers (green) and
outliers (red) overlaid on the image segments: notice the clear correlation between segmentation and inlier/outlier classification.

points they contain and apply a PROSAC-like [2] algorithm
to select groups. However, we find in experiments that this
strategy does not always work well. The reason is that of-
ten outlier groups with many points are over-favored and
this may lead to poor performance. Instead, we propose a
different weighting scheme which works more reliably. Let
S1 and S2 be any two size-m minimum sample sets from
two configurations G1 and G2 respectively. We assume that
a configuration with more points in total has a higher inlier
probability than a configuration with fewer points:X
Gi1∈G1

|Gi1 | ≥
X

Gi2∈G2

|Gi2 | ⇒ P (IS1 = m) ≥ P (IS2 = m).

(16)
The change from before is that we do not favor any indi-
vidual group but instead we favor a configuration which
consists a larger number of data points. This significantly
reduces the risks of over-sampling from a small set of bad
groups with more points.

The GroupSAC algorithm can be slighted modified to
integrate the additional ordering based on the group sizes.
Eq. (10) does not prefer any configurations inside Ck, but
with Eq. (16), we can order the configurations in Ck as
{Gu| |Gu| = k}, such that for any two arbitrary Gu1 and Gu2

with u1 < u2, we have:X
Gi∈Gu1

|Gi| ≥
X

Gi∈Gu2

|Gi| . (17)

In addition to the ordering of different configurations,
another possible improvement is to order the points inside
a configuration according to their inlier probabilities if such
information is available. This basically amounts to apply-
ing PROSAC [2] in the inner loop. Since GroupSAC works
in the same way as the standard RANSAC for a given con-
figuration, it is straightforward to apply PROSAC, and the
details are omitted here.

5. Application I: Wide-Baseline Matching
We first evaluate GroupSAC on the wide-baseline match-

ing problem, in which there are two main challenges:
small overlapping regions between the interested images
and repetitive texture in the scene. Both challenges lead to
low inlier ratios in tentative correspondences, and we will
show how GroupSAC is able to alleviate this significantly.

First tentative correspondences are established by match-
ing the SIFT features [11] detected in both input images.
To apply our algorithm, we employ two strategies to group
those tentative correspondences: one based on optical flow
clustering and the other based on image segmentation. In
both strategies, one image is arbitrarily chosen to serve as
the reference image, and each tentative correspondence in
that image is associated with one of the groups. The outliers
in the tentative correspondences are then filtered by fitting a
fundamental matrix [10].

To avoid the degeneracy when estimating fundamental
matrix, we always start sampling from two groups and
make a sanity check as in QDEGSAC [8]. Note that as
GroupSAC only modifies the sampling stage of the stan-
dard RANSAC, it is rather easy to integrate tweaks on the
other stages, e.g., QDEGSAC.

5.1. Grouping using Optical Flow Based Clustering
The first grouping strategy we tried for wide-baseline

matching problems is to cluster the optical flow of the de-
tected SIFT features. In Figure 1, it is easy to see that the
inliers in a certain region tend to have consistent optical flow
vectors, while those from outliers are much more random.

Specifically, we model each tentative correspondence as
a 4-dimension vector (u, v, δu, δv), in which u and v are
the 2D feature position in the reference image, and δu and
δv are the offset between the corresponding features in both
images. We then define the distance between two tenta-
tive correspondences as the sum of squared distances, and
the four dimensions are weighted by (1, 1, 10, 10) respec-
tively. The reason to use higher weights for the offset is
that we favor making the optical flows consistent with each
other while still allowing features to spread out somewhat.
Based on the weighted distance, all the tentative correspon-
dences can be clustered using mean shift [5] in which the
bandwidth threshold is fixed to be proportional to the image
size. The resulted two largest groups are illustrated in the
2nd and 3rd images of Figure 1.

5.2. Grouping using Image Segmentation
The second grouping strategy is based on image segmen-

tation. The intuition behind this is that correspondences
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Figure 5. The number of points and inliers associated with dif-
ferent groups for the hotel images shown in Figure 3.2.

within one image segmentation are more likely to share the
same inlier ratio. In particular, we generate a thumbnail for
the reference image with the longer edge about 200 pixels,
which is then segmented using Berkeley Segmentation En-
gine (BSE) as in [12]. The segmentation is efficient due
to the small size of thumbnail image. The features in the
reference image are then associated to the image segments
with respect to their 2D position, and so are the tentative
correspondences. One such example is shown in Figure 3.2.
Note that GroupSAC does not heavily depend on the quality
of the image segmentation, as it only yields a rough group-
ing of the correspondences.

Since the overlapping part between two images is typi-
cally small in challenging problems, most of the image seg-
ments only contain outlier groups as shown in Figure 5, In
addition, the repetitive textures such as building facades in
Figure 3.2 yields a lot of random false correspondences. In
fact, the problems we are dealing with often have inlier ra-
tio as low as 20%. However, the image segments corre-
sponding to the overlapping view usually contain a consid-
erable proportion of inliers, which become exactly the inlier
groups that GroupSAC tries to locate during the sampling
process. Also note that the inlier groups usually contain
more tentative correspondences, which is consistent with
our group ordering assumption.

5.3. Efficiency Comparisons
We compare the performance of the standard RANSAC,

PROSAC [2] and the proposed GroupSAC on some real
image data, which includes some well-known images (Ta-
ble 5.3 A-D) as well as some (Table 5.3 E) that we collected
by ourselves. We set the maximum allowed trials to 5000,
T0 to 250, 000 and η to 0.99, and all the results are averaged
over 100 runs.

Due to low inlier ratios, the minimum number of tri-
als to satisfy the termination criteria in RANSAC is ex-
ponentially high. As a result, RANSAC always takes the
longest time and sometimes even exits without enough cer-
tainty when it reaches the maximal trial limit. PROSAC im-
proves on RANSAC in all the tests but is still much slower
than GroupSAC most of time. The main reason is that the
residual used by PROSAC, the residuals in feature descrip-
tor matching as proposed in [2], is indeed a point-wise ev-

idence, while the grouping structure used by GroupSAC
reveals the correlation between inlier points and is shown
to provide stronger evidence. For example, the point-wise
residual of outlier correspondences can be very small for
scenes with repetitive textures, but the global grouping re-
mains same in this case.

On the other hand, GroupSAC gains efficiency by fully
exploiting the grouping between data points. For instance,
in the hotel data set shown in Figure 5, if GroupSAC starts
sampling from two groups, i.e., C2, the first configuration
in the sorted list is {G1, G2}, because it contains the most
points according to Eq. (17). Since {G1, G2} has a rela-
tively high inlier ratio about 50%, GroupSAC has a very
high chance to finish sampling earlier and hence is able to
avoid outlier groups and inlier groups with low inlier ratios.
In contrast, the standard RANSAC samples from all the data
points with a much lower inlier ratio.

Another important insight is that the inlier ratios of the
two largest groups in GroupSAC are much higher than
those of the entire data set. This again proves that the un-
derlying grouping structure can be recovered and used to
speed up RANSAC dramatically. The high local inlier ratio
also makes the proposed GroupSAC exit properly, because
Eq. (15) can be satisfied as long as a certain configuration
has a relatively high inlier ratio, while both RANSAC and
PROSAC fails to exit with enough certainty on image pair F.

6. Multiple Associations
So far we have introduced how to do group sampling on

data points in which each point has a single parent group,
but in some problems a point may be associated with mul-
tiple groups. For instance, in the camera resectioning, we
are given a set of points with 3D coordinates and their pro-
jections in the target image. These points can be naturally
grouped according to the visited images that they are visi-
ble in, and the points from an image that overlaps with the
target image have a higher chance to be inliers than those
from an image that does not overlap with the target image.

More generally, let S be a minimum sample set asso-
ciated with multiple configurations. Those configurations
may yield different values when evaluating Eq. (7), and
the one with the minimal cardinality gives the largest in-
lier probability. Since it is computationally intractable to
evaluate the exact inlier probabilities in this case, we de-
fine G∗(S) as the one with the minimal cardinality, called
the minimum spanning configuration, and assume the inlier
probability of S is dominated by G∗(S):

P (IS = m) = π
|G∗|
h εm0 . (18)

We then have a result similar to Corollary 2.1 that the prob-
abilities of sample sets can be compared using the size of the
corresponding minimum spanning configurations.

Corollary 6.1. Let the probability of a group being an inlier
group be πh and the inlier ratio be ε̂. For two sample sets



k kmin kmax vpm time(sec) speed-up
A: ε = 0.485, ε1 = 0.925, ε2 = 0.879 RANSAC 898.6 667 1269 838.0 137.0 1

PROSAC 250.1 136 512 127.8 12.9 10.6
GroupSACI 52.1 42 92 353.8 3.74 36.6
GroupSACF 10.25 7 17 451.0 1.13 121

