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Fig. 1. Example of a Markov graph corresponding to a full SLAM problem
where the robot moved four steps and made measurements on three landmarks.
The vertices correspond to the robot poses (circles) and landmarks (squares).

Abstract— The computational complexity of SLAM is domi-
nated by the cost of factorizing a matrix derived from the mea-
surements into a square root form, which has cubic complexity
in the worst case. However, the matrices associated with thefull
SLAM problem are typically very sparse, as opposed to the dense
problems one obtains in afiltering context. Hence much faster,
sparse factorization algorithms can be used. Furthermore, the
cost can be further reduced by choosing a good order in which
to eliminate variables during the factorization process, leading
to more or lessfill-in . In particular, in this paper we investigate
how a nested dissectionordering method can provably improve
the performance of the full SLAM algorithm. We show that the
computational complexity for the factorization of a large class of
measurement matrices occurring in the SLAM problem can be
tightly bound under reasonable assumptions.

I. I NTRODUCTION

The problem of creating a map of a mobile robot’s envi-
ronment given noisy odometry and landmark measurements,
while simultaneously localizing the robot’s pose in the map,
is known assimultaneous localization and mapping(SLAM).

As we and several other authors have pointed out [1]–[5],
considerable insight into the SLAM problem can be gained by
viewing it as inference in a graphical model, be it in a factor
graph or Markov random field framework. In this paper we
take the latter view, in which the Markov graphG = (E, V )
represents constraints as edgesE between the verticesV ,
corresponding to the unknowns. In thesmoothing and mapping
(SAM) problem [4] the unknowns comprise theentire robot
trajectory {xi|i ∈ 0..M − 1} as well as the position of all
landmarks{lj |j ∈ 1..N}. This problem is also referred to as
the full SLAM problem [5]. A small example is shown in
Figure 1, withM = 4 andN = 3.

To perform inference in the full SLAM graph one needs
to repeatedly factorize a large matrix, but as the matrix is
sparse this can be done efficiently, provided a good column
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Fig. 2. The (sparse) measurement JacobianA and the vector of unknowns
θ corresponding to the full SLAM example from Figure 2.

ordering can be found [4]. As we will show below in Section
II, this matrix is either the measurement JacobianA or the
information matrixATA associated with a linearized version
of the non-linear SLAM problem. The matrices associated with
smoothingare typically very sparse, as opposed to the dense
matrices one obtains in afiltering context. For example, the
measurement Jacobian corresponding to the small example of
Figure 1 is shown in Figure 2. The sparsity is even more
pronounced for large-scale SLAM problems, and because
of this one can do much better than the cubic complexity
associated with factorizing a dense matrix [6]. Furthermore,
the cost of factorizing a sparse matrix can be even more
reduced by choosing a good column ordering for the matrix.
This determines in which order the variables are marginalized
out, leading to more or lessfill-in in the factorization process
(defined below). This in turn determines the total number of
operations needed and hence the complexity.

In this paper we investigate thenested dissectionalgorithm
for ordering the variables in the full SLAM problem, a
divide-and-conquer approach that lends itself very well to
exploiting the locality inherent in the geometric nature of
the mapping task. Building on theoretical work by Lipton et
al. [7], [8], we give complexity bounds for a large class of
measurement graphs under reasonable assumptions. In contrast
to the complexity ofO(n3) for a dense matrix factorization,

with n
∆= M + N , we can obtain a complexity bound of at

mostO(n log n) space (total fill-in), and at mostO(n
3
2 ) time

(multiplication count) for the factorization of a pre-ordered
matrix. However, these bounds are typically linked to high
constant factors that need to be taken into consideration when
applying the algorithm. Hence, we give an analysis of the
impact of the constants in the complexity bounds for a typical
indoor scenario.



II. T HE FULL SLAM PROBLEM

Below we review how the full SLAM problem reduces to
solving a succession of linear least-squares problems, follow-
ing [4]. In particular, inference in the full SLAM problem
corresponds to the followingnon-linear least-squares problem
for the unknown robot poses{xi} and landmarks{lj}:

M∑
i=1

‖xi − fi(xi−1, ui)‖2Λi
+

K∑
k=1

‖zk − hk(xik
, ljk

)‖2Σk
(1)

Here‖.‖2Σ denotes the squared Mahalanobis norm with covari-
anceΣ. This assumes, as standard in the SLAM literature [9]–
[11], that we use Gaussian process and measurement models,

xi = fi(xi−1, ui) + wi zk = hk(xik
, ljk

) + vk (2)

where fi(.) is the motion model, hk(.) is the measurement
model, andwi andvk are normally distributed zero-mean noise
terms with covariance matricesΛi and Σk. We assume both
known control inputs{ui} and data association{ik, jk}.

