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Abstract. We describe a Markov chain Monte Carlo based particle fil-
ter that effectively deals with interacting targets, i.e., targets that are
influenced by the proximity and/or behavior of other targets. Such in-
teractions cause problems for traditional approaches to the data associ-
ation problem. In response, we developed a joint tracker that includes
a more sophisticated motion model to maintain the identity of targets
throughout an interaction, drastically reducing tracker failures. The pa-
per presents two main contributions: (1) we show how a Markov random
field (MRF) motion prior, built on the fly at each time step, can sub-
stantially improve tracking when targets interact, and (2) we show how
this can be done efficiently using Markov chain Monte Carlo (MCMC)
sampling. We prove that incorporating an MRF to model interactions is
equivalent to adding an additional interaction factor to the importance
weights in a joint particle filter. Since a joint particle filter suffers from
exponential complexity in the number of tracked targets, we replace the
traditional importance sampling step in the particle filter with an MCMC
sampling step. The resulting filter deals efficiently and effectively with
complicated interactions when targets approach each other. We present
both qualitative and quantitative results to substantiate the claims made
in the paper, including a large scale experiment on a video-sequence of
over 10,000 frames in length.

1 Introduction

This work is concerned with the problem of tracking multiple interacting targets.
Our objective is to obtain a record of the trajectories of targets over time, and
to maintain correct, unique identification of each target throughout. Tracking
multiple identical targets becomes challenging when the targets pass close to
one another or merge.

The classical multi-target tracking literature approaches this problem by per-
forming a data-association step after a detection step. Most notably, the multiple
hypothesis tracker [1] and the joint probabilistic data association filter (JPDAF)
[2] are influential algorithms in this class. These multi-target tracking algorithms
have been used extensively in the context of computer vision. Some examples
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are the use of nearest neighbor tracking in [3], the multiple hypothesis tracker
in [4], and the JPDAF in [5]. Recently, a particle filtering version of the JPDAF
has been proposed in [6].

Fig. 1. 20 ants are being tracked by an MCMC-based particle filter. Targets do not
behave independently: whenever one ant encounters another, some amount of interac-
tion takes place, and the behavior of a given ant before and after an interaction can be
quite different. This observation is generally applicable to any situation where many
interacting targets need to be tracked over time.

In this paper we address the problem of interacting targets, which causes
problems for traditional approaches. Dealing appropriately with this problem
has important implications for vision-based tracking of animals, and is generally
applicable to any situation where many interacting targets need to be tracked
over time. Visual animal tracking is not an artificial task: it has countless appli-
cations in biology and medicine. In addition, our long term research goals involve
the analysis of multi-agent system behavior in general, with social insects as a
model [7]. The domain offers many challenges that are quite different from the
typical radar tracking domain in which most multi-target tracking algorithms
are evaluated.

In contrast to traditional methods, our approach relies on the use of a more
capable motion model, one that is able to adequately describe target behavior
throughout an interaction event. The basic assumption on which all established
data-association methods rely is that targets maintain their behavior before and
after the targets visually merge. However, consider the example in Figure 1,
which shows 20 ants being tracked in a small arena. In this case, the targets do
not behave independently: whenever one ant encounters another, some amount
of interaction takes place, and the behavior of a given ant before and after an
interaction can be quite different. The approach we propose is to have the motion
model reflect this additional complexity of the target behavior.

The first contribution of this paper is to show how a Markov random field
motion prior, built on the fly at each time step, can adequately model these
interactions and defeat these failure modes. Our approach is based on the well
known particle filter [8,9], a multi-hypothesis tracker that uses a set of weighted
particles to approximate a density function corresponding to the probability of
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(a) frame 9043 (b) frame 9080 (c)frame 9083

Fig. 2. (a) Three interacting ants are being tracked using independent particle filters.
(b) The target with the best likelihood score typically “hijacks” the filters of nearby
targets. (c) Resulting tracker failure. We address this problem using an Markov random
field motion prior, built on the fly at each time step, that can adequately model these
interactions and defeat these failure modes.

the location of the target given observations over time. The standard particle
filter weights particles based on a likelihood score, and then propagates these
weighted particles according to a motion model. Simply running multiple particle
filters, however, is not a viable option: whenever targets pass close to one another,
the target with the best likelihood score typically “hijacks” the filters of nearby
targets, as is illustrated in Figure 2. In these cases, identity could be maintained
during tracking by providing a more complex motion model that approximates
the interaction between targets. We show below that incorporating an MRF to
model interactions is equivalent to adding an additional interaction factor to the
importance weights in a joint particle filter.

