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Abstract – This paper proposes the use of graphical mod-

els to describe decentralised data fusion systems. The task

of decentralised data fusion is considered as a specific in-

stance of the general distributed inference problem in which

there is a single common state of interest which is (partially)

observed by a number of sensor platforms. Our objective is

to model and solve this problem using standard graphical

model techniques. Two options for modeling the problem

are considered. The model based on distributed variable

cliques is found superior to a graphical model with cloned

variables. The model and the messages arising through in-

ference are compared with the well-known Channel Filter

algorithm. Our approach to inference is to apply a dis-

tributed version of the Junction Tree algorithm developed

by Paskin and Guestrin. The algorithms were validated in a

series of simulated tracking problems.

Keywords: Decentralised data fusion, graphical models.

1 Introduction
This paper proposes the use of graphical models to describe

decentralised data fusion systems. Decentralised data fusion

(DDF) systems comprise a network of sensor platforms to-

gether with probabilistic data fusion algorithms which are

decentralised within this network without any single node

acting as central fusion site [2, 3]. Graphical models are a

series of techniques, founded on graph-theoretic representa-

tions, for describing the relationship between states in large

probabilistic models and for encoding efficient operations

for inference, prediction and fusion [4]. This paper demon-

strates that graphical models are a compelling and insight-

ful description of DDF systems which lead to a deeper and

clearer understanding of DDF operations.

Decentralised data fusion may be considered as a spe-

cific instance of the general distributed inference problem

in which there is a single common state of interest which

is (partially) observed by a number of sensors, each phys-

ically distributed on a number of platforms. The use of

a heterogeneous network of distributed sensors has many

potential advantages including improved estimation perfor-

mance, visibility and coverage. DDF systems have also been

shown to offer significant advantages in terms of modular-

ity, scalability and robustness [5, 6]. A major issue with

DDF algorithms is to understand and formulate the process

through which local estimates are formed, communicated

and assimilated at remote sites in a manner that ensures ef-

ficient and consistent operation. Graphical models provide

a compelling approach to this problem by enforcing a uni-

form network-like model of state and observation relations

and the development of communication and assimilation al-

gorithms focused on distributed message passing and local

inference.

The objective of this paper is to apply graphical models

techniques to both the problem formulation and the solu-

tion of the DDF problem. This paper begins by describing

a decentralised graphical model architecture introduced by

Paskin and Guestrin [1] and applying it to the problem of

data fusion. The problem statement differs from that in the

original work in focusing on a single common underlying

state but with the significant extension that the state of inter-

est is driven by a dynamic model.

The paper then provides a graphical model formulation

of the well known Channel Filter (CF) algorithm. As part

of this, the messages of standard graphical model methods

are compared to those employed by CF. This comparison

grounds the two approaches in a common model and allows

potential exploitation of more general graphical model tech-

niques for decentralised data fusion. In the case of a static

phenomenon, the CF message-passing protocol is identical

to its graphical model equivalent. In the case of a dynamic

phenomenon, the graphical model implementation is an im-

provement over CF in that it naturally provides for the delays

due to multi-hop and burst communication.

The paper is organized as follows. Section 2 defines the

problem of decentralised data fusion and states all assump-

tions. Section 3 describes related work. The following three

sections describe three approaches to distribute the model

and the inference. The existing CF algorithm is described

in detail in Section 4. In Section 5, we show that graphical

models based on cloned variables present difficulties with

performing inference in the case of Gaussian distribution.
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Section 6 presents a better alternative which distribute vari-

able cliques. Simulation results, comparisons, and discus-

sion are presented in Section 7.

2 The Decentralised Data Fusion

Problem
This paper considers a system consisting of multiple plat-

forms, each capable of making observations, processing

them, and communicating with others. The platforms can

be mobile. Platforms may be heterogenous in their sensing,

computing, mobility, and communication capabilities.

Physical communication links between platforms form a

connectivity graph. In general, the connectivity graph may

change over the lifetime of the system. In this paper, how-

ever, the attention is restricted to the special case where

the communication graph is of general topology but static.

Communication links between the platforms may be unre-

liable, meaning that only the receiver knows when a mes-

sage is received and neither the sender nor the receiver know

when a message is lost.

There is a state of interest which all platforms are attempt-

ing to estimate which is represented as a set of independent

(uncorrelated) features. Attention is limited to individual in-

dependent features or tracks. Each feature is described by

a fully-correlated state vector. The feature model may have

dynamics and may be stochastic.

Distributed tracking of multiple moving targets is an im-

portant application of data fusion. The tracking task con-

sists of several subtasks, some of which can be posed as

(distributed) inference problems [7]. In this paper we set

aside the complex issues of data association, track mainte-

nance, sensor modeling and management, and only consider

the task of fusion.

Our objective is to model and solve the decentralised

data fusion problem using standard graphical model tech-

niques. For an introduction to graphical models see [4].

There are several varieties of graphical models, including

directed (Bayesian Networks), undirected (Markov Random

Fields), and factor graphs. Their common feature is the use

of graph-theoretic concepts to encode a certain factorization

of the joint probability distribution over a set of random vari-

ables. This factorization is exploited in the design of effi-

cient inference algorithms.

Even though a distributed solution is the objective of this

work, it is instructive to consider the centralized case first.

Figure 1 shows Bayesian networks representing data fusion

in the cases of static and dynamic phenomena.

The static network in Figure 1a includes the state of in-

terest x and observations made on different platforms, e.g.

zA is observed by platform A. The observation model for

each sensor is represented by a conditional probability in the

form of p(zi | x). The dynamic model in Figure 1b includes

a set of variables xk representing the state of interest at time

tk. This Dynamic Bayesian Network is a simple Markov

chain. The state prediction model between any two consec-

utive time slices is represented by a conditional probability

x

zB

zA zD

zC

(a) static model

x0 x1 x2 x3

zC
2 zA

3

zB
1 zB

2 zD
3

zA
1

(b) dynamic model

Figure 1: Bayesian networks for data fusion in the cases of static

and dynamic models. Four sensing platforms contribute observa-

tions. Circles represent random variables. Shaded variables are

observed, unshaded ones are hidden and need to be estimated.

in the form of p(xk+1 | xk).

The objective of this work is to compute the exact dis-

tributed solution of the problems in Figure 1. A distributed

solution is considered to be exact if it produces the re-

sult equivalent to that of a centralized solution when it is

given access to same set of observations. There are several

caveats related to the exactness of all distributed fusion al-

gorithms. All distributed solutions display a certain latency

when compared to the centralized solution due to the time

taken to propagate messages between platforms. In applica-

tions such as multi-target tracking where data association is

necessary, the results of a distributed algorithm may differ

from the centralized solution due to variations in data asso-

ciation based on incomplete information. Similarly, in cases

where the system is non-linear, a distributed linearized so-

lution may differ from the centralized one due to a different

linearization point calculated based on incomplete informa-

tion. We do not discuss this further because all approaches

considered in this paper are affected equally by these prob-

lems.

Furthermore, the focus is on scalable solutions. A dis-

tributed solution is considered to be scalable if computa-

tional and communication costs scale well with the number

of participating platforms. As a benchmark we use the naive

solution of broadcasting or routing all system-wide observa-

tions to all platforms and implementing centralized fusion

on each individual platform. One way to improve on this

scheme is to combine information contained in the obser-

vations from several platforms. In order to allow this op-

eration, we impose an additional constraint on the problem

statement: all observations happen at discrete intervals, so

that observations zA
1 and zB

1 in Figure 1 happen at the same

time.1

3 Related Work

Related work can be classified along the following dimen-

sions: (i) model type of the phenomenon of interest (static

vs. dynamic) and (ii) solution properties (exact, conserva-

tive, or approximate).

1In practice, this may require time synchronization across different plat-

forms. Approximations when the process noise is low are discussed in [8].
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3.1 Distributed Estimation and Tracking

The estimation and tracking community has long studied de-

centralised data fusion techniques. The fundamental prob-

lem is preventing double-counting of information which can

happen when two local (correlated) posteriors are fused.

The Information Graph [8] is an exact algorithm which

prevents double-counting of information contained in sen-

sor observations. This is achieved by storing and transmit-

ting pedigree information which includes all sensor reports

which have contributed to a certain posterior. One of the ad-

vantages of the algorithm is an intuitive graphical represen-

tation of the information flow in a distributed system (which

is unrelated to the graphical model framework.) The algo-

rithm has not been applied in the case of a stochastic process

model. The algorithm can handle arbitrary topologies but is

not considered to be scalable due to the requirement to carry

long pedigree information for decorrelation [9].

In tracking, a distinction is commonly made between

measurement fusion and track-to-track fusion, the latter re-

ferring to the fusion of local solutions. Each local solution

may include information from the prior, local and remote

observations, and the model. Track-to-track fusion is more

challenging due to the fact that while measurement errors

are commonly assumed to be independent conditioned on

the state of interest, the posteriors of local trackers are gen-

erally correlated with one another [10]. Exact solutions are

possible if full-rate communication is used, i.e. information

between all platforms is exchanged after every observation.

The Channel Filter algorithm is a solution to the DDF

problem. CF is exact for static problems or for dynamic

problems when full-rate communications are used. It pre-

vents double-counting by adhering to a tree communication

topology and by keeping a record of the information trans-

mitted over a communication channel in the so-called chan-

nel filter. It was originally formulated for Gaussian repre-

sentations [2] and later extended to the general Bayesian

case [3]. A notable application is a system of multiple UAV

platforms localizing stationary features and tracking moving

objects on the ground [5]. This paper demonstrates a close

relationship between CF and graphical model inference al-

gorithms.

When dealing with Gaussian distributions, an alternative

approach to prevent double-counting is to always use con-

servative data fusion using Covariance Intersect [11]. The

advantage of this approach is that it applies to arbitrary com-

munication topologies and dynamic feature models. The re-

sults however are always approximate and may be overly

conservative.

A more recent approach to distributed fusion which can

also be applied to general topologies is based on consen-

sus filters. One particular application combines the notion

of consensus filters with the information filter [12]. This

algorithm requires convergence and applies to quasi-static

phenomena only.

Most approaches to distributed tracking rely on filtering.

For out-of-sequence observations, finite memory must be re-

tained [13]. The graphical model approach which we will

consider extends naturally to the smoothing case.

Graphical models have been suggested in the context of

decentralised data fusion. For example, in [14] a combina-

tion of Information Graph and Bayesian networks is used.

Information Graph is used to identify common information

due to past communication so that double-counting can be

avoided. Bayesian network theory is used to identify the

minimal state satisfying the conditional independence con-

dition. Graphical models are not used to represent the re-

lationships between the information maintained on different

platforms, and graphical model algorithms are not used to

perform the actual inference.

3.2 Distributed Inference with Graphical

Models

The bulk of research in graphical models has focussed on

centralized systems. The majority of distributed applica-

tions use approximate methods [7].

A notable exception is the theoretical and experimental

work of Paskin applied to a large sensor network of micro

sensors [1]. The architecture, which we refer to as the Dis-

tributed Junction Tree (D-JT), is designed specifically for

distributed inference and consists of three interacting algo-

rithms arranged into layers and running concurrently. The

bottom layer builds a spanning tree. The spanning tree over-

lays the physical connectivity network which in physical

sensor networks typically has a mesh topology. The mid-

dle layer operates on a set of variable cliques defined as

part of algorithm initialization. A spanning tree produced

by the bottom layer connects the cliques into a clique tree.

The middle layer converts it into a junction tree by enforc-

ing the running intersection property. Finally, the top layer

performs inference on the junction tree.

This paper applies the D-JT algorithm to the problem of

decentralised data fusion. The original work was applied to

estimating a distributed field property (temperature). On the

one hand, we narrow down the problem definition to the case

where there are multiple platforms but only one variable of

interest. On the other hand, we extend the original problem

statement to include dynamics.

Another application is in distributed sensor localization

based on the observations of a single moving target [15].

The solution focusses on ameliorating the dense correlations

which arise from marginalizing out past states of the moving

target. The current application is special in that the state of

interest is assumed to be densely correlated from the outset,

and hence cannot become more tightly coupled.

4 Decentralised Data Fusion

The detailed discussion of inference algorithms begins by

summarizing the approach and the results obtained by Chan-

nel Filter (CF). Each platform performs inference on the

same state x and the local beliefs are kept synchronized by

exchanging messages defined by the CF protocol [3]. It
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is assumed that the communication topology between plat-

forms is constrained to a tree.

4.1 Channel Filter, Static Model

The point of departure is the centralized static model in Fig-

ure 1a. CF distributes this model by running local inference

on each platform, using local observations. Messages are

passed between the platforms to make the information con-

tained in local observations available to other platforms.

x

x

x

zA

zB

zC

Figure 2: Distributed static model with local beliefs on each plat-

form synchronized with CF links (dashed lines).

Figure 2 shows three local beliefs, one for each platform.

The models for local observations are represented with stan-

dard Bayesian network relationships. The dashed lines rep-

resent CF links and are not part of the graphical model

framework. The topology of the CF links forms a spanning

tree.2

For each pair of platforms i and j linked by the span-

ning tree, CF defines two channel filters φij and φji, one

stored on each communicating platform. Each channel filter

stores the common information which has been communi-

cated through the communication channel between the cor-

responding pair of platforms. To simplify the presentation,

we assume an uninformative prior. In this case the channel

filters are initialized to unity, φij = 1. Before the start of

communication, all three platforms make local observations

(zi = z̄i) resulting in local posteriors ψi = p(x | z̄i).
Platform A sends a message to platform B, containing the

current local posterior ψA = p(x | z̄A). The two channel

filters φAB and φBA are set to the value of the message.

On arrival of the message at platform B, the local belief is

updated as follows

ψ∗
B =

φ∗BA

φBA

ψB =
ψA

1
ψB = p(x | z̄A, z̄B). (1)

Asynchronously, platform C sends its own message to

platform B and updates both channel filters. On arrival of

the message at platform B, the local belief is updated again.

ψ∗∗
B =

φ∗BC

φBC

ψ∗
B =

ψC

1
ψ∗

B = p(x | z̄A, z̄B, z̄C). (2)

At this point, the belief at platform B pCF
B (x) = ψ∗∗

B

incorporates evidence from all three platforms. Now plat-

form B sends a message to platform A, containing ψ∗∗
B . Af-

ter updating the channel filters, the local belief at platform A

2Because this is not a graphical model, we are not constrained by the

requirement that all variables must be unique.

is updated as follows

ψ∗
A =

φ∗∗AB

φ∗AB

ψA =
ψ∗∗

B

ψA

ψA = p(x | z̄A, z̄B, z̄C). (3)

Now the belief at platform A pCF
A (x) = ψ∗

A incorporates

evidence from all three platforms and is the same as that

of platform B. The update of platform C happens similarly,

so that after all messages are passed the belief of all three

platforms is the same and is equivalent to the centralized

solution.

We can summarize the CF message passing algorithm for

the static case as follows.

φ∗ij = ψi, φ∗ji = ψi (4)

ψ∗
j =

φ∗ji

φji

ψj (5)

At any point in the process, the probability distribution of

the state of interest at any platform is equal to the local pos-

terior

pi(x) = ψi. (6)

After all the messages have been passed, the probabilities

pi(x) on all platforms are the same and are equal to the cen-

tralized solution.

4.2 Channel Filter, Dynamic Model

The same distribution procedure can be applied to the dy-

namic problem in Figure 1b. The model, shown in Figure 3,

represents “Channel Smoother” even though it has not been

described as such in the literature. The common, filtering,

version can be obtained by iteratively marginalizing all past

states.

zA
3

x0 x1 x2 x3

x0 x1 x2 x3

zB
1 zB

2

zA
1

Figure 3: Distributed dynamic model with local beliefs on each

platform synchronized with CF links (dashed lines).

In summary, the CF solution for a static model is exact

and scalable, regardless of the actual communication sched-

ule. When the process model is dynamic, the (filtered) CF

solution produces exact results only when full-rate commu-

nication is employed. The delayed-state version of CF with

finite memory of past states is possible [13] but we do not

consider it here because the equivalent solution arises more

naturally in the context of graphical models to which we turn

our attention next.
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5 Graphical Model with Cloned Vari-

ables
In this section we attempt to distribute the inference by ma-

nipulating the graphical model on the level of random vari-

ables. Since every variable in a graphical model is unique

we have to create clones – new variables, one for each plat-

form, which are distinct from the original state yet are un-

derstood to hold the same value. The resultant graphical

model can then be solved with any of a number of inference

algorithms. We will show that this modeling approach is not

attractive due to the need to represent deterministic relation-

ships between the clones.

5.1 Cloned Variables, Static Model

We start again with the centralized static model in Figure 1a.

Since we have multiple platforms we create multiple clone

variables, one for each platform, and define deterministic

equality relationships between the clones as shown in Fig-

ure 4. A spanning tree of links is sufficient to connect all

clones together, because redundant links do not add any new

information.

zB

zA

zD

zC

xD

xA

xB

xC

Figure 4: Distributed static model with cloned variables repre-

sented as a Bayesian network with poly-tree topology. All links

between cloned variables represent deterministic equality relation-

ships.

This model represents the joint probability distribution

over all random variables.3 Before the evidence on the ob-

served variables is entered, the joint distribution is

p(x, z) =
∏

i∈P

p(xi | π(xi))p(zi | xi), (7)

where x is the set of all cloned state variables, z is the set

of all observation variables, P is the set of platforms, and

π(xi) are the parents of variable xi.

Let us examine the mechanics of specifying a determin-

istic equality link. To indicate the deterministic equality

xA = xB with discrete representations, the conditional

probability table for node xB would be simply the identity

matrix, p(xB | xA) = I . In the case of continuous vari-

ables, the linear conditional Gaussian [16] is entered as a

3The directed links between cloned variables can easily be replaced with

undirected links.

conditional form

p(xB | xA) = CG(µ0 + IxA,Σ0), (8)

where I is the identity matrix and µ0 and Σ0 are the

appropriately-sized zero vector and matrix respectively. The

standard inference procedure is to convert the conditional

form to a canonical form4 which involves the problematic

step of inversion of the Σ0 matrix [16, 17].

A pragmatic solution is to make the equality relation-

ship nearly deterministic by adding a small amount of un-

certainty. This leads to an approximate result and presents

numerical difficulties due to poor conditioning. We do not

consider this option.

An alternative procedure described in [18] avoids conver-

sion to canonical form and performs inference with condi-

tional form, at the expense of added complexity.

5.2 Cloned Variables, Dynamic Model

In the case of a dynamic model we follow the same ap-

proach, by cloning the state variable at each time slice and

distributing a clone to each platform in the system. This

results in the Bayesian network shown in Figure 5a. The

process model is applied by one of the platforms and the in-

formation contained in the model is distributed through the

system by the messages passed during the inference process.

The single-model approach is simple to implement and

the concerns regarding the robust operation in the face of

platform and communication failure may be partially allevi-

ated by a decentralised leader election algorithm. Numerous

such algorithms exist and, in fact, one of them is already

used elsewhere in our system (as part of the decentralised

spanning tree algorithm). Nevertheless, leader re-election

adds latency and careful algorithm design is needed during

this time to avoid model double-counting.

The system in Figure 5b attempts to increase system ro-

bustness by placing model information on every platform. It

can easily be shown that the result produced by the network

is incorrect due to double-counting of the model informa-

tion.

The system in Figure 5c also places a model on each plat-

form but the monolithic Bayesian network is split up into

several fragments with restricted information flow between

them. We now have k distributed networks, one for each

of the time slices tk, each spanning all clones of xk (e.g.

xA
1 and xB

1 ). Each of the distributed networks operates on

a single time slice and is identical to the static network in

Figure 4. The k distributed networks act as likelihood ac-

cumulators, combining all observation likelihoods about the

state xk.

In addition, there are n local networks, one for each of the

platforms, connecting the consecutive instances of the state.

The n local networks act as model predictors, propagating

4Canonical (or information) form of a Gaussian distribution N (µ, Σ)
is defined by the information matrix Σ−1, the information vector Σ−1µ,

and a normalizing constant.
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1 xA

2 xA
3
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1 zA

3

xA
0 xA

1 xA
2 xA

3

(c)

Figure 5: Distributed dynamic model with cloned variables using

a Bayesian network: a) a single platform in the system applies the

model, b) each platform applies the model – the result is incorrect,

c) the result is correct if the local model is decoupled from the

network-wide likelihood aggregation.

information from one time slice to the next. Each local net-

work is confined to a single platform allowing a centralized

inference solution.

The information flow between the networks is one-

directional, i.e. the information flows from each of the dis-

tributed networks into each one of the local networks. The

information in the opposite direction is restricted to prevent

double-counting of the model information.5

Figure 5 represents three options for model distribution,

two of which are suitable for exact inference. The same

dilemma for model distribution applies in the static case, a

fact which we have overlooked until now. The model in the

static case consists of the prior on the state. When the prior

is informative and the information rate from observations is

low, distributing it to every platform as is done in Figure 5b

may lead to significant overconfidence.

In a dynamical system, marginalization is required to

maintain constant memory requirements over time. Due to

the simple model structure, marginalization of past states

does not create any fill-in links between the variables.

5One possible implementation of this information valve is by setting up

an equivalent measurement which contributes the accumulated likelihood

to the local model.