Non-linear optimization methods solve a succession of
linear approximations to (1) by Taylor expansions around
a linearization point(x0, l0). In particular, the first-order
linearized version of the process model in (2) is given by

x0
i + δxi = fi(x0

i−1, ui) + F i−1
i δxi−1 + wi (3)

with F i−1
i the Jacobian offi(.) at the valuex0

i−1. The
linearized measurement equations are obtained similarly,

zk = hk(x0
ik
, l0jk

) +Hik

k δxik
+ Jjk

k δljk
+ vk (4)

with Hik

k and Jjk

k the Jacobians ofhk(.) with respect to a
change inxik

and ljk
, evaluated at(x0

ik
, l0jk

). We now obtain

a linear least-squares problem in the variablesθ
∆= {δxi, δlj},

θ∗ = argmin
θ

M∑
i=1

‖F i−1
i δxi−1 +Gi

iδxi − ai‖2Λi

+
K∑

k=1

‖Hik

k δxik
+ Jjk

k δljk
− ck‖2Σk

(5)

where we defined the constantsai
∆= x0

i − fi(x0
i−1, ui), ck

∆=
zk − hk(x0

ik
, l0jk

), andGi
i = −I. Below we will assume that

we are working on one of these linearized problems and hence
drop theδ notation in the interest of clarity.

A. Sparse Linear Algebra View

Equation (5) can be written concisely using matrix notation,
by collecting the Jacobian matrices into the (sparse) matrixA,
and the vectorsai andck into a right-hand side vectorb1:

θ∗ = argmin
θ

‖Aθ − b‖22 (6)

Figure 2 illustrates the typical block-structured sparsity of
A where the non-zero blocks correspond to the individual
measurement JacobiansF , G, H, andJ as defined above.

1and pre-multiplying the rows ofA and entries ofb to reflect the
Mahalanobis norm in the case of non-isotropic noise.

Solving linear systems of the form (6) is normally done
either through sparse QR factorization of the measurement
JacobianA (numerically stabler), or Cholesky factorization of
the information matrixI ∆= ATA (faster) [6], yielding the
algorithms below:

Algorithm 1 Solving the sparse linear system (6).

QR Cholesky
1. Factor A→ QR 1. Factor ATA→ RTR

2. Equate
[
d e

]T = QT b 2. Solve RT y = AT b
3. Solve Rθ∗ = d 3. Solve Rθ∗ = y

The key question considered in this paper regarding these
algorithms concerns their computational complexity. The
amount of computation needed for the factorization and back-
substitution is determined by the number of non-zero elements
(NNZ) in the initial matrix A, as well as the NNZ inR.
While we cannot influence the former, it is well known [4]
that onecan influence the NNZ introduced by the factorization
by reordering the columns of the matrixA, leading toAlg. 2:

Algorithm 2 Iterative least-squares with reordering

• ReorderAπ
π← A

• SymbolicFactorization of the sparsity pattern ofA
• Repeat

1) Linearize
2) NumericFactorization ofA
3) Back-substitution

• Until convergence

• Backorder solutionθ
π−1

← θπ

B. Graphical View of Matrix Factorization

In the following we attempt to give the reader an intuition
into the factorization process from a graphical point of view. In
particular, let the graphG be constructed as in Section I such
that the verticesV represent the variables and the edgesE
represent the dependencies between them. Then the adjacency
matrix of the graphG corresponds exactly to the sparse block
structure of the information matrixI ∆= ATA [4]. Elimination
of the matrixATA is defined as recursively eliminating one
variable at a time, until there is only one variable left. By
eliminatingwe mean expressing this variable as a linear com-
bination of adjacent vertices. However, eliminating a variable
vi introduces dependencies in the remaining graph, forcing
one to connect every variable adjacent tovi into a completely
connected subgraph orclique. We refer the interested reader
to [4], [8], [12] for more detailed explanations.

In matrix terms, the extra edges thus introduced correspond
to fill-in in the Cholesky factorR. The number of edges
introduced by the elimination depends on the order in which
the variables are eliminated. Thus, we wish to find the ordering
that results in the least fill-in.



III. C OMPLEXITY OF TYPICAL SLAM SCENARIOS

For a few typical scenarios it is not too difficult to derive
complexity bounds. In particular, if either the number of poses
M or the number of landmarksN is bounded, we obtain linear
algorithms inn

∆= M+N . Likewise, in a continual exploration
mode the complexity of Smoothing and Mapping is linear.

A. An Environment of Bounded Size

In the case that the environment is of bounded size, the
complexity of SAM isO(M), whereM is the number of robot
poses. One of the objectives of mobile robotics is to deploy
robots for an extended time in relatively small environments.
The canonical examples are museum tour guides [13], some
of which have been deployed for a period of years [14].

In this case, withN constant andM � N , we can first
eliminate all poses with a bounded work per pose, as the
number of landmarks adjacent to each pose is bounded by
N (typically much smaller). After eliminating all poses, the
landmarks will in general be completely connected, and hence
we will have to factorize a dense matrix ofO(N) size. Hence,
the complexity of this scenario isO(M + N3). However, as
N is assumed constant, the final complexity isO(M).

Note that this strategy of first eliminating all poses is a well
known heuristic in the structure from motion literature, where
it is known as the “Schur complement trick” [15], [16].

B. A Fixed Sensor Network

Likewise, in the case thatM is bounded andN �M , the
complexity of SAM is bounded byO(N) by an analoguous
argument. One application where this occurs is when a team
of robots is deployed to fixed positions after which they
continually monitor the environment, e.g. tracking people in
their field of view. These then play the role of “landmarks”,
and the SAM algorithm “calibrates” the deployed sensor
network while at the same time yielding all people tracks.
As N �M , a good ordering strategy is to first eliminate all
“landmarks”, then factorize the fully connectedO(M) sensor
network, for a complexity ofO(M3 + N) = O(N) with M
constant.

C. Continual Exploration with no Loop Closures

Finally, if a robot is in a continual exploration mode without
performing any loop-closures, the complexity of SAM is again
linear. For example, this is a typical case when the robot
is traversing a long indoor hallway or other linear structure.
Given a bounded sensor ranged, it is obvious that in this case
the number of landmarks seen from any pose is bounded, and
vice versa any landmark is only seen from a bounded number
of poses. As a result, and in the absence of any loops, if the
variables are ordered chronologically the information matrix
I will be band-limited.

It is well known that factorization in that case is linear.
However, in Section VI we give an alternative proof based on
a recursive decomposition of the measurement graph.

Fig. 3. An ND partitioning of an indoor hallway scenario.

IV. ORDERING HEURISTICS FORGENERAL SCENARIOS

For generalSLAM problems it is difficult to provide simple
bounds. Finding an optimal elimination order is an NP-
complete problem, which has long been known in the linear
algebra and scientific computing community [12], [17]–[19].
Fortunately, a lot of useful heuristics have been developed to
approximate an optimal ordering, most notably theminimum
degreetype algorithms (MD) [17], andNested Dissection(ND)
[8]. These two popular heuristics are empirically found to
perform similarly in general SLAM scenarios.

A. Minimum Degree Heuristics

The two most widely used sparse matrix ordering algorithms
for scientific computation are based on the heuristic of first
eliminating the least constrained variables ofG. This family
of algorithms is known asminimum degree(MD) algorithms.
A first approach is to eliminate all variables of minimal degree
in one call of the elimination function, multiple (elimination)
MD (MMD), while also eliminatingindistinguishablenodes
in the same step. MMD saves time both on updating the
graph and determining the next elimination candidates [20].
A second approach avoids computing the exact vertex degrees
when eliminating one or more variables, by collecting nodes
into cliques. Only the degrees for the cliques are calculated,
thus reducing the bookkeeping effort. This algorithm is known
asApproximate Minimum Degree(AMD) [17], [21].

Both AMD and MMD produce equally good orderings, but
AMD is faster. It was shown in [4] that reordering according
to an AMD heuristic applied to the block-structure of the
problem, can drastically reduce the factorization cost for SAM.

B. Nested Dissection

The Nested Dissection (ND) ordering algorithm follows
a divide-and-conquerparadigm. An indoor hallway example
of this recursive process is shown in Fig. 3. ND algorithms
recursively partition the measurement graph and return apost-
fix notation of the partitioning tree as the ordering.



Algorithm 3 Nested Dissection

Let G = (V,E) be a graph, with a set of verticesV and a set
of edgesE and |G| = n.

1) PartitionG into subgraphsA,B andseparatorC
2) RepeatStep (1)until |A| , |B| ≤ ε or |A| , |B| = 1
3) Obtain the ordering by putting the binary tree of the

recursive partitioning in post-order, with the nodes of
the separating setC last for every triple of sets.

The pseudo-code for a general ND scheme is given above.
Almost all ND variants use a two step approach for determin-
ing the separatorsC in the graph. First, they try to find good
areas for a cut that preserve the balance between the induced
subgraphsA andB. Second, a refinement algorithm like [27]
or [28] is applied. These can be understood as variants of
bipartite graph matching algorithms as they aim at finding the
minimal cut between a set of nodes.

The application of ND orderings is especially relevant to
SLAM, as environments mapped by robots often contain parts
that are spatially separable. In conventional EKF SLAM based
methods this property of the SLAM problem is exploited
by using “submaps” [22]–[26]. Thus, adivide-and-conquer
approach appears very promising.

C. Comparison of AMD and ND Heuristics
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Fig. 4. Resulting measurements from a simulated walk with 15 poses.

We compared the performance of ND to AMD reorderings
using indoor scenario simulations, showing that ND is about as
efficient as AMD on general scenarios. The implementations
used were for AMD [21], [29] and for ND [19].

The simulation data for the comparison was produced using
simulated block-worlds. The result of a loop around one
block can be seen in Figure 4. It takes the robot 4 steps
to pass a block. At each step the robot senses between 8
and 12 landmarks. For simplicity we count the number of
measurements in number of blocks. For example this means
that for a path straight down a hallway with 1,000 blocks to
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(a) Straight walk with blocks to the left and right
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(b) Random walk through a square block world

Fig. 5. Factorization times vs. number of blocks. In (b) the number of blocks
denotes the number of blocks of one side of the square block world, and the
robot travels for a distance ofn2 blocks.

the left and right a measurement matrix with about 4,000 rows
and about 40,000 non zero entries is obtained.

In Fig. 5 the factorization times for varying numbers of
measurements are depicted. Fig. (a) shows the factorization
times for such a straight hallway path for varying numbers
of blocks. Fig. 5 (b) shows factorization times for simulated
random walks in n × n block worlds of varying sizes. All
results show that the factorization of SLAM measurement
matrices are roughly the same for AMD and ND reorderings.

V. COMPLEXITY OF NESTEDDISSECTION

A significant advantage of the nested dissection scheme is
that it lends itself to a rigorous analysis. While AMD holds
a slight performance edge over ND in our experiments, only
the latter allows us to establish bounds on the complexity of
SLAM. Below we review the seminal work in this area.

The key to the analysis of ND is the existence of so-
called separator theorems. The basis of any ND algorithm



is the ability to recursively partition graphs into subgraphs
of roughly equal size with a small separating subgraph. It is
crucial that theseseparatorsbe small as this keeps the fill-in
in the factorization process low, by maximizing the number of
nodes that are mutually independent.

A. Separator Theorems

Lipton et al. [7], [8] formalized the existence of small
separators through thef(n)-separator theorem:

Theorem 1:(f(n)-SEPARATOR THEOREM) A graphG is
f(n)- separable if there exist constantsα < 1 and β > 0
such that the vertices ofG can be partitioned into three sets
A,B,C in a way that no edge joins a vertex inA with one in
B, A nor B contains more thanαn vertices, andC contains
no more thanβf(n) vertices.
For all classes of graphs for which af(n)-separator theorem
holds an efficientdivide-and-conquerordering can be found.
Note that one needs to guarantee that the algorithms for the
graph partitioning and local subgraph elimination are less
complex than the factorization itself.

B. From Separator Size to Complexity

The link between separator size and the complexity of ND
is given by the following theorem from [8]:

Theorem 2:(GENERALIZED NESTED DISSECTION) Let S
be any class of graphs closed under the subgraph criterion for
which annσ separator theorem holds, withσ > 0.5. Then for
anyn−vertex graphG in S, there is an elimination ordering
with O(n2σ) fill-in size andO(n3σ) multiplication count.
Thus we can derive complexity bounds for the factorization.
These bounds depend on how tightf(n) = nσ is. Hence, in
order to use this theorem weonlyneed to show that there exists
a graph partitioning algorithm fulfilling anf(n)-separator
theoremwhich is less complex thanO(n3σ).