The second contribution is to show how this can be done efficiently using
Markov chain Monte Carlo (MCMC) sampling. The joint particle filter suffers
from exponential complexity in the number of tracked targets, n. Computational
requirements render the joint filter unusable for more than than three or four
targets [10]. As a solution, we replace the traditional importance sampling step in
the particle filter with an MCMC sampling step. This approach has the appealing
property that the filter behaves as a set of individual particle filters when the
targets are not interacting, but efficiently deals with complicated interactions
when targets approach each other. The idea of using MCMC in the sequential
importance resampling (SIR) particle filter scheme has been explored before,
in [11]. Our approach can be consider a specialization of this work with an
MRF-based joint posterior and an efficient proposal step to achieve reasonable
performance.

In other related work, MCMC has been used in different ways in a particle
filter setting. [12,13] introduce periodic MCMC steps to diversify particles in a
fixed-lag smoothing scheme. Similarly, Marthi et. al. [14] developed “Decayed
MCMC” sequential Monte Carlo, in which they focus the sampling activity of
the MCMC sampler to state variables in the recent past.

Finally, several other particle-filter based approaches exist to tracking mul-
tiple identical targets. [15] “binds” particles to specific targets. [16] uses parti-
tioned sampling and a probabilistic exclusion principle, which adds a term to the
measurement model that assures that every feature measured belongs to only
one target. BraMBLe [17] addresses tracking and initializing multiple targets
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in a variable-dimension framework. However, all of these are joint particle filter
approaches and are less suitable to tracking a large number of targets.

2 Bayesian Multi-Target Tracking

The multiple target tracking problem can be expressed as a Bayes filter. We
recursively update the posterior distribution P (Xt|Zt) over the joint state of
the all n targets {Xit|i ∈ 1..n} given all observations Zt = {Z1..Zt} up to and
including time t, according to:

P (Xt|Zt) = kP (Zt|Xt)
∫

Xt−1

P (Xt|Xt−1)P (Xt−1|Zt−1) (1)

The likelihood P (Zt|Xt) expresses the measurement model, the probability we
observed the measurement Zt given the state Xt at time t. The motion model
P (Xt|Xt−1) predicts the state Xtat time t given the previous state Xt−1. In
all that follows we will assume that the likelihood P (Zt|Xt) factors as across
targets as P (Zt|Xt) =

∏n
i=1 P (Zit|Xit) and that the appearances of targets are

conditionally independent.

2.1 Independent Particle Filters

When identical targets do not interact, we can approximate the exact Bayes
filter by running multiple single-target particle filters. Mathematically, this is
equivalent to factoring the motion model P (Xt|Xt−1) as

∏
i P (Xit|Xi,t−1).

For each of the n independent filters, we need to approximate the posterior
P (Xit|Zt) over each target’s state Xit. A particle filter can be viewed as an
importance sampler for this posterior P (Xit|Zt), using the predictive density on
the state Xit as the proposal distribution. Briefly, one inductively assumes that
the posterior at the previous time step is approximated by a set of weighted
particles

P (Xit|Zt−1) ≈ {X(r)
,it−1, π

(r)
i,t−1}

N
r=1

Then, for the current time-step, we draw N samples X(s)
it from a proposal dis-

tribution
X

(s)
it ∼ q(Xit) =

∑
r

π
(r)
i,t−1P (Xit|X(r)

i,t−1)

which is a mixture of motion models P (Xit|X(r)
i,t−1). Then we weight each sample

so obtained by its likelihood given the measurement Zit, i.e.

π
(s)
i,t = P (Zit|X(s)

it )

This results in a weighted particle approximation {X(s)
it , π

(s)
it }N

s=1 for the pos-
terior P (Xit|Zt) over the target’s state Xit at time t. There are other ways to
explain the particle filter (see e.g. [18]) that more easily accommodate other
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variants, but the mixture proposal view above is particularly suited for our ap-
plication.

While using independent filters is computationally tractable, the result is
prone to frequent failures. Each particle filter samples in a small space, and the
resulting “joint” filter’s complexity is linear in the number of targets, n. However,
in cases where targets do interact, as in an insect tracking scenario, single particle
filters are susceptible to failures exactly when interactions occur. In a typical
failure mode, illustrated in Figure 2, several trackers will start tracking the
single target with the highest likelihood score.

3 MRF Motion Model

Fig. 3. To model interactions, we dynamically construct a Markov random field at
each time step, with edges for targets that are close to one another. An example is
shown here for 6 ants. Targets that are far from one another are not linked by an edge,
reflecting that there is no interaction.

