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Fig. 1. Example of a Markov graph corresponding to a full SLAM problem -
where the robot moved four steps and made measurements on three landmbifis2.  The (sparse) measurement Jacoblaand the vector of unknowns
The vertices correspond to the robot poses (circles) and landmarks (squafé§prresponding to the full SLAM example from Figure 2.

Abstract—The computational complexity of SLAM is domi- ordering can be found [4]. As we will show below in Section
nated by the cost of factorizing a matrix derived from the mea- || tnhis matrix is either the measurement Jacobidror the
surements into a square root form, which has cubic complexity information matrix AT A associated with a linearized version
in the worst case. However, the matrices associated with theill . . . .
SLAM problem are typ|ca||y Very SparSE, as Opposed to the dense Of the non—|lneal’ SLAM problem The matI’ICGS aSSOC'ated W|th
problems one obtains in afiltering context. Hence much faster, smoothingare typically very sparse, as opposed to the dense
sparsefactorization algorithms can be used. Furthermore, the matrices one obtains in fitering context. For example, the
cost can be further reduced by choosing a good order in which e55rement Jacobian corresponding to the small example of
to eliminate variables during the factorization process, leading Fi 1 is sh in Ei > Th ity i
to more or lessfill-in . In particular, in this paper we investigate lgure 1 1S shown In Figure 2. € Sparsity Is even more
how a nested dissectiomrdering method can provably improve ~Pronounced for large-scale SLAM problems, and because
the performance of the full SLAM algorithm. We show that the of this one can do much better than the cubic complexity
computational complexity for the factorization of a large class of associated with factorizing a dense matrix [6]. Furthermore,
mialsugemegt mg”'ces occug'“g in the SLAM problem can be {he cost of factorizing a sparse matrix can be even more
tightly bound under reasonable assumptions. reduced by choosing a good column ordering for the matrix.

I. INTRODUCTION This determines in which order the variables are marginalized

The problem of creating a map of a mobile robot's enVput,'leading to more or leddl-in in thg factorization process
ronment given noisy odometry and landmark measuremer(@?f'”e_d below). This in turn determines th_e total number of
while simultaneously localizing the robot’s pose in the ma@pPerations needed and hence the complexity.
is known assimultaneous localization and mappi§LAM). In this paper we investigate theested dissectioalgorithm

As we and several other authors have pointed out [1]-[4pr ordering the variables in the full SLAM problem, a
considerable insight into the SLAM problem can be gained K{jvide-and-conquer approach that lends itself very well to
viewing it as inference in a graphical model, be it in a factg¥xploiting the locality inherent in the geometric nature of
graph or Markov random field framework. In this paper wée mapping task. Building on theoretical work by Lipton et
take the latter view, in which the Markov gragh= (F, V) al. [7], [8], we give complexity bounds for a large class of
represents constraints as edgésbetween the verticey’, Measurement graphs under reasonable assumptions. In contrast
corresponding to the unknowns. In ta@oothing and mapping to the complexity ofO(n?) for a dense matrix factorization,
(SAM) problem [4] the unknowns comprise tlestire robot with n S M+ N, we can obtain a complexity bound of at
trajectory {z;|i € 0..M — 1} as well as the position of all mostO(nlogn) space (total fill-in), and at mosgb(n?) time
landmarks{l;|;j € 1..N'}. This problem is also referred to as(multiplication count) for the factorization of a pre-ordered
the full SLAM problem [5]. A small example is shown inmatrix. However, these bounds are typically linked to high
Figure 1, withd/ =4 and N = 3. constant factors that need to be taken into consideration when

To perform inference in the full SLAM graph one needsapplying the algorithm. Hence, we give an analysis of the
to repeatedly factorize a large matrix, but as the matrix isipact of the constants in the complexity bounds for a typical
sparse this can be done efficiently, provided a good colurmdoor scenario.



I[l. THE FuLL SLAM PROBLEM Solving linear systems of the form (6) is normally done

Below we review how the full SLAM problem reduces tceither through sparse QR factorization of the measurement
solving a succession of linear least-squares problems, follodC0obiand (numerically stabler), or Cholesky factorization of
ing [4]. In particular, inference in the full SLAM problem the information matrixZ = A" A (faster) [6], yielding the
corresponds to the followingon-linearleast-squares problemalgorithms below:
for the unknown robot pose§r;} and landmarkg; }:

Algorithm 1 Solving the sparse linear system (6).