VI. A N O(n) BOUND FORCONTINUAL EXPLORATION

An even stronger theorem from [8] will yield the alternative
proof of linear-time SAM for continual exploration:

Theorem 3:(LINEAR NESTED DISSECTION) Let S be any
class of graphs closed under the subgraph criterion for which
an nσ separator theorem holds, withσ < 1/3. Then for any
n−vertex graphG in S, there is an elimination ordering with
O(n) fill-in size and multiplication count.

Thus, it suffices to prove that in the exploration case, we
can always cut the graph such that the separator size is
bounded. LetG be a measurement graph withM poses and
N landmarks, and denote byMC and NC the number of
poses and landmarks, respectively, in an arbitrary connected
subgraphC of G. Let us make the following assumptions:

1) For every connected subgraphC in G we have a constant
ratio φ = N

M = NC

MC
.

2) Every landmark is seen from a constant number of
consecutive posesd ≥ 1

3) We use an omni-directional sensor with limited range

Assumptions (2) and (3) imply that closely located land-
marks will be observed from the same set of poses. For a
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Fig. 6. An abstract measurement graph.Φi is the set of landmarks seen from
posexi , while χi is the set of poses seeing landmarks inΦi is marked.

posexi we define the closestφ landmarks byΦi. The order
of the measurements fromxi is indexed byk. All landmarks
lik ∈ Φi are seen from the same set of posesχi symmetric
aroundxi. Intuitively χi = {xj | ∃ lik ∈ Φi : (lik, xj) ∈ E}
is the set of poses that are connected via a measurement in
G to a landmark inΦi. According to assumption (3) an edge
has a maximum lengthd. This translates into the graphical
model by landmarkslik only being observed by the set of
poses{xi−bd/2c, ..., xi+bd/2c}−given an ideal sensor andd
being odd. We define

de = ψ(d) =
{
d− 1 if d is odd
d else

to reduce the even case to the symmetric odd case - with
de/2 poses left and to the right of thei− th pose sensingΦi.
Using assumption (2) we can now refine our above statement
to χi = {xj | |j − i| ≤ (de/2)}.

Lemma 1: (CONTINUAL EXPLORATION SEPARATOR)
Given a SLAM measurement graphG = (E, V ) fulfilling the
assumptions (1)-(3) the subgraphCi = Φi ∪ χi of G with
|Ci| = φ + d separatesG into subgraphsA, B such that no
vertex inA is adjacent to a vertex inB.

Proof: imagine a measurement graph of a hallway. We
wish to cut this graph next to a posexi. In order to separate
the pose chain addingxi to the separator is sufficient. But due
to the pose-landmark edges there exist connections from one
subgraph to the other ifC = {xi}. The outreach is bound
topologically byd. Thus with the definitions from above, no
landmark in the setΦi will be connected to poses other then
{xi−de/2, ..., xi+de/2}. By extending the separator toCi =
Φi ∪χi we can guarantee a separation, thus|Ci| = φ+ d.

VII. A N O(n1.5) BOUND ON LARGE-SCALE SLAM

For a special class of large-scale SLAM problems, in which
the measurement graph has a planar meta-structure, we can
prove anO(n1.5) bound. We will do so by first examining
the typical SLAM measurement graphs at the fine level and
then continuing with themeta structure of the graph. Using
the complexity bounds for the ND algorithm on planar graphs
[7], [8] we can then bound the complexity for a large class of
SLAM graphs.



Fig. 7. It is sufficient for a graph to have one of the above graphs as a
subgraph to be non-planar (a complete bipartite and a Kuratowski graph).

Landmark Robot Pose 

Fig. 8. A typical measurement pattern in SLAM which is isomorph to a
non-planar graph containing a fully connected bipartite graph as in Fig. 7.

A. Nested Dissection for Planar Graphs

Planar graphs are an important class of graphs, and fre-
quently arise in large physics and mechanical simulations. A
graph is planar iff it contains neither a complete bipartite graph
on two sets of three vertices nor a complete graph on five
vertices (Kuratowski-Theorem, Figure7).