Our approach to addressing tracker failures resulting from interactions is
to introduce a more capable motion model, based on Markov random fields
(MRFs). We model the interaction between targets using a graph-based MRF
constructed on the fly for each individual time-step. An MRF is a graph (V,E)
with undirected edges between nodes where the joint probability is factored as a
product of local potential functions at each node, and interactions are defined on
neighborhood cliques. See [19] for a thorough exposition. The most commonly
used form is a pairwise MRF, where the cliques are pairs of nodes that are
connected in the undirected graph. We assume the following pairwise MRF form,
where the ψ(Xit, Xjt) are pairwise interaction potentials:

P (Xt|Xt−1) ∝
∏

i

P (Xit|Xi(t−1))
∏

ij∈E

ψ(Xit, Xjt) (2)

The interaction potentials of the MRF afford us the possibility of easily spec-
ifying domain knowledge governing the joint behavior of interacting targets. At
the same time, the absence of an edge in the MRF encodes the domain knowl-
edge that targets do not influence each other’s behavior. As a concrete example,
in the insect tracking application we present in the Section 6, we know that two
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insects rarely occupy the same space. Taking advantage of this assumption can
help greatly in tracking two targets that pass close to one another. An example
MRF for our test domain is illustrated in Figure 3; in this case, targets within
64 pixels (about 2 cm) of one another are linked by MRF edges. The absence of
edges between two ants provides mathematical rigor to the intuition that ants
far away will not influence each other’s motion.

Since it is easier to specify the interaction potential in the log domain, we
express ψ(Xit, Xjt) by means of the Gibbs distribution:

ψ(Xit, Xjt) ∝ exp (−g(Xit, Xjt)) (3)

where g(Xit, Xjt) is a penalty function. For example, in the ant tracking appli-
cation the penalty function g(Xit, Xjt) we use depends only on the number of
pixels overlap between the target boxes of two targets. It is maximal when two
targets coincide and gradually falls off as targets move apart.

4 The Joint MRF Particle Filter

The MRF terms that model interactions can be incorporated into the Bayes
filter in a straightforward manner, but now we are forced to consider the full
joint state of all n targets. In particular, analogous to the single target filter
explained in Section 2.1, we recursively approximate the posterior on the joint
state Xt as a set of N weighted samples, obtaining the following Monte Carlo
approximation to the Bayes filter (1):

P (Xt|Zt) ≈ kP (Zt|Xt)
∑

r

π
(r)
t−1P (Xt|X(r)

t−1) (4)

We can easily plug in the MRF motion model (2) into the joint particle filter
equation (4). Note that the interaction potential (3) does not depend on the
previous target state Xt−1, and hence the target distribution (4) for the joint
MRF filter factors as

P (Xt|Zt) ≈ kP (Zt|Xt)
∏

ij∈E

ψ(Xit, Xjt)
∑

r

π
(r)
t−1

∏
i

P (Xit|X(r)
i(t−1)) (5)

In other words, the interaction term moves out of the mixture distribution. This
means that we can simply treat the interaction term as an additional factor
in the importance weight. In other words, we sample from the joint proposal
distribution function

X
(s)
t ∼ q(Xt) =

∑
r

π
(r)
t−1

∏
i

P (Xit|X(r)
i(t−1))

and weight the samples according to the following factored likelihood expression:

π
(s)
t =

n∏
i=1

P (Zit|X(s)
it )

∏
ij∈E

ψ(X(s)
it , X

(s)
jt )
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However, the joint particle filter approximation is not well suited for multi-
target tracking. Each particle contains the joint position of all n targets, X(s)

t =
{X(s)

1t , ..., X
(s)
nt }, and the filter suffers from exponential complexity in the number

of tracked targets, n. If too few particles are used, all but a few importance
weights will be near-zero. In other words, the Monte Carlo approximation (4),
while asymptotically unbiased, will have high variance. These considerations
render the joint filter unusable in practice for more than than three or four
targets [10].

5 The MCMC-based MRF Particle Filter

The second contribution of this paper is to show how that we can efficiently
sample from the factored target posterior distribution (5) using Markov chain
Monte Carlo (MCMC) sampling [20,21,22]. In effect, we are replacing the inef-
ficient importance sampling step with an efficient MCMC sampling step.

All MCMC methods work by generating a sequence of states, in our case
joint target configurations Xt at time t, with the property that the collection
of generated states approximates a sample from the target distribution (5). To
accomplish this, a Markov chain is defined over the space of configurations Xt

such that the stationary distribution of the chain is exactly the target distribu-
tion. The Metropolis-Hastings (MH) algorithm [23] is a way to simulate from
such a chain. We use it to generate a sequence of samples from P (Xt|Zt).

5.1 Proposal Density

The key to the efficiency of this sampler rests in the specific proposal den-
sity we use. In particular, we only change the state of one target at a time
by sampling directly from the factored motion model of the selected target
Q(X ′

t|Xt) = 1
NQ(X ′

t|Xt, i) = 1
N

∑
r P (X ′

it|X
(r)
i(t−1))

∏
j 6=i δ(X

′
jt = Xi). Each tar-

get is equally likely to be selected. The acceptance ratio for this proposal can be
calculated very efficiently, as only the likelihood and MRF interaction potential
for the chosen target need to be evaluated:

aS = min

(
1,
P (Zt|X ′

it)
∏

j∈Ei
ψ(X ′

it, X
′
jt)

P (Zt|Xit)
∏

j∈Ei
ψ(Xit, Xjt)

)
This also has the desirable consequence that, if targets do not interact, the
MCMC-based filter above is just as efficient as multiple, independent particle
filters.

5.2 Algorithm Summary

In summary, the detailed steps of the MCMC-based tracking algorithm we pro-
pose are:
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1. At time t − 1 the state of the targets is represented by an set of samples
{X(r)

t−1}N
r=1 each containing the joint state X(r)

t−1 = {X(r)
1(t−1), . . . , X

(r)
n(t−1)}.

2. Initialize the MCMC sampler for time t by drawing Xt from the interaction-
free predictive density

∑
r

∏
i P (Xit|X(r)

i(t−1)).

1. Perform Metropolis-Hastings iterations to obtain M samples from the fac-
tored posterior (5). Discard the first B samples to account for sampler burn-
in. In detail:
(a) Proposal step:

i. Randomly select a joint sample X
(r)
t−1 from the set of unweighted

samples from the previous time step.
ii. Randomly select a target i from n targets. This will be the target

that we propose to move.
iii. Using the previous state of this ith target X(r)

i(t−1), sample from the

conditionally dependent motion model P (X ′
it|X

(r)
i(t−1)) to obtain X ′

it

(b) Compute the acceptance ratio:

aS = min

(
1,
P (Zit|X ′

it)
∏

j∈Ei
ψ(X ′

it, X
′
jt)

P (Zit|Xit)
∏

j∈Ei
ψ(Xit, Xjt)

)

(c) If aS ≥ 1 then accept X ′
it , set the the ith target in Xt to X ′

it. Otherwise,
we accept it with probability aS. If rejected, we leave the ith target in
Xt unchanged. Add a copy of the current Xt to the new sample set.

2. The sample set {X(s)
t }M

s=1 at time t represents an estimated joint state of
the targets.

6 Experimental Validation

We evaluated our approach by tracking through a very long video-sequence of
roaming ants, and present both quantitative results as well as a graphical com-
parison of the different tracker methodologies. The test sequence consists of
10,400 720 by 480 24-bit RGB frames at 30 Hz of 20 ants, roaming about an
arena. The ants themselves are about 1 cm long and move about the arena as
quickly as 3 cm per second. Interactions occur frequently and can involve 5 or
more ants in close proximity. In these cases, the motion of the animals is diffi-
cult to predict. After pausing and touching one another, they often walk rapidly
sideways or even backward. This experimental domain provides a substantial
challenge to any multi-target tracker.

6.1 Experimental Details and Results

We evaluated a number of different trackers with respect to a baseline “pseudo
ground truth” sequence. As no ground truth was available we obtained the base-
line sequence by running a slow but accurate tracker and correcting any mistakes
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it made by hand. In particular, we ran our MCMC tracker with 2000 samples,
which lost track only 15 times in the entire sequence. When we observed a
tracker failure, we reinitialized by hand the positions of the targets and resumed
tracking.

Below are the specific implementation choices we made to specialize the gen-
eral algorithm of Section 5.2 to the ant tracking application:

– The state Xit of the ith ant i is its position (xit, yit) and orientation θit.
– For the likelihood model we used an appearance template approach with

a robust error norm. In particular, we use a 10 by 32 pixel rectangular
template containing a mean appearance image µF and a standard deviation
image σF , both estimated from 149 manually selected ant images. We also
learned a background mean image µB and standard deviation image σB

from 10,000 randomly selected pixels. The log-likelihood is then calculated
as logP (Xit|Zt) = − 1

2
|F (Xit)−µF |

4σF
+ 1

2
|F (Xit)−µB |

4σB
. Here F (Xit) is the vector

of pixels from a target with state Xit after translation and rotation to the
template coordinate frame.