M K
S llwi = filwion, w3, + D ek — helws, L)l5, @) QR Cholesky
im1 k1 1. Factor A — QR 1. Factor ATA — RTR
T
Here|.|2 denotes the squared Mahalanobis norm with covari2- Equate [ d e |* =Q"b | 2. Solve R"y = A"b
ancey. This assumes, as standard in the SLAM literature [9]-3- Solve  Rf* =d 3. Solve RE* =y

[11], that we use Gaussian process and measurement models,

v = fi(minu) +w; 2= hi(zi,,1;,) +ve (2)  The key question considered in this paper regarding these
i ) , algorithms concerns their computational complexity. The
where f;(.) is the motion model 74 (.) is the measurement g6 nt of computation needed for the factorization and back-

mode] apdwi and'v;g are normally distributed zero-mean r‘Ois%ubstitution is determined by the number of non-zero elements
terms with covariance matrices; and X;,. We assume both (NNZ) in the initial matrix 4, as well as the NNZ inR.

known control inputs{;} and data associatiofiy, jx }- While we cannot influence the former, it is well known [4]

~ Non-linear optimization methods solve a succession giat onecaninfluence the NNZ introduced by the factorization
linear approximations to (1) by Taylor expansions arou reordering the columns of the matrix, leading toAlg. 2:
a linearization point(z°,1°). In particular, the first-order

linearized version of the process model in (2) is given by Algorithm 2 Iterative least-squares with reordering
x4 0m; = fi(a) 1 w) + F) 7oy 4w () . Reorderd, <& A
with Fiifl the Jacobian off;(.) at the valuea? ,. The « SymbolicFactorization of the sparsity pattern df

linearized measurement equations are obtained similarly, ~ * Repeat
o 0 i e 1) Linearize
2k = hig (2, 1G,) + HiPoway + g0l + vy (4) 2) NumericFactorization ofA

with Hj* and J{* the Jacobians ohy(.) with respect to a 3) Back-substitution
change inz;, andl;,, evaluated atz? ,1% ). We now obtain ~ « Until convergence

k7 "Ik

a linear least-squares problem in the varialflés {5z,,6;}, ~  Backorder solutiord & 0,
M
* i i—lg,.. iSp. -l . . .
0" = arggnn Z 1F5™"0wi—1 + Giom: — ailly, B. Graphical View of Matrix Factorization

i=1
K 4 ' In the following we attempt to give the reader an intuition
+ Z | H}¥ 6, + Ji"6l;, — ckl%, (5) into the factorization process from a graphical point of view. In
k=1 particular, let the graplir be constructed as in Section | such
that the vertices/ represent the variables and the eddes
, , represent the dependencies between them. Then the adjacenc
2k — hi (29,19 ), andG¢ = —1. Below we will assume that P P ) y

UL ! : matrix of the graphG corresponds exactly to the sparse block

we are working on one of these linearized problems and hencie . . A o

d N . . structure of the information matrix = A* A [4]. Elimination
rop thed notation in the interest of clarity.

of the matrix AT A is defined as recursively eliminating one
A. Sparse Linear Algebra View variable at a time, until there is only one variable left. By

Equation (5) can be written concisely using matrix notatiof€/iminatingwe mean expressing this variable as a linear com-
by collecting the Jacobian matrices into the (sparse) matyix Pination of adjacent vertices. However, eliminating a variable

where we defined the constanis2 20 — fi(29_, u;), ck 2

and the vectors; and ¢y into a right-hand side vectdr: v; introduces dependencies in the remaining graph, forcing
i ) ) one to connect every variable adjacentbtanto a completely
0" = argmin A6 —bll5 (6) connected subgraph afique We refer the interested reader

) ) ) _ to [4], [8], [12] for more detailed explanations.
Figure 2 illustrates the typical block-structured sparsity of |, 'matrix terms, the extra edges thus introduced correspond
A where the non-zero blocks correspond to the individug) fi.in in the Cholesky factorR. The number of edges
measurement Jacobia#s G, H, and.J as defined above.  jnoquced by the elimination depends on the order in which
land pre-multiplying the rows of4 and entries ofb to reflect the € Variables are eliminated. Thus, we wish to find the ordering
Mahalanobis norm in the case of non-isotropic noise. that results in the least fill-in.



IIl. COMPLEXITY OF TYPICAL SLAM SCENARIOS
Rksksklededesksocklld

For a few typical scenarios it is not too difficult to derive PP PP PP PP
complexity bounds. In particular, if either the number of poses ’
M or the numbgr of landmark¥ is bounded, we obtain linear \
algorithms inn = M+ N. Likewise, in a continual exploration DI} PP X
mode the complexity of Smoothing and Mapping is linear. F‘i;‘i;‘i;‘i;‘i S‘i;‘i;‘i“i;‘i

A. An Environment of Bounded Size

< Pad < <
In the case that the environment is of bounded size, the ;‘i ;‘i ;‘i ;‘i
complexity of SAM isO(M ), wherel is the number of robot <

poses. One of the objectives of mobile robotics is to deploy als alnm
robots for an extended time in relatively small environments. K‘ ‘>I< X‘ ‘>I
The canonical examples are museum tour guides [13], some
of which have been deployed for a period of years [14]. mie “1e
In this case, withN constant andV/ > N, we can first
eliminate all poses with a bounded work per pose, as the
number of landmarks adjacent to each pose is bounded by
N (typically mgch smaller). After eliminating all poses, the IV. ORDERING HEURISTICS FORGENERAL SCENARIOS
landmarks will in general be completely connected, and hence
we will have to factorize a dense matrix 6 V) size. Hence,  ForgeneralSLAM problems it is difficult to provide simple
the complexity of this scenario i©(M + N3). However, as bounds. Finding an optimal elimination order is an NP-
N is assumed constant, the final complexityCi§M). complete problem, which has long been known in the linear
Note that this strategy of first eliminating all poses is a wefilgebra and scientific computing community [12], [17]-{19].
known heuristic in the structure from motion literature, whergortunately, a lot of useful heuristics have been developed to

Fig. 3. An ND partitioning of an indoor hallway scenario.

it is known as the “Schur complement trick” [15], [16]. approximate an optimal ordering, most notably theimum
degreetype algorithms (MD) [17], andNested DissectiofND)
B. A Fixed Sensor Network [8]. These two popular heuristics are empirically found to

erform similarly in general SLAM scenarios.
Likewise, in the case thal is bounded andV >> M, the P ying

complexity of SAM is bounded by)(NN) by an analoguous A. Minimum Degree Heuristics

argument. One application where this occurs is when a My e two most widely used sparse matrix ordering algorithms

of robots is deployed to fixed positions after which the.Yor scientific computation are based on the heuristic of first

contin_ually mqnitor the environment, e.g. tracki“ng people ,!E'Iiminating the least constrained variablesf This family
their field of view. These then play the role of “landmarks of algorithms is known asninimum degre¢MD) algorithms.

an;j thke Sr:_'\IM etllgzr?rlthm cetl_llbratelsld.the d”eployeld tsenskg& first approach is to eliminate all variables of minimal degree
network while at the same time yielding all people racks, e ca)| of the elimination function, multiple (elimination)

fl‘s ]g > ]k\/[ ahgoo;j ordgrmghst;altlegy IS to flrst;[hmmate al D (MMD), while also eliminatingindistinguishablenodes
andmarks”, then factorize the fully connectél(M) sensor in the same step. MMD saves time both on updating the

network, for a complexity oD(M? + N) = O(N) with M graph and determining the next elimination candidates [20].
constant. A second approach avoids computing the exact vertex degrees
when eliminating one or more variables, by collecting nodes
into cliqgues. Only the degrees for the cliques are calculated,
Finally, if a robot is in a continual exploration mode withouthus reducing the bookkeeping effort. This algorithm is known
performing any loop-closures, the complexity of SAM is agaias Approximate Minimum Degre@MD) [17], [21].
linear. For example, this is a typical case when the robotBoth AMD and MMD produce equally good orderings, but
is traversing a long indoor hallway or other linear structur@MD is faster. It was shown in [4] that reordering according
Given a bounded sensor ranggeit is obvious that in this case to an AMD heuristic applied to the block-structure of the
the number of landmarks seen from any pose is bounded, gmdblem, can drastically reduce the factorization cost for SAM.
vice versa any landmark is only seen from a bounded number _ _
of poses. As a result, and in the absence of any loops, if the Nested Dissection
variables are ordered chronologically the information matrix The Nested Dissection (ND) ordering algorithm follows
I will be band-limited a divide-and-conqueparadigm. An indoor hallway example
It is well known that factorization in that case is linearof this recursive process is shown in Fig. 3. ND algorithms
However, in Section VI we give an alternative proof based aecursively partition the measurement graph and retypos
a recursive decomposition of the measurement graph. fix notation of the partitioning tree as the ordering.