Planar graphs satisfy an
√
n-separator theorem [7]:

Theorem 4:(
√
n-SEPARATOR THEOREM) Any n−vertex

planar graph G satisfies anf(n)-separator theorem with
f(n) =

√
n, α = 2

3 , andβ = 2
√

2. In addition, the partitions
can be found inO(n) time.
In [8] the above

√
n-separator theorem was used to prove

bounds on the complexity of matrix factorizations when the
matrix structure equals a planar graph:

Theorem 5:(PLANAR NESTED DISSECTION) LetG be any
planar graph. ThenG has an elimination ordering which
produces a fill-in of sizec1n log n+O(n) and a multiplication
count ofc2n3/2+O(n log2 n), wherec1 ≤ 129 andc2 ≤ 4002.
Such an ordering can be found inO(n log n) time.
For planar graphs satisfying an

√
n−separator theorem,[7],

[8] give the following result:
Theorem 6: [8] Let S be any class of graphs satisfying a√
n−separator theorem then any graphG ∈ S has an elimina-

tion ordering which produces a fill-in of sizec1n log n+O(n)
and a multiplication count ofc2n3/2 +O(n log2 n), where

c1 = β2(
1
2

+ 2
√
α/(1−

√
α))/log2(1/α)

c2 = β2(
1
6

+ β
√
α(2 +

√
α/(1 +

√
α)

+4α/(1− α))/(1−
√
α))/(1− δ)

with δ = α
3
2 + (1− α)

3
2 .

compression 

Fig. 9. Measurement graph for a typical indoor scenario (left) and the
correspondingmeta graph(right).

 

Fig. 10. Example scenario for an urban mapping example (Atlanta).

B. Compressing SLAM Graphs into aMeta Graph

Unfortunately, as shown in Figure 8, measurement graphs in
SLAM are typically non-planar. The denser the measurement
graph is, thelessplanar the measurement graphG will be.

However, in many realistic SLAM scenarios it is possible
to recognize structure at a level higher than at the level of the
detailed measurements. Imagine a robot exploring the interior
of a building as in Fig. 9, or an extended area in large city
as in Fig. 10. If we abstract from the fine graph structure in
SLAM we obtain a coarser graph with vertices corresponding
to intersections and edges corresponding to hallways or streets,
as depicted in Fig. 9. In graph theoretic terms this process is
called compression. We denote the result of the compression
as themeta graph.

C. Complexity if the Meta Graphs is Planar

If a SLAM problem instance has aplanar metagraph,
defined as above, we can use Theorem 4 to determine the
number of meta nodes in the separator as a function of the total
number of meta nodes. Using bounds on the constituent parts
of the fine graph we can then obtain a separator theorem for



this class of SLAM graphs for which - with changed constants
- the complexity bounds of Theorem 5 hold, and hence also
anO(n3/2) bound on the multiplication count.

As themetagraph is planar the separator theorem for planar
graphs holds and thus for anymeta cutC ′ we have

|C ′| ≤ 2
√

2N

where |C ′| is the number of intersections in the cut andN
the total number of intersections. Ifnmax is the maximum
number of (fine) nodes in any intersection, then the size of
the fine separatorC is bound by

|C| ≤ 2nmax

√
2N (7)

In addition, letnmin be theminimumnumber of (fine) nodes in
any intersectionor edge and let the meta graph be connected.
Then we have at least as many edges as nodes, and the total
number of fine nodesn satisfies2nminN ≤ n . Dividing by
nmin and taking the square root on both sides yields

√
2N ≤

√
n

√
nmin

Inserting this result into (7) yields the following bound on the
size of any meta cut:

|C| ≤ 2nmax

√
n

√
nmin

= β
√
n with β =

2nmax√
nmin

Hence,β is a constant in the sense of thef(n)-separator-
theoremas in [7].

Finally, from Section VI we know that the hallways/streets
have a constant separator of sizek(φ + d), wherek is the
maximum number of edge traversals. Thenn also has to satisfy

k(φ+ d) ≤ β
√
n

That can be guaranteed by stopping the ND recursion when

n <
k2(φ+ d)2

β2
=
k2(φ+ d)2nmin

4n2
max

Summarizing, we have derived a
√
n−separator theoremin

the sense of [7], [8] and thus can use their results. Thus, we
obtain the same complexity bounds as if the graph was planar,
except for the constantsc1 andc2.

VIII. E XAMPLE SCENARIOS

In this section we demonstrate the partitioning process for
typical scenarios as depicted in Fig. 9 or Fig. 10. We also
show the impact of the changed constants.

We start with a grid block-world scenario with 50 nodes
in the intersections and at least 50 nodes per hallway. This
scenario is challenging as there are no “natural” partitions like
rooms to the sides of a hallway and the graph is evenly dense.
These might save cuts or keep the cuts small.

The example grid block-world and possible cuts according
to our separator theorem are shown in Fig. 11. The parti-
tionings correspond to the cuts of a depth-first partitioning
recursion. Note that the measurement graph contains only
parts where the robot passed along two times at maximum.

(6) 
(5) 

(4) 

(3) 

(2) 

(1) 

Fig. 11. Grid World Example

n
√

n β
√

n |C| |A| , |B|
(1) 86,250 294 4153 350 42,950
(2) 42,950 207 2931 200 21,375
(3) 21,375 146 2068 200 10,588
(4) 10,588 103 1455 100 5,244
(5) 5,244 72 1024 100 2,572
(6) 2,572 51 717 18 1,277
(7) 1,277 36 505 18 629
(8) 629 25 355 18 306
(9) 306 17 247 18 144
(10) 144 12 170 18 63
(11) 63 8 112 18 22
(12) 22 5 67 18 2

TABLE I

THE LEVEL OF THE RECURSION, NUMBER OF NODESn IN THE EACH

PARTITION,
√

n,THE SIZE OF THE NEXT PARTITIONS AND THE SEPARATOR,

WITH 1,000NODES PER HALLWAY AND 50 NODES PER INTERSECTION.

Assuming that the intersections contain twice as much nodes
as a separator the 50 nodes correspond to a hallway separator
with d = 3, k = 2 of at leastφ = 3. In Table I the relevant
figures are shown for a grid with roughly 90,000 nodes. Note
that after the final partition all nodes form a subgraph and the
recursion stops.

We expand this scenario to the challenging outdoor urban
mapping from Fig. 10. We assume 10,000 features per street,
1,000 features per intersection and a20x 20 block world.
Table II contains the results one would obtain for the first
9 partitionings.

We want to highlight that the constantsc1 and c2 in the
derived theorem are not negligible. For the first scenario we
obtain β = 2nmax√

nmin
= 14, 14, thus c1 ≈ 3, 200 and c2 ≈

499, 700. It is the subject of future work to empirically validate
how tight these bounds are for different scenarios.



n
√

n β
√

n |C| |A| , |B|
(1) 8,837,000 2973 188,011 21,000 4,408,000
(2) 4,408,000 2100 132,786 11,000 2,198,000
(3) 2,198,000 1483 93,776 11,000 1,093,750
(4) 1,093,750 1046 66,144 5,500 544,125
(5) 544,125 738 46,653 5,500 269,313
(6) 269,313 519 32,821 2,750 133,281
(7) 133,281 365 23,089 2,750 65,266
(8) 65,266 255 16,157 1,375 31,945
(9) 31,945 179 11,304 1,375 15,285
(10) ...

TABLE II

NUMBER OF NODESn IN THE EACH PARTITION,
√

n,THE SIZE OF THE

NEXT PARTITIONS AND THE SEPARATOR, WITH 10,000NODES PER STREET

AND 1,000NODES PER INTERSECTION.

IX. CONCLUSION

In this paper we have shown that the key computation in the
full SLAM problem is the factorization of a sparse matrix, and
that the the ordering of eliminating the unknowns dramatically
changes the complexity of the resulting algorithm. We have
explained how the nested dissection algorithm exploits the
locality inherent in the SLAM problem, and have described
its properties and complexity bounds in the context of SLAM.
The contributions of this paper can be summarized as follows:

• For typical measurement patterns bounds on the separator
sizes and anf(n)− separator theorem can be derived.

• Hence, in contrast to the complexity ofO(n3) for a
dense matrix factorization we can obtain a complexity
bound ofO(n log n) for the total fill-in andO(n

3
2 ) for

the multiplication count of the factorization of the pre-
ordered matrix.

As a caveat, these boundscan be linked to high constant
factors that need to be taken into consideration, as was illus-
trated by applying the algorithm in a typical indoor scenario.
Nevertheless, this scenario was in many respects a difficult
one and we expect that smaller constants will occur in real
environments.
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