
Efficient Particle Filter-Based Tracking of
Multiple Interacting Targets Using an MRF-based

Motion Model
Zia Khan, Tucker Balch, and Frank Dellaert

{zkhan,tucker,dellaert}@cc.gatech.edu
College of Computing, Georgia Institute of Technology

Atlanta, Georgia 30332, USA

Abstract— We describe a multiple hypothesis particle filter
for tracking targets that will be influenced by the proximity
and/or behavior of other targets. Our contribution is to show
how a Markov random field motion prior, built on the fly
at each time step, can model these interactions to enable
more accurate tracking. We present results for a social insect
tracking application, where we model the domain knowledge
that two targets cannot occupy the same space, and targets
will actively avoid collisions. We show that using this model
improves track quality and efficiency. Unfortunately, the
joint particle tracker we propose suffers from exponential
complexity in the number of tracked targets. An approx-
imation to the joint filter, however, consisting of multiple
nearly independent particle filters can provide similar track
quality at substantially lower computational cost.

I. INTRODUCTION

This work is concerned with the problem of tracking
multiple interacting targets. Our objective is to obtain
a record of the trajectories of targets over time, and
to maintain correct, unique identification of each target
throughout. Tracking multiple identical targets becomes
challenging when the targets pass close to one another or
merge.

For non-interacting targets, the classical multi-target
tracking literature approaches the problem by perform-
ing a data-association step after a detection step. Most
notably, the multiple hypothesis tracker [1] and the joint
probabilistic data association filter (JPDAF) [2], [3] are
the most influential algorithms in this class. These multi-
target tracking algorithms have been used extensively in
the context of computer vision. Some examples are the use
of nearest neighbor tracking in [4], the multiple hypothesis
tracker in [5], and the JPDAF in [6]. Recently, a particle
filtering version of the JPDAF has been proposed in [7].

These approaches are appropriate when targets behave
independently, and the problem is one of visual confusion.
However, in some applications, e.g. when tracking social
agents, the targets donot behave independently. For exam-
ple, in our own work on tracking social insects like ants
and bees [8], the insects effectively live on a 2D plane

and will rarely crawl on top of each other. In these cases,
identity could be maintained during tracking by providing
a more complex motion model that models the interaction
between targets.

Our contribution is to show how a Markov random
field motion prior, built on the fly at each time step, can
model these interactions. Our approach is based on the
well known particle filter [9], [10], [11], [12], a multi-
hypothesis tracker that approximates the filtered posterior
distribution by a set of weighted particles. The standard
particle filter weights particles based on a likelihood score,
and then propagates these weighted particles according to
a motion model. We show that incorporating an MRF to
model interactions is equivalent to adding an additional
interaction factor to the importance weights in a joint
particle filter.

Unfortunately the joint particle filter suffers from ex-
ponential complexity in the number of tracked targets,n.
However, we have found that usingn nearly independent
particle filters, each running in a low-dimensional space,
can approximate the optimal joint tracker by computing
the interaction potentials based on single-target predictions
from the previous time step. The result is a set of trackers
that are coupled only when necessary. The performance
advantage the decoupled trackers in comparison with
a joint filter is significant. Computational requirements
render the joint filter unusable for more than than three
or four targets, while our decoupled tracking system can
easily track 20 or more targets.

We have selected visual animal tracking as a domain to
illustrate the approach. In particular, we track a number
of ants in a small arena. This is not an artificial task: our
long term research goals involve the analysis of multi-
agent system behavior, with social insects as a model.
The domain offers many challenges that are quite different
from the typical radar tracking domain in which most
multi-target tracking algorithms are evaluated.
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Fig. 1. (a) Particle filtering: a set of particles (white rectangles), are scored according to how well the underlying pixels match the appearance model
(left). Particles are resampled (middle) according to the normalized weights determined in the previous step. Finally, the estimated location of the target
is computed as the mean of the resampled particles. (b) Motion model: The previous image and particles (left). A new image frame is loaded (center).
Each particle is advanced according to a stochastic motion model (right). The samples are now ready to be scored and resampled as above.

II. THE PARTICLE FILTER

Particle filters use multiple discrete “particles” to rep-
resent the belief distribution over the location of a tracked
target [9], [10], [11], [12]. This part of our system is not
new, but we review the algorithm to introduce notation
and to facilitate understanding of the new components.

In the Bayes filtering paradigm, we recursively update
the posterior distribution over the current stateXt given
all observationsZt = {Z1..Zt} up to and including time
t, as follows:

P (Xt|Zt) = kP (Zt|Xt)P (Xt|Zt−1)

= kP (Zt|Xt)
∫

Xt−1

P (Xt|Xt−1)P (Xt−1|Zt−1)

where the likelihoodP (Zt|Xt) expresses themeasurement
modelandP (Xt|Xt−1) is themotion model. In a particle
filter we approximate the posteriorP (Xt−1|Zt−1) recur-
sively as a set of weightedN samples{X(r)

t−1, π
(r)
t−1}N

r=1,
whereπ(r)

t−1 is the weight for particleX(r)
t−1. Given this,

we can use a a Monte Carlo approximation of the integral
and get:

P (Xt|Zt) ