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Abstract

Large-scale 3D reconstruction has recently received
much attention from the computer vision community. Bun-
dle adjustment is a key component of 3D reconstruction
problems. However, traditional bundle adjustment algo-
rithms require a considerable amount of memory and com-
putational resources. In this paper, we present an ex-
tremely efficient, inherently out-of-core bundle adjustment
algorithm. We decouple the original problem into several
submaps that have their own local coordinate systems and
can be optimized in parallel. A key contribution to our
algorithm is making as much progress towards optimizing
the global non-linear cost function as possible using the
fragments of the reconstruction that are currently in core
memory. This allows us to converge with very few global
sweeps (often only two) through the entire reconstruction.
We present experimental results on large-scale 3D recon-
struction datasets, both synthetic and real.

1. Introduction
In this paper, we present an approach for generating

large-scale three-dimensional reconstructions from images.
Our algorithm is inherently out-of-core and parallel and
therefore capable of tackling large optimization problems
with fewer computational resources. In addition, high qual-
ity reconstructions of submaps can be computed early on in
the optimization, making the approach well suited for on-
line mapping situations.

1.1. Motivation

Large-scale 3D reconstruction, especially image-based
urban reconstruction, has received considerable attention
recently from the computer vision community [8, 16, 15].
High-quality 3D models are useful in various successful
cartographic and architectural applications, such as Google
Earth or Microsoft Live Local.

Traditional approaches usually build 3D city models

Figure 1. The optimized St. Peters Basilica data set, which con-
tains 142, 453 3D points. Each color represents a certain submap,
optimized independently.

from aerial images. In [8], Fradkin uses stereo reconstruc-
tion to compute a disparity map and an elevation map under
the assumption that the surfaces are planar. Google Earth
and Microsoft Live Local also rely on aerial imagery. These
systems typically suffer from bad texture quality on the
sides of buildings because of the extreme viewing angles.
More accurate and better textured models can be created by
using ground-level images. With ground-level imagery, the
number of images needed to cover an area is significantly
higher. This scheme results in a more challenging recon-
struction problem.

At the heart of 3D reconstruction problems is structure
from motion (SFM). In SFM, we infer the structure of the
scene and the motion of the camera by using the correspon-
dences between features from different views. In particular,
certain types of features (points, lines, and so forth) are first
extracted and matched across images. Then the camera pa-
rameters and feature locations are optimized to minimize a
cost function, such as the 2D projection errors. The non-
linear minimization of the projection errors is referred to as
bundle adjustment in the literature[18].

In [14], the structure and the motion are first computed



from the multi-view relations and then refined using bundle
adjustment as the last step. Brown [4] employed an incre-
mental bundle adjustment algorithm to do 3D object recon-
struction. In particular, the approach incrementally inserts
new frames into the optimization problem, which computes
well conditioned initial reconstructions. These experiments
mainly focused on relatively small-scale objects and scenes.
Snavely [15] employed an approach similar to that in [4] to
build a photo tourism system enabling users to travel in a
large virtual 3D world. However, their incremental bun-
dle adjustment approach does not scale well, and the algo-
rithm inevitably becomes slow when the number of regis-
tered cameras increases.

We create large-scale reconstructions in a hierarchical
manner, which scales better than incremental approaches.
We partition the scene into several smaller scenes, or
submaps, that are independently optimized. The variables
in the submaps not directly used to merge submaps are fac-
tored out and their linearizations are cached.

A key insight in this paper is that linearization of
submaps stay accurate during the global alignment when
cameras and points are parameterized relative to a base
node local to their corresponding submap. This allows us
to globally merge submaps without requiring that the en-
tire reconstruction be in core memory at once. As we will
show, this leads to an inherently parallel, out-of-core imple-
mentation. Our approach requires far fewer passes through
the entire reconstruction, which corresponds to substantial
savings in disk I/O.

Finally, since the first step of our algorithm is to optimize
each submap, our algorithm is particularly useful in online
or distributed settings. In batch algorithms, all the images
must be available before a reconstruction is started. Using
our approach, usable reconstructions of each submap are
generated as soon as they are captured.

1.2. Related Work

Many techniques have been used in large-scale urban re-
construction to avoid having to do a full global bundle ad-
just. One approach is to augment the image capture system
with additional sensors, such as GPS receivers, so that accu-
rate reconstructions can be generated with only local bundle
adjustment. Chou [5] used a multi-image triangulation pro-
cess to build up the feature correspondences and extract the
information of lines and surfaces from the urban environ-
ment. Akbarzadeh et al. [1] introduced a video-based ur-
ban 3D reconstruction system in which the scene structure
was computed using the five-point algorithm as described in
[13]. However, both approach [1] and [5] heavily rely on ac-
curate camera pose information which is often unavailable
in more general systems.

Teller developed an urban reconstruction system [16] in
which rotations and translations of cameras are decoupled

and estimated separately. This approach assumes that ex-
trinsic poses are approximately known, and bundle adjust-
ment is employed to align the rotations of all cameras. In
addition, the system requires that images in the same set
share the same optical center and that the scene contains
enough line features.

In many situations, it is not practical (or possible) to
augment the capture setup in order to avoid global bun-
dle adjustment. Therefore, there has been much work di-
rected at making global bundle adjustment more efficient.
In bundle adjustment, it is important to take advantage of
the block sparsity structure of the system of equations. In
[6], the block-diagonal structure of the Hessian matrix was
exploited and the Schur complement was used to first factor
out the structure parameters, compute the camera poses, and
then back substitute for the structure parameters. For small
numbers of cameras, [6] showed that a dense representa-
tion for the reduced camera matrix was sufficient. As the
number of images increases, the size of the reduced camera
matrix increases, and its factorization becomes a bottleneck.
At that point, it is necessary to take full advantage of all the
sparsity in the system of equations.

There are two main ways to solve a sparse systems of
equations, iterative approaches such as conjugate gradient,
and direct sparse solvers [18]. One advantage of conju-
gate gradient is that the full Hessian does not need to be
stored, substantially lowering the amount of memory used
at the expense of computing the error and derivatives many
more times. Conjugate gradient methods tend to be com-
petitive with direct linear solvers such as Cholesky decom-
position only when sophisticated preconditioners are used.
Our approach maintains the computational efficiency of di-
rect solvers while not requiring that the entire Hessian be
stored in physical memory at the same time.

For large-scale urban environments, the factored sparse
matrices in traditional bundle adjustment are often still too
big to fit into core memory. Therefore, more sophisticated
techniques must be used. One option is to take a hierarchi-
cal, divide-and-conquer approach. For example, in both [7]
and [12] the scene is partitioned into several smaller scenes
that are easier to solve.

Nested dissection is an approach that is closely related to
ours. It is a divide-and-conquer approach applied directly to
solving a sparse system of equations. The recursive par-
titioning approach of [3]is an example of using a nested
dissection in an aerial photogrammetry setting. In nested
dissection, the parameter network is partitioned into sev-
eral submaps. The submap parameters are grouped together
and ordered first in the Hessian. Parameters associated with
measurements that span submaps are called separator vari-
ables, and are ordered last. By ordering the variables in
this manner, a standard sparse Cholesky factorization will
compute the factorization of each submap first, followed



by the factorization of the separator. Because submap vari-
ables do not have connections to variables in other submaps,
the Cholesky factorization can be modified to compute the
submap factorizations in parallel.

Since bundle adjustment is a non-linear optimization,
Levenberg-Marquardt is used to iteratively solve for the
minimum of the cost function. Sparse Cholesky factor-
izations are in the inner loop of the Levenberg-Marquardt
iterations. Therefore, while nested dissection can be im-
plemented in a parallel and out-of-core manner, it requires
sweeping through the entire reconstruction as well as com-
munication between processes during every iteration. In
contrast, we iterate each submap to convergence before
merging them, requiring only a very small number of global
iterations. This means our approach needs very little com-
munication between processes and a much smaller number
(often only one or two) of sweeps through the entire recon-
struction.

2. Notation and Bundle Adjustment Review
In photogrammetric bundle adjustment, we jointly esti-

mate the optimal 3D structure as well as the camera parame-
ters by minimizing a least-squares cost function. Typically,
the measurement function hk(.) is non-linear, and one as-
sumes a normally distributed measurement noise with asso-
ciated covariance matrix Σk, leading to

K∑
k=1

‖hk(xik , ljk)− zk‖2Σk
(1)

Above, xi(i ∈ 0...M) represents the intrinsic and extrinsic
camera calibrations, li(j ∈ 1...N) represents the 3D struc-
ture, and zk(k ∈ 1 . . .K) represents the 2D measurement
of the point ljk in camera xik . The notation ‖.‖2Σ stands for
the squared Mahalanobis distance with covariance matrix
Σ.