B: ε = 0.641, ε1 = 0.981, ε2 = 0.934 RANSAC 103.9 83 174 1025.5 21.3 1
PROSAC 131.6 125 140 69.6 8.9 2.40

GroupSACI 31.3 22 83 382.1 2.54 8.39
GroupSACF 4.6 4 6 444.7 0.521 40.8

C: ε = 0.453, ε1 = 0.917, ε2 = 0.947 RANSAC 772.6 396 1169 225.3 35.3 1
PROSAC 15.9 8 39 15.9 0.174 202

GroupSACI 44.1 27 59 39.9 0.363 97.2
GroupSACF 6.2 4 11 78.8 0.132 267

D: ε = 0.425, ε1 = 0.899, ε2 = 0.973 RANSAC 1823.1 1661 2316 501.3 168.6 1
PROSAC 100.6 31 240 55.8 2.87 58.7

GroupSACI 106.8 84 142 85.8 2.12 79.5
GroupSACF 6.35 5 12 178.4 0.366 460.7

E: ε = 0.547, ε1 = 0.917, ε2 = 0.938 RANSAC 702.7 588 886 190.3 25.1 1
PROSAC 32.3 6 59 23.6 0.321 78.2

GroupSACI 45.2 29 62 43.0 0.490 51.2
GroupSACF 7.4 5 14 77.7 0.137 183.2

F: ε = 0.216, ε1 = 0.602, ε2 = 0.414 RANSAC 5000 5000 5000 607.1 548.2 1
PROSAC 5000 5000 5000 305.9 300.7 1.82

GroupSACI 1383.6 942 2202 169.1 44.4 12.3
GroupSACF 271.15 194 370 176.7 9.71 31.0

G: ε = 0.227, ε1 = 0.727, ε2 = 0.368 RANSAC 5000 5000 5000 97.0 51.0 1
PROSAC 5000 5000 5000 92.6 50.1 1.02

GroupSAC 464.1 255 696 35.1 2.31 22.1

Table 1. Comparisons between the standard RANSAC, PROSAC [2] and the proposed GroupSAC on wide baseline matching prob-
lems (A-F) and camera resectioning problems (F). All the results are averaged over 100 runs. k is the number of models computed
during the run, and vpm is the number of verifications per model. On top of the thumbnails, three inlier ratios are listed: the global ε,
and the inlier ratio of the largest group ε1 and the second largest group ε2 after applying optical flow based clustering. A-F: GroupSACI
and GroupSACF correspond to two grouping strategies: image segmentation and optical flow based clustering. Only part of the corre-
spondences are drawn in the thumbnails for clear visualizations. G: The thumbnails are four representative images in a 23-frame house
sequence. The first one is of interest in the camera resectioning problem.

S1 and S2 whose minimum spanning configurations are G∗1
and G∗2 respectively, we have

|G∗1 | ≥ |G∗2 | ⇒ P (IS1 = m) ≤ P (IS2 = m). (19)

Proof. The proof is similar to that of Corollary 2.1 and
hence is omitted here.

As a result, G in Eq. (10) is replaced with G∗. The other
part of the GroupSAC algorithm remains the same.

7. Application II: Camera Resectioning
Below we detail the experimental setup for the camera

resectioning application and show that the assumptions un-
derlying this paper indeed hold there. First we generate
tentative correspondences by matching the SIFT descrip-
tors [11] in the target image and those in the visited images
that correspond to the known 3D points. All the tentative

correspondences are passed to RANSAC, and the best in-
liers found are used to compute the underlying projection
matrix using the 6-point DLT algorithm [10].

We demonstrate the performance of GroupSAC on an
exemplar 23-frame image sequence taken around a house,
whose correspondences and inliers along with their contain-
ing groups are plotted in Figure 6. The grouping in Figure 6
shows that only 11 out of 22 images contain the inliers,
i.e., half the groups are outlier groups. In fact, the correct
matchings only exist in the images that overlap with the im-
age of interest. On the other hand, a pure descriptor-based
matching scheme tends to generate many false matchings
because of the repetitive textures and the resulted ambigu-
ities between their corresponding SIFT features. If we or-
der the groups according to the number of their points as in
Figure 6, the first half of images contains 7 inlier groups,
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Figure 6. The number of points and inliers associated with dif-
ferent groups for the house sequence in the camera resection-
ing problem. The blue bars indicate the numbers of tentative cor-
respondences in each group/image, and the red bars indicate the
numbers of inliers.

while the second half only contains 4 inlier groups. This
validates the assumption we made in Eq. (16) that orders
different configurations. In terms of efficiency, GroupSAC
again overwhelms RANSAC and PROSAC by a factor 22
as shown in Table 5.3.

In practice, a common way to solve the resectioning
problem is to draw samples from the image with most of
tentative correspondences. In fact, this heuristic approach
is just the first step of the case that GroupSAC starts sam-
pling from subset C∞, and the largest group is exactly the
image with the most tentative correspondences. Moreover,
GroupSAC is inherently more robust since it handles other
combinations in a probabilistically sound way.

8. Conclusions
We present a novel RANSAC variant that exploits group

structures in data points to guide the sampling process. Our
algorithm is able to handle problems with low inlier ratios
and is shown to work magnitudes faster than the standard
RANSAC and PROSAC in two important geometric vision
problems: camera resectioning and wide-baseline match-
ing. Our future work includes exploring other possible
grouping strategies and trying to employ a more sophisti-
cated model rather than the binomial mixture model.
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