In summary, inference on static or dynamic models with

cloned variables requires to represent deterministic equality

links which is problematic for Gaussian representation. For-

tunately, there is an alternative representation which avoids

this problem altogether.

6 Distributed Junction Model
An alternative to distributing the graphical model itself is

to distribute the potentials6 over the cliques of random vari-

ables of the original centralized model.

6.1 D-JT, Static Model

The centralized static model is reproduced in Figure 6a

where, for clarity, we do not initially display the observa-

tion variables zi as evidence variables.

xzD

zC

zB

zA

(a)

x, zD

x, zA

x, zB

x, zC

x

x

x

(b)

x

zA

zB

zC

zD

(c)

x

x

x

x x

x

x

(d)

Figure 6: Distributed static model with junctions: a) graphical

model with no evidence and b) a possible junction tree, with junc-

tions shown as ovals; c) the same graphical model with evidence

and d) the updated junction tree. Separation sets are also shown as

squares.

By examining the moralized graph of the model we note

that it is already triangulated regardless of the number of

platforms in the system. Our example with four platforms

contains four maximal cliques, one per platform observa-

tion, shown as ovals in Figure 6b. Once the cliques are iden-

tified, the only remaining step before conducting inference

is to connect the cliques into a junction tree. A junction tree

is a special clique tree which has the running intersection

property. We observe that in this special case any spanning

clique tree is a junction tree. The running intersection prop-

erty is assured by the fact that the variable x is shared by all

cliques. One of several possible spanning clique tree config-

urations is shown in Figure 6b.

6Potentials are functions which are real-valued and non-negative, but

otherwise arbitrary. By normalization to 1, otentials can be converted to

probability distributions.
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In general, a junction tree data structure defined over a set

of variables Y represents the joint probability distribution in

the following factorized form

p(Y ) ∝

∏
C ψC(YC)∏
S φS(YS)

, (9)

where ψC are the potentials over the set of cliques C and

φS are the potentials over the set of separators S. For the

model of static data fusion with any number of platforms,

this expression becomes

p(x, z) ∝

∏
i∈P ψi(x, z

i)∏
e∈E φe(x)

, (10)

where z is the set of all observation variables, P is the set of

platforms, and E is the set of edges in the junction tree.

In Figure 6c we return to our problem statement where

the observation variables are in fact observed. Entering ev-

idence essentially eliminates these variables from the infer-

ence problem and we are left with a very special junction

tree where every clique set and every separator set contains

one and the same variable x.

p(x) ∝

∏
i∈P ψi(x)∏
e∈E φe(x)

. (11)

This expression can be compared to the joint on all cloned

variables in (7). As a result we do not have to represent the

deterministic links.

We are now ready to perform inference on our junction

model. We describe two standard junction tree algorithms,

namely Hugin and Shafer-Shenoy, and apply them to our

model. One of them, Hugin, results in messages which are

identical to those passed by CF. Consistent with the CF pre-

sentation, we initially assume an uninformative prior.

The Hugin Algorithm

The data structures defined by the Hugin algorithm [19]

are shown in Figure 7 for two arbitrary cliques in a junction

tree. Each clique Ci has a potential ψCi
associated with it.

Similarly, each separator Sij contains a potential φSij
.

Ci Sij

ψCi
φSij ψCj

Cj

Figure 7: Data structures for the Hugin algorithm. Two cliques Ci

and Cj have a separator set Sij = Ci ∩ Cj .

The inference proceeds by passing messages between the

neighboring cliques and separators and by updating the po-

tentials according to the following update equations

φ∗Sij
=

∑

Ci\Sij

ψCi
(12)

ψ∗
Cj

=
φ∗Sij

φSij

ψCj
, (13)

where Ci\Sij denotes the set of variables in Ci which do

not appear in Sij . The summation symbol in Equation 12

refers to marginalisation, and is performed by integration

for continuous variables.

After all messages have been exchanged, the marginal

probability for any clique is simply the normalized poten-

tial for that clique.

p(Ci) ∝ ψCi
(14)

We apply this general algorithm to the model in Figure 6d

by setting Ci = Cj = Sij = x. The simplified update

equations become

φ∗Sij
= ψCi

(15)

ψ∗
Cj

=
φ∗Sij

φSij

ψCj
. (16)

By comparing these with the CF update equations (4-5), we

recognize that, in the case of static data fusion, Hugin and

CF send the same messages and use the same update equa-

tions.7

The Shafer-Shenoy Algorithm

The data structures defined by the Shafer-Shenoy algo-

rithm [20] are shown in Figure 8 for two arbitrary cliques

in a junction tree. This algorithm differs from Hugin in two

respects. Firstly, the separator potentials are not defined ex-

plicitly. Secondly, the messages µij received from neigh-

bors are not multiplied into the local potential thereby main-

taining a factored representation of the clique marginal.

ψCi
ψCj

Ci Cjµji µij

Figure 8: Data structures for the Shafer-Shenoy algorithm.

The inference proceeds by passing the following mes-

sages between the cliques.

µij =
∑

Ci\Sij

ψCi

∏

k 6=i

µki (17)

7The fact that CF traditionally maintains two channel filters, one on

each communicating platform, is simply an implementation detail.
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After all messages have been exchanged, the marginal prob-

ability for any clique is calculated as follows.

p(Ci) ∝ ψCi

∏

k

µki (18)

It can easily be shown that the clique marginal distribu-

tions obtained by both Hugin and Shafer-Shenoy are the

same in the case of centralized inference [20]. When spe-

cialized to our problem, the Shafer-Shenoy messages be-

comes simply

µij = ψCi

∏

k 6=i

µki. (19)

6.2 D-JT, Dynamic Model

Similar to the static case, the moralized graph of the dy-

namic model is triangulated for any number of platforms

and any number of time slices. The available options for

distributing this model are similar to those discussed in Sec-

tion 5 but there are differences due to the specifics of oper-

ating on the level of junctions.

x0 x0, x1 x1, x2 x2, x3

x1 x2 x3

(a)

x2, x3x0

x0 x1, x2, x3 x2, x3

x1, x2, x3

x0, x1, x2, x3

x0, x1, x2, x3

(b)

x0 xA
2 , x

A
3xA

1 , x
A
2xA

0 , x
A
1

x0 xB
2 , x

B
3xB

1 , x
B
2xB

0 , x
B
1

x1 x2 x3

x1 x2 x3

(c)

Figure 9: Distributed dynamic model with junctions: a) a single

platform in the system applies the model, b) each platform de-

fines the model, c) the locally-applied model is decoupled from

the network-wide likelihood accumulation. Variables which were

“pushed” into the cliques to enforce the running intersection prop-

erty are shown underlined.

One option is to entrust the application of the model to

a single platform. The model information will then propa-

gate to other platforms via messages. This situation is de-

picted in Figure 9a. The disadvantage of this scheme is that

it produces delays in applying information contained in the

prediction model. This is due to the fact that all observation

likelihoods must travel first to the root where the model is

applied and the back to the leaves.

Figure 9b shows an option whereby each platform de-

fines the same cliques. A strong disadvantage of this option

is that enforcing the running intersection property leads to

large cliques. The example in Figure 9b shows that the two

cliques which carry the cross-platform link were forced to

include all the variables in the system. The underlined vari-

ables were “pushed” into the clique by the algorithm which

enforces the running intersection property [1]. The width

of the junction tree has a strong effect on the computational

complexity of inference. We observe that the width of the

junction tree when using the cross-platform connection is

always equal to the size of the temporal history, regardless

of which clique carries the cross-platform link. This prop-

erty makes this option very unattractive.

Finally, we may choose to follow the approach of using

an external dynamic model as illustrated in Figure 9c. Each

distributed network is implemented using either the Hugin

or Shafer-Shenoy algorithm. The accumulated likelihoods

for a given time slice are added to the local network in the

same way as if the evidence was entered locally.

In practice we may want to marginalize out old variables

to avoid the requirement of infinite memory. The general

case of variable marginalization as part of junction tree fil-

tering has been considered in the context of Simultaneous

Localization and Mapping [21]. The procedure is described

in a centralized setting and is used in this paper when ap-

plied to the marginalization of the past states of the local

model in Figure 9c, which is confined to a single platform.

In summary, both the Shafer-Shenoy and the Hugin algo-

rithms produce exact results for static and dynamic models.

For the case of a static model, it was demonstrated that the

messages passed by the Hugin and the CF algorithms are

identical. In the dynamic case, the approach in Figure 9c

is preferred because it avoids the extra latencis of Figure 9a

and the wider junction tree of Figure 9b.

7 Simulation
The algorithms were validated in a series of simulated track-

ing problems. In each case, a number of platforms and a

single target are distributed randomly throughout an envi-

ronment, as shown in Figure 10. Platforms can make noisy

observations of the target when within sensor range, and can

communicate with each other when within communications

range. In order to ensure stable connectivity graph, the plat-

forms are static. We examine the following cases:

• Static vs Dynamic Phenomenon: In the dynamic case

the target moves.

• Shafer-Shenoy vs Hugin: On the inference layer we

use D-JT, using either Hugin or Shafer-Shenoy as de-

scribed in Section 6.

In all cases, the network consists of 200 nodes, and the

simulation is run for 120 iterations. On the 100th iteration

(ts), we begin a “settling time”, during which observations
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Figure 10: Simulation of 200 nodes constructing a decentralised

spanning tree. The target is indicated by the cross, and can be

observed by any platform within the blue circle centred on it.

are not made. This settling time lasts for 20 iterations. In all

cases, information content is measured using the log of the

determinant of the information matrix, proportional to the

log of the inverse of the volume of the covariance ellipse.

The information contained in each platform’s local belief is

compared against the information content of the centralised

solution.

7.1 Static Phenomenon

Both the Hugin and Shafer-Shenoy algorithms produce

identical estimates when the phenomenon of interest are

static (Figure 11). The figure also plots the minimum, me-

dian, and maximum of the information content available to

all the platforms in the system, showing that there is an “in-

formation gradient” across the network as information is

constantly flowing outwards from the platforms closest to

the target.

We also consider the case of burst communications. This

is implemented by having each platform increment a counter

(initialised randomly), and only transmit on every nth itera-

tion. Figure 12 shows results for n = 5, demonstrating that

the algorithms are able to cope with delayed observations.

The differences are that (1) information flows through the

network more slowly (responsible for a greater lag behind

the centralised solution), and (2) the information on the plat-

forms grows in steps as messages arrive in bursts.

7.2 Dynamic Phenomenon

Figure 13 shows that the Hugin and Shafer-Shenoy algo-

rithms also give identical exact results when the model is
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Figure 11: Information (the volume of the information ellipse) col-

lected by sensor network about a static phenomenon. The results

produced by Hugin and Shafer-Shenoy are identical.
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Figure 12: Hugin/Shafer-Shenoy static phenomenon and burst

communications. Settling time begins earlier as the algorithm re-

quires more time to converge.

dynamic. In this case, the information content of the cen-

tralised solution changes as the target moves, and hence

the number of platforms within sensor range of the target

changes. With the start of the settling time, observations

cease, the centralised precision decreases due to the pro-

cess noise, and the distributed estimates catch up to the cen-

tralised estimate.

8 Conclusions
The main focus of this paper is in casting the DDF prob-

lem in terms of general distributed inference problem and

applying standard inference algorithms.

Two options for modeling the DDF problem were in-

vestigated. The one utilizing cloned variables was found

unattractive due to the difficulties with representing deter-

ministic links in the case of Gaussian distributions. The dis-

tributed junction model was shown to be more suitable for

this problem.

Two standard junction tree algorithms were considered.
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Figure 13: Hugin/Shafer-Shenoy with a dynamic model.

Both the Shafer-Shenoy and the Hugin algorithms produce

exact results for static and dynamic models. For the case of

a static model, it was demonstrated that the messages passed

by the Hugin and the CF algorithms are identical. This iden-

tifies the link between the existing work and the graphical

model approach.

The results of this paper are limited to static communi-

cation topology. We are currently comparing the solution

properties of the two version of junction tree algorithm in

the case of topology changes.

The algorithms have been implemented based on the ideas

of D-JT architecture. Communication links in the current

implementation are simulated but the true distributed system

with wireless communications is under development.

In some respects our implementation based on the graph-

ical model techniques has gone beyond the previous DDF

solutions based on the Channel Filter. Our implementation

assembles the network using the decentralised spanning tree

algorithm of D-JT. We have also implemented the equiva-

lent of delayed-state version of CF which allows delayed

and burst communication.

Graphical model descriptions of DDF systems provide

guidance on improved fusion algorithms for large networks

subject to rapidly varying topology changes and to issues of

conservative fusion in the face of data delay. Another inter-

esting direction is to enlarge the types of models which are

possible to hybrid distributions, sparse feature descriptions,

and non-linear relationships. Finally, we would like to apply

the ideas and implementation to non-tracking applications

like SLAM.
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