Overall, we seek the maximum a posteriori (MAP) es-
timate for the camera poses and the 3D structure given the
feature measurements. Under the assumption of indepen-
dent, zero-mean, normally distributed noise, the MAP es-
timate is the minimum of the non-linear least-squares cost
function given in (1). Equation 1 can be linearized as

hk(xik , ljk)−zk ≈
{
hk(x0

ik
, l0jk) +Hik

k δxik + Jjkk δljk

}
−zk

(2)
where Hik

k , J
jk
k are the Jacobians of hk(.) evaluated at

(x0
ik
, l0jk).

Inserting Equation 2 into Equation 1, we obtain

δ∗ = argmin
δ

{
K∑
k=1

∥∥∥Hik
k δxik + Jjkk δljk − ek

∥∥∥2

Λi

}

where we define ek
∆= zk − hk(x0

ik
, l0jk).

Figure 2. The block-structured matrix A′ for a typical SFM prob-
lem.The blue circles correspond to cameras and the blue squares
correspond to point parameters.

By combining the Jacobians into a matrixA and the vec-
tors ek into a right-hand side (RHS) vector c, we obtain:

δ∗ = argmin
δ
‖Aδ − c‖22 (3)

Solving for the update step δ requires first computing the
Cholesky factorization of ATA = RTR. The update step is
computed by solving two triangular systems of equations,
RT y = AT c and Rδ = y. The sparse block structure of the
matrix A, which we denote by A′, is shown in Figure 2.

For large 3D reconstruction problems, the computational
cost of the Cholesky factorization begins to dominate. It is
well known that proper ordering of the columns of A to
reduce the fill-in of non-zero entries in R has a dramatic
effect on both the required storage and computational re-
sources [17]. Two commonly used variable reordering al-
gorithms are approximate minimum degree (AMD) [2] and
nested dissection [10] (also called recursive partitioning in
[3]). Nested dissection is closely related to our approach
and the two are compared in the following section.

3. Submap-Based Reconstruction
In our approach, the SFM problem is first partitioned

into submaps, setting the stage for a divide-and-conquer ap-
proach. In order to allow us to optimize the submaps inde-
pendently, we parameterize the submap nodes relative to a
local coordinate frame, which is accomplished by assigning
a base node bp to each submap Mp, as illustrated in Figure
3. Poses and landmarks in a submap are parameterized rel-
ative to this base pose rather than the global frame.

Measurements that depend on parameters in different
submaps Mp and Mq , are inter-measurements, Zp,q . Mea-
surements which constrain nodes within the same submap
Mp are intra-measurements, Zp. Parameters in a submap
that contribute to inter-measurements are the boundary
variables Sp, of that submap. All others are internal vari-
ables,Vp, of the submap. The set of base poses B and



boundary variables from all submaps constitute the sepa-
rating set:

S = S1 ∪ · · · ∪ SP ∪B
In the sections below, we outline the proposed approach,

which consists of iterating over three distinct stages:

1. The internal variables for each submap are factored
out. The processing in each submap is independent
and can be done in parallel. This stage results in a
reduced system of equations that only depends on the
separator variables.

2. The separator variables are optimized using the cached
linearization of the intra-measurements. The inter-
measurements are relinearized at each iteration of the
separator optimization. At the end of this stage, the
separator variables are optimal up to the linearization
of the intra-measurements.

3. The internal variables for each submap are optimized
with the separator variables locked. Again, the submap
processing can be done in parallel. Note that stage 1
can be done while each submap is still in memory from
stage 3.

Our algorithm often converges to a minimum of the non-
linear cost function in only two iterations. This is impor-
tant in for the both the parallel and out-of-core implemen-
tation of our algorithm. Each submap has to be paged into
memory during every iteration, incurring a large disk IO
penalty each time. There is also a communication overhead
between processors in order to collect the submap lineariza-
tions onto the same processor in step two.

One of the main elements that enables such rapid con-
vergence is the introduction of the local coordinate sys-
tem. This allows the cached linearizations of the intra-
measurements to remain valid even when the submap under-
goes large transformations during the separator optimiza-
tion. Another way we limit the number of global iterations
is by squeezing as much utility out of the information we
have in memory at any one time. For example, we imple-
ment a full non-linear optimization to polish the internal
variables instead of simply back-substituting for a single,
linearized update step in stage three. This leads to a better
linearization point of the intra-measurements in step one.
Similarly, we iterate during the separator optimization in-
stead of simply taking one linearized step. By doing more
local iterations on the data that is in memory, we do not
require as many global iterations.

If the underlying cost function is linear in the parame-
ters, our algorithm simplifies to straight nested dissection
and only one global iteration is needed. In the linear case,
the local optimization of the separator variables only re-
quires one iteration and the update of the internal variables
simplifies to a simple back-substitution.

b1 b2

l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Figure 3. Two base nodes b1 and b2 are added to the partitioned
graph. The intra measurements Z1 and Z2 are colored in black.
The inter-measurements Z1,2 are in orange.

The relationship to nested dissection makes the bene-
fits of our algorithm clear in non-linear settings. The state
of the art approach for solving extremely large non-linear
systems is to use Levenberg-Marquardt on top of a direct
sparse linear solver. By using an out-of-core and paralleliz-
able approach like nested dissection to implement the linear
solver, large problems can be solved. Far less utility is being
squeezed out of each sweep through the data, which leads
to many more global iterations. Our approach exposes the
non-linearity at every level of the processing, which allows
it to converge with many fewer iterations.

3.1. Partitioning Into Submaps

We partition the factor graph into P submaps, denoted as
{Mp | p ∈ 1...P}, with each submap containing connected
poses and landmarks. The partition problem can be solved
as a graph cut problem. Since we want the structure from
motion problem decoupled so that the submaps are as in-
dependent as possible, the partitioning should minimize the
edges that span the submaps.

All the nodes in submapMP are represented as a relative
value with respect to bp:

xp = bp ⊕ x′p

Here, x denotes either a camera pose or a 3D point. The
set of all base nodes is defined as B = {bi | i ∈ (1, p)}.
Introducing the base nodes is a key step: if the relative vari-
ables x′p have converged to their optimal values, moving the
submap with respect to a global frame leaves the relative
variables x′p unchanged.

3.2. Factoring Out Internal Variables

In each submap, we tackle a much smaller SFM prob-
lem:

ApδMp = cp



where Ap and cp are the parts of A and c in Equation 3
corresponding to submap p and contain only the columns
corresponding to Zp.

In order to re-use the linearization point of the intra-
measurements, the columns ofAp corresponding to the sep-
arator variables are put last, as follows:

[
AVp

ASp

] [ δVp
δSp

]
= cp (4)

We then compute the Cholesky factor of the Hessian ma-
trix

H =
[
AVp ASp

]T [
AVp ASp

]
=

[
Rp Tp
0 Up

]T [
Rp Tp
0 Up

]
and reformat the system equations to[

Rp Tp
0 Up

]T [
βp
βUp

]
=
[
AVp

ASp

]T
cp

[
Rp Tp
0 Up

] [
δVp
δSp

]
=
[

βp
βUp

]
Since the separator variables correspond to the lower

right block of the Cholesky factor, the system of equations
involving only variables in the separating set can be ex-
tracted trivially for later use in the separator optimization:

UpδSp = βUp

We could also have used the Schur complement to factor
out the block of internal variables. Instead of ending up with
an upper triangular system of equations, this would have re-
sulted in a square symmetric system of equations. While
this might have saved some computation in the submap, it
would double the storage requirements for the cached lin-
earizations and increase the computational cost of optimiz-
ing the separator, so we opt to use the Cholesky factoriza-
tion approach.

3.3. Globally Aligning the Submaps

Once all the submaps are aligned internally, they are as-
sembled and optimized:

ASδS = cS

where S = S1∪· · ·∪SP ∪B. This procedure is no longer a
simple bundle adjustment because of the following reasons:

Caching

Their linearizations of the intra measurements are not up-
dated. Instead, we use the linearizations cached from the

previous step UpδSp = βUp
(p = 1, . . . , P ) and stack them

into the full separator system:
Ũ1

...
ŨP
AS

 δS =


βU1

...
βUP

cS


Note that the inter-measurements are still linearized during
each local iteration in response to the changing values for
the base nodes. Given a good graph cut, we find that the
stacked part is usually much larger than the local part, which
means most of the computation time is saved by caching the
linearization.

Note that we can save time when computing the Hessian
matrix in each iteration by precomputing the inner product
of the cached linearization terms:

H =
[
Ũ
AS

]T [
Ũ
AS

]
= ATSAS + ŨT Ũ

where ŨT Ũ is only calculated once. The gradients can also
be partially precomputed in a similar manner.

Restriction to Separator

We modify only the values of the base nodes during each
local iteration. Once the base node optimization has con-
verged, we do a final back-substitution to update the bound-
ary variables. This allows us to avoid having to keep
track of both the original linearization point of the bound-
ary variables used to cache the linearization of the intra-
measurements, and the changing linearization point of the
inter-measurements.

In practice, we have found that the boundary variables do
not change nearly as much as the base nodes, so this simpli-
fication to the implementation is reasonable. For data sets
where the boundary variables are poorly conditioned, the
update of the full separator should be performed iteratively.

3.4. Updating the Internal Variables

The final step is to update the internal variables in each
submap. This is done by non-linearly optimizing the in-
ternal variables while locking the separator. In this op-
timization, we do not need to consider any of the inter-
measurements or of the intra-measurements that connect
only boundary variables. Just as they can be initially op-
timized independently, the final update of each submap can
be done independently.

4. Implementation
We want to choose partitions so that the number of inter-

measurements and therefore the number of separator vari-
ables are small. We use the Metis graph partitioner from [9]



Failures of BA Failures with 10 partitions Total runs
14 8 100

Table 1. The failure rate of bundle adjustment (BA) and our algo-
rithm after 100 runs.

to find a k-way graph cut that minimizes the number of mea-
surements that span the submaps. Note that the algorithm
has no special restriction on the graph cut itself, except that
each submap should remain full-rank.

For clarity in the paper, we describe the local optimiza-
tions using a simple Gaussian-Newton solver. In our im-
plementation, we use Levenberg-Marquardt for all the local
optimizations and add the damping factor λI to the Hessian
matrix.

Our system is implemented out-of-core. After the
submap partitioning, the boundary variables {Vp}, separa-
tor variables {Sp}, and the measurements are saved in sep-
arate files. We only need to load Vp and Sp and their corre-
sponding measurements when we optimize submap Mp.

We assume the nodes inside the local submaps are well
constrained. While it is typically the case that 3D features
are observed enough times inside a local map, a few nodes
in the local submaps are sometimes rank-deficient. Hence,
before each submap is optimized, filtering out these rank
deficient nodes and moving their intra-measurements to the
separator is necessary. Afterwards, the nodes are optimized
with the base nodes together in the separator, using the inter-
measurements and newly added intra-measurements.

5. Experimental Results
After the implementation of the algorithm, we assess its

performance on both synthetic and real data. All the results
were computed on a 1.83GHz CPU, 1GB memory laptop.

5.1. Synthetic Data: Downtown Area

We use the synthetic data of downtown area to demon-
strate some important aspects of our algorithm. As shown
in Figure 4, the 11, 965 synthetic 3D points are distributed
along roads obtained from real city street data. As the 3D
features of a certain street are mainly observed in the im-
ages taken from the same street, except at the intersections,
the Metis partitioner automatically splits the map into ten
submaps consisting of different streets (Figure 4a). Al-
though the internal structures are recovered well, as shown
in Figure 4b, the streets are still offset with respect to one
another because the submap positions have not been opti-
mized. The optimization of the separator successfully re-
covers the relationship between these submaps. Note that
nearly all previously offset boundaries are now well aligned
in Figure 4c.

To evaluate the accuracy of the algorithm, we compare
our algorithm to traditional bundle adjustment using the

1 1.5 2 2.5 3 3.5 4 4.5 5
0.4

0.402

0.404

0.406

0.408

0.41

0.412

0.414

0.416

0.418

Iterations

R
es

id
ua

ls

 

 
BA
1% above BA
2 partitions
4 partitions
6 partitions
8 partitions
10 partitions
12 partitions

Figure 5. The comparison of the residuals left by different numbers
of partitions using our approach and bundle adjustment optimiza-
tion. The green solid line indicates the minimum computed by the
traditional bundle adjustment (BA) that was run with a very tight
stopping criteria to simulate the true minimum cost. The green
dashed line indicates 1% above the true minima. The other six
lines shows the residual after 1− 5 global iterations using 2 to 12
partitions. The plot data is based on the average of 100 runs.

residuals of the converged system. Our approach simpli-
fies to traditional bundle adjustment if all the parameters
are put in one submap. All the variables then become in-
ternal variables, and the first two steps are not required any
more. The non-linear optimization of the internal variables
in step three converges to the minimum in the first iteration.
We therefore show the results for bundle adjustment at the
data point corresponding to one partition in the figures.

We tested how many global iterations were needed for
our algorithm to converge using the downtown data per-
turbed by Gaussian noise. The average of 100 runs is
shown in Figure 5. The residual of bundle adjustment acts
as the base line under the true converge state. After the
first iteration, the residual is about 2.12% − 3.69% above
the minimum. After two iterations, the residuals drop to
0.25%−1.87% above the minimum. A typical stopping cri-
teria for bundle adjustment is when the rms error decreases
by less than 1%. For this data set, one to eight partitions
can be regarded as converged after only two global itera-
tions and the rest after three. In practice, we found that the
recovered geometry after one iteration was quite good.

Another important evaluation of the algorithm is the ro-
bustness. We measured how many times the algorithm con-
verged to a local minimum. As noted in [7], partitioned-
based approaches are generally more robust than global op-
timizations. We measured how many times traditional bun-
dle adjustment failed to converge versus our partitioned al-
gorithm with ten partitions (8 times). As shown in Table 1,
the partitioned approach failed to converge 8 compared to
14 times for traditional bundle adjustment.



(a) (b) (c)
Figure 4. The synthetic downtown data set with four partitions, which contain 81, 015 measurements in 2, 897 images. (a) The partitioned
map. (b) The map after submap optimization. (c) The final optimized map.

(a) (b) (c)
Figure 8. The St. Peter’s Basilica data set contains 142, 453 3D points in 285 images. (a) Detected SIFT features in a sample image. (b)
The unoptimized 3D world is partitioned into five submaps. (c) The 3D world after submap optimization.
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Figure 6. The comparison of the time used by bundle adjustment
and our approach. The timing results for one partition correspond
to traditional bundle adjustment. The stacked tricolor bars repre-
sent how much time was spend in different iterations to converge
to the state with residuals no more than 1% above the true global
minima.

5.2. Real Data: St. Peter’s Basilica

In addition to the synthetic data, we also tested the al-
gorithm on real images of St. Peter’s Basilica in Rome, as
shown in Figure 1, which includes 285 images and 142, 453
scene points. As depicted in Figure 8a, 471, 584 SIFT
features [11] were extracted and matched across multiple
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Figure 7. The break down of the time spent in different stages
of the optimization to converge the state with residuals no more
than1% above the true global minima. From the bottom up, the
stacked bars represent the time spent in error calculations, lin-
earizations, outer products, factorizations, and back-substitutions.
The most left bar corresponds to traditional bundle adjustment.

views. We assume the correspondences are accurate and
focus only on the bundle adjustment problem.

In our 1GB memory workstation, traditional second-
order bundle adjustment ran out of memory. In contrast, our
algorithm successfully optimized the entire data set in 48



minutes. First, we applied the Metis partitioner to split the
problem into five partitions, as shown in Figure 8b. Then we
optimized each submap, as described in Section 3.4 (Figure
8c). Note that the building roofs in two submaps slightly
shift with respect to each other. After the separator is opti-
mized, we have a well-constructed 3D world in Figures 1.
One obvious change is that the roof is correctly aligned.

6. Conclusions and Future Work

Our contributions can be summarized as follows:

• We take a divide-and-conquer approach to the full
SFM problem. As a result, we may cache the deriva-
tives of the locally optimized measurements and use
them in the separator optimization. By doing so, not
only do we save CPU cycles by not recomputing the
linearization, but we also save time when computing
the Hessian matrix.

• Our algorithm can run out-of-core and is straightfor-
ward to parallelize. With this approach, reconstruc-
tions that do not fit into physical memory can still be
reconstructed efficiently.

• By exposing the non-linearity of the cost function to
the algorithm, our implementation requires far fewer
sweeps through the entire reconstruction. This results
much less paging to disk for out-of-core implemen-
tations and inter-processor communication in parallel
implementations.

Although our algorithm allows us to reconstruct a very
large-scale system in a computationally efficient manner,
we have not directly addressed the initialization problem.
Generating a good initialization is an independent, but
equally important problem. For future work, we plan to
investigate both incremental and hierarchical initialization
approaches for the submaps.
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