C. Continual Exploration with no Loop Closures



Algorithm 3 Nested Dissection

0,03
Let G = (V, E) be a graph, with a set of verticds and a set
of edgesFE and |G| = n. 0,025
1) PartitionG into subgraphsd, B and separatorC'
2) RepeatStep (L)until |A|,|B| <eor|A|,|B|=1
3) Obtain the ordering by putting the binary tree of the
recursive partitioning in post-order, with the nodes of
the separating set last for every triple of sets.
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. . 0,005 ~ = —e— AMD ND |+
The pseudo-code for a general ND scheme is given above. &

Almost all ND variants use a two step approach for determin- o ‘ ‘ ‘ ‘
ing the separator€’ in the graph. First, they try to find good 0 10 20 30 40 50
areas for a cut that preserve the balance between the induced Number of blocks
subgraphsA and B. Second, a refinement algorithm like [27]
or [28] is applied. These can be understood as variants of () Straight walk with blocks to the left and right
bipartite graph matching algorithms as they aim at finding the
minimal cut between a set of nodes. 04
The application of ND orderings is especially relevant to
SLAM, as environments mapped by robots often contain parts »
that are spatially separable. In conventional EKF SLAM based
methods this property of the SLAM problem is exploited
by using “submaps” [22]-[26]. Thus, divide-and-conquer
approach appears very promising.
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C. Comparison of AMD and ND Heuristics
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(b) Random walk through a square block world

Fig. 5. Factorization times vs. number of blocks. In (b) the number of blocks
denotes the number of blocks of one side of the square block world, and the
robot travels for a distance of? blocks.

the left and right a measurement matrix with about 4,000 rows
and about 40,000 non zero entries is obtained.
In Fig. 5 the factorization times for varying numbers of
@ robot Pose [l andmark measurements are depicted. Fig. (a) shows the factorization
times for such a straight hallway path for varying numbers
Fig. 4. Resulting measurements from a simulated walk with 15 poses.of blocks. Fig. 5 (b) shows factorization times for simulated
randomwalks in n x n block worlds of varying sizes. All
We compared the performance of ND to AMD reorderingsesults show that the factorization of SLAM measurement
using indoor scenario simulations, showing that ND is about asatrices are roughly the same for AMD and ND reorderings.
efficient as AMD on general scenarios. The implementations
used were for AMD [21], [29] and for ND [19]. V. COMPLEXITY OF NESTED DISSECTION
The simulation data for the comparison was produced usingA significant advantage of the nested dissection scheme is
simulated block-worlds. The result of a loop around onthat it lends itself to a rigorous analysis. While AMD holds
block can be seen in Figure 4. It takes the robot 4 stepsslight performance edge over ND in our experiments, only
to pass a block. At each step the robot senses betweeth® latter allows us to establish bounds on the complexity of
and 12 landmarks. For simplicity we count the number BLAM. Below we review the seminal work in this area.
measurements in number of blocks. For example this meandhe key to the analysis of ND is the existence of so-
that for a path straight down a hallway with 1,000 blocks toalled separator theoremsThe basis of any ND algorithm




is the ability to recursively partition graphs into subgraphs
of roughly equal size with a small separating subgraph. It is
crucial that theseseparatorshe small as this keeps the fill-in
in the factorization process low, by maximizing the number of
nodes that are mutually independent.

A. Separator Theorems

Lipton et al. [7], [8] formalized the existence of small
separators through th&(n)-separator theorem

Theorem 1:(f(n)-SEPARATOR THEOREM) A graph G is
f(n)- separable if there exist constants < 1 and 3 > 0 Fig. 6. An abstract measurement gragh.is the set of landmarks seen from
such that the vertices d@f can be partitioned into three setsposez; , while x; is the set of poses seeing landmarkshinis marked.
A, B,C in a way that no edge joins a vertex iwith one in
B, A nor B contains more thamn vertices, and”' contains
no more than3f(n) vertices. posexz; we define the closest landmarks by®;. The order
For all classes of graphs for whichfdn)-separator theorem Of the measurements from is indexed byk. All landmarks
holds an efficiendivide-and-conqueprdering can be found. lix € ®; are seen from the same set of poggssymmetric
Note that one needs to guarantee that the algorithms for 8f@undz;. Intuitively x; = {z; |3l € ®; : (lix,v;) € E}
graph partitioning and local subgraph elimination are leés the set of poses that are connected via a measurement in

complex than the factorization itself. G to a landmark in®;. According to assumption (3) an edge
has a maximum lengtld. This translates into the graphical
B. From Separator Size to Complexity model by landmarkg;;, only being observed by the set of
The link between separator size and the complexity of NPoses{z;_|4/2], .-, Ti+|d/2] }—0iven an ideal sensor and
is given by the following theorem from [8]: being odd. We define
Theorem 2:(GENERALIZED NESTED DISSECTION Let S

be any class of graphs closed under the subgraph criterion for do = p(d) =
which ann? separator theorem holds, with > 0.5. Then for
anyn—vertex graphG in S, there is an elimination ordering

with O(n??) fill-in size andO(n3?) multiplication count. d./2 poses left and to the right of the- th pose sensing;.

Thus we can derive complexity bounds for the factonzatlor@JSIng assumption (2) we can now refine our above statement
These bounds depend on how tighin) = n? is. Hence, in t0 vi = {2 | |j —i| < (de/2)}
= {=; < (d, )

order to use this theorem vealy need to show that there exists
a graph partitioning algorithm fulfilling anf(n)-separator
theoremwhich is less complex tha®(n37).

d—1 if dis odd
d else

to reduce the even case to the symmetric odd case - with

Lemma 1:(CONTINUAL EXPLORATION SEPARATOR)
Given a SLAM measurement gragh= (E, V) fulfilling the
assumptions (1)-(3) the subgragh, = ®; U x; of G with
. AN O(n) BOUND FORCONTINUAL EXPLORATION |Ci| = ¢ + d separates’ into subgraphsA, B such that no

An even stronger theorem from [8] will yield the alternative yertex inA is adjacent to a vertex it. h of a hall
proof of linear-time SAM for continual exploration: . Proof: imagine a measurement graph of a hallway. We

Theorem 3:(LINEAR NESTED DISSECTION Let S be any wish to cut th's graph next to a pose. Ir.] order .to separate
class of graphs closed under the subgraph criterion for whidR€ POse chain adding; to the separator is sufficient. But due
an n” separator theorem holds, with < 1/3. Then for any to the pose-landmark edges there exist connections from one

n—vertex graphG in S, there is an elimination ordering with subgraph to the other iC_: {2} T_he_ outreach is bound
O(n) fill-in size and multiplication count. topologically byd. Thus with the definitions from above, no

Thus, it suffices to prove that in the exploration case, w{gndmark in the se®; will be connected to poses other then
can always cut the graph such that the separator sizelfg—de/2> - Ti+d. /2}. By extending the separator (6; =
bounded. LetG be a measurement graph witlf poses and 2iUXi We can guarantee a separation, thilg = ¢ +d. =

N landmarks, and denote by/- and No the number of

poses and landmarks, respectively, in an arbitrary connected V!l AN O(n'®) BOUND ON LARGE-SCALE SLAM

subgraphC’ of G Let us make the following assumptions: £ 5 gpecial class of large-scale SLAM problems, in which
1) Forevery connected subgraptin G we have a constant the measurement graph has a planar meta-structure, we can

ratio ¢ = 47 = Nc prove anO(n'®) bound. We will do so by first examining
2) Every landmark is seen from a constant number &he typical SLAM measurement graphs at the fine level and
consecutive poses > 1 then continuing with themetastructure of the graph. Using

3) We use an omni-directional sensor with limited rangethe complexity bounds for the ND algorithm on planar graphs
Assumptions (2) and (3) imply that closely located land7], [8] we can then bound the complexity for a large class of
marks will be observed from the same set of poses. ForS&EAM graphs.



Fig. 7. It is sufficient for a graph to have one of the above graphs as

compression

subgraph to be non-planar (a complete bipartite and a Kuratowski graph).

Fig. 9. Measurement graph for a typical indoor scenario (left) and the
correspondingneta graph(right).
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A. Nested Dissection for Planar Graphs o Georgia State S
_ Univemnmt . 9
Planar graphs are an important class of graphs, and fre: s Sﬁa_ pecalt =
quently arise in large physics and mechanical simulations. A ﬂs-:;.fuu Oakland
graph is planar iff it contains neither a complete bipartite graph Atlanta et ”emE"e-W@
on two sets of three vertices nor a complete graph on five [

vertices Kuratowski-TheoremFigure7).

Planar graphs satisfy ayfn-separator theorem [7]:
Theorem 4:(,/n-SEPARATOR THEOREM) Any n—vertex
planar graph G satisfies anf(n)-separator theorem with
f(n) =+/n, a= 2, and B = 2v/2. In addition, the partitions

can be found inD(n) time.
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Fig. 10. Example scenario for an urban mapping example (Atlanta).

In [8] the above./n-separator theorem was used to prove

bounds on the complexity of matrix factorizations when th

matrix structure equals a planar graph:
Theorem 5:(PLANAR NESTED DISSECTION Let G be any

B- Compressing SLAM Graphs into Meta Graph

Unfortunately, as shown in Figure 8, measurement graphs in
SLAM are typically non-planar. The denser the measurement

planar graph. ThenG has an elimination ordering which graph is, thdessplanar the measurement graghwill be.

produces a fill-in of size;nlogn+O(n) and a multiplication
count ofcon®/2+0(nlog? n), wheree; < 129 ande, < 4002.

Such an ordering can be found ®(nlogn) time.

For planar graphs satisfying ayin—separator theorem}7],

[8] give the following result:

However, in many realistic SLAM scenarios it is possible
to recognize structure at a level higher than at the level of the
detailed measurements. Imagine a robot exploring the interior
of a building as in Fig. 9, or an extended area in large city
as in Fig. 10. If we abstract from the fine graph structure in

Theorem 6: [8] Let S be any class of graphs satisfying 25LAM we obtain a coarser graph with vertices corresponding

/n—separator theorem then any graghe S has an elimina-
tion ordering which produces a fill-in of sizgn logn+O(n)
and a multiplication count of,n®/? 4+ O(nlog® n), where

e = B +2va/(1 = V/a)) floga(1/a)

cy = BQ(é +8Va2+ Va/(1+Va)
+a/(1-a))/(1 = va))/(1-9)

with § = o + (1 — ).

to intersections and edges corresponding to hallways or streets,
as depicted in Fig. 9. In graph theoretic terms this process is
called compressionWe denote the result of the compression
as themeta graph.

C. Complexity if the Meta Graphs is Planar

If a SLAM problem instance has planar metagraph,
defined as above, we can use Theorem 4 to determine the
number of meta nodes in the separator as a function of the total
number of meta nodes. Using bounds on the constituent parts
of the fine graph we can then obtain a separator theorem for



this class of SLAM graphs for which - with changed constants 6) (4) @)

- the complexity bounds of Theprem 5 hold, and hence alst ) *-‘Iﬁ B — B N N

an O(n*/?) bound on the multiplication count.

As themetagraph is planar the separator theorem for planar ]
graphs holds and thus for amyeta cutC’ we have 3 - N .} N N N

IC’| < 2v2N

where |C’| is the number of intersections in the cut anhd [
the total number of intersections. if,,,, is the maximum

number of (fine) nodes in any intersection, then the size O‘(1)[
the fine separatof’ is bound by [ _

IC| < 2Nnmar V2N @)

In addition, letn,,;,, be theminimumnumber of (fine) nodes in
any intersectioror edge and let the meta graph be connected.
Then we have at least as many edges as nodes, and the total g 3 N ) B ) ]
number of fine nodes satisfies2n,,,;, N < n . Dividing by
nmin and taking the square root on both sides yields

.
»
L
-
»
-

/i —a—a—a—a—a—8a
V2N <
. . . . . Fig. 11. Grid World Example
Inserting this result into (7) yields the following bound on the
size of any meta cut: [ [ n [V [B/n ] ICI ] ALIBI]
N m (1) | 86,250 294 | 4153 | 350 | 42,950
IC| < 2Ny ——= = Bv/n with g = /£ (2) | 42,950 | 207 | 2931 | 200 | 21,375
VNmin VMmin (3) | 21,375 | 146 | 2068 | 200 | 10,588
: . (4) | 10,588 103 | 1455 | 100 | 5,244
Hence, 3 is a constant in the sense of tli@)-separator- () [ 5244 [ 72 [ 1024 | 100 | 2572
theoremas in [7]. 6) | 2572 | 51 | 717 | 18 | 1,277
Finally, from Section VI we know that the hallways/streets gg 16%7 gg ggg 12 ggg
have_ a constant separator of siz@ + d), wherek is the © 306 [ 17 247 | 18 T4z
maximum number of edge traversals. Thealso has to satisfy (10) | 144 12 1 170 | 18 63
I | e3 8 112 | 18 22
k(¢ +d) < Bvn @ 22 5 [ 67 [ 18 2
That can be guaranteed by stopping the ND recursion when TABLE |
2 2 2 2 THE LEVEL OF THE RECURSION NUMBER OF NODESn IN THE EACH
k(¢ +d)” k(¢ + d) nmin
n < ) = 3 PARTITION, \/ﬁ,THE SIZE OF THE NEXT PARTITIONS AND THE SEPARATOR
ﬁ 4nmaw WITH 1,000NODES PER HALLWAY AND 50 NODES PER INTERSECTION

Summarizing, we have derived\@n—separator theorenn
the sense of [7], [8] and thus can use their results. Thus, we
obtain the same complexity bounds as if the graph was planar,

except for the constants and cs. Assuming that the intersections contain twice as much nodes
as a separator the 50 nodes correspond to a hallway separator
VIIl. EXAMPLE SCENARIOS with d = 3, k = 2 of at least$ = 3. In Table | the relevant

In this section we demonstrate the partitioning process fligures are shown for a grid with roughly 90,000 nodes. Note
typical scenarios as depicted in Fig. 9 or Fig. 10. We aldbat after the final partition all nodes form a subgraph and the
show the impact of the changed constants. recursion stops.

We start with a grid block-world scenario with 50 nodes We expand this scenario to the challenging outdoor urban
in the intersections and at least 50 nodes per hallway. Thigpping from Fig. 10. We assume 10,000 features per street,
scenario is challenging as there are no “natural” partitions like000 features per intersection and2@x 20 block world.
rooms to the sides of a hallway and the graph is evenly dengable Il contains the results one would obtain for the first
These might save cuts or keep the cuts small. 9 partitionings.

The example grid block-world and possible cuts according We want to highlight that the constants and ¢y in the
to our separator theorem are shown in Fig. 11. The partierived theorem are not negligible. For the first scenario we
tionings correspond to the cuts of a depth-first partitioningpbtain 8 = 2”"“” = 14,14, thus¢; =~ 3,200 and c; =~
recursion. Note that the measurement graph contains onbg, 700. Itis the subject of future work to empirically validate
parts where the robot passed along two times at maximuhaw tight these bounds are for different scenarios.



[ [ _n [ Vol 6/n [ O [JALIBL] o
1) 8,837,000| 2973 | 188,011 | 21,000 | 4,408,000

(2) | 4,408,000| 2100 | 132,786 | 11,000 | 2,198,000

3) 2,198,000| 1483 | 93,776 | 11,000 | 1,093,750 [10]
4) 1,093,750 | 1046 | 66,144 | 5,500 544,125

(5) 544,125 738 46,653 | 5,500 269,313

(6) 269,313 519 32,821 2,750 133,281 [11]
(@) 133,281 365 23,089 | 2,750 65,266

8) 65,266 255 16,157 1,375 31,945

) 31,945 179 11,304 1,375 15,285 [12]
(10)

TABLE Il

(13]

NUMBER OF NODESn IN THE EACH PARTITION, y/n,THE SIZE OF THE
NEXT PARTITIONS AND THE SEPARATORWITH 10,000NODES PER STREET

AND 1,000NODES PER INTERSECTION
[14]

[15]
IX. CONCLUSION

In this paper we have shown that the key computation in the
full SLAM problem is the factorization of a sparse matrix, anéf!
that the the ordering of eliminating the unknowns dramaticaly;;
changes the complexity of the resulting algorithm. We have
explained how the nested dissection algorithm exploits the
locality inherent in the SLAM problem, and have describe%s]
its properties and complexity bounds in the context of SLAM.
The contributions of this paper can be summarized as follow&®!

« For typical measurement patterns bounds on the separator

« Hence, in contrast to the complexity @(n?) for a

sizes and arf(n) — separator theorem can be derived. [20]
dense matrix factorization we can obtain a complexity
bound of O(nlogn) for the total fill-in andO(n2) for [21]
the multiplication count of the factorization of the pre-
ordered matrix. [22]

As a caveat, these boundsn be linked to high constant
factors that need to be taken into consideration, as was ill(&3]
trated by applying the algorithm in a typical indoor scenari )
Nevertheless, this scenario was in many respects a diﬁ‘i(ijﬂ]
one and we expect that smaller constants will occur in real

environments.
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