– For the motion model we used a normal density centered on the previous
poseXt−1 Xt|Xt−1 = R(θt−1+∆θ)[∆x ∆y 0 ]>+Xt−1 where [∆x,∆y,∆θ] ∼
[N(0, σ2

x), N(0, σ2
y), N(0, σ2

θ)] with (σx, σy, σθ) = (3.0, 5.0, 0.4).
– For the MRF interaction terms we used a simple linear interaction function
γp where p is the area of overlap between two targets and γ = 5000.

– MCMC parameters: we discard 25% of the samples to let the sampler burn
in, regardless of the total number of samples.

Table 1 shows the number of tracking failures for all the tracker/sample size
combinations we evaluated. We automatically identified failures of these track-
ers when the reported position of a target deviated 50 pixels from the pseudo
ground truth position. This allowed us to detect switched and lost targets with-
out manual intervention.

Table 1. Tracker failures observed in the 10,400 frame test sequence

Tracker Number of Samples Number of Failures

MCMC 50 123
MCMC 100 49
MCMC 200 28
MCMC 1000 16

single particle filter 10 per target 148
single particle filter 50 per target 125
single particle filter 100 per target 119
joint particle filter 50 544
joint particle filter 100 519
joint particle filter 200 479
joint particle filter 1000 392
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(a) joint particle filter, 1000 joint particles
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(b) 20 single particle filters, 50 particles each
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(c) MCMC particle filter, 1000 particles

Fig. 4. (a-c): Qualitative comparison of 3 trackers, each tracking 20 ants using an equiv-
alent sample size of 1000. Tick marks show when tracking failures occur throughout
the sequence. The time series plot shows average distance from ground truth (averaged
per target and per second)

Figure 4 shows the result graphically, comparing 3 different samplers, each
with an equivalent sample size of 1000. For each of the trackers, we show exactly
where failures occur throughout the sequences by tick-marks. To obtain a mea-
sure of trajectory quality, we also recorded for each frame the average distance
of the targets to their ground truth trajectories. This is shown in the figure as a
time series, for each tracker, averaged per second time unit.

6.2 Discussion

From the quantitative results in Table 1 and the qualitative comparison in Figure
4 we draw the following conclusions:

1. The joint filter is clearly unusable for tracking this many targets. The track
quality is very low and number of errors reported is very high.

2. The MCMC-based trackers perform significantly better than independent
particle filters with a comparable number of samples, both in track quality
and failures reported. For example, both MCMC trackers with 1000 samples
had only 16 failures, as compared to 125 for 20 independent particle filters
with 50 particles each.

3. To our surprise, an MCMC-based tracker with only 50 samples total per-
formed as well as or better than 20 independent particle filters with 50
samples each (1000 samples total).
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4. The MCMC-based trackers rapidly improve their performance as we increase
the number of samples. The number of failures falls from 123 to 16 as the
number of samples is increased from 50 to 1000. Such an effect is not seen for
an equivalent increase in computation for the single particle filters, because
in that case increasing the number of samples does not improve the ability
to deal with ant interactions.

7 Conclusions

(a) frame 3054 (b) frame 3054 (c) frame 3072

Fig. 5. Typical failure modes of MCMC-based MRF particle filter occur when the as-
sumption that targets do not overlap is violated. (a) Two targets undergoing extensive
overlap. (b) The tracker reports the incorrect position for the overlapped ant. (c) The
resulting tracker failure.

In conclusion, the MCMC-MRF approach proposed in the paper has signifi-
cantly improved the tracking of multiple interacting targets. Figure 5 shows that
for the insect tracking case, the few remaining tracking failures that remain for
the MCMC-based tracker occur when our assumption that targets do not over-
lap is violated. In these cases, it is unclear that any data-association method
offers a solution. A more complicated joint likelihood model might be helpful in
these cases.

In future work, we intend to validate the approach proposed here by tracking
hundreds of interacting targets. Our long term research goals involve the analysis
of multi-agent system behavior in general, with social insects as a model [7]. In
particular, we are looking at honey bees in an active bee hive as a challenging
test for multi-target tracking. Finally, it is our hope that the MRF-based motion
model and its efficient sequential implementation using MCMC will benefit other
application domains besides vision-based animal tracking, for which it has clearly
been shown to be useful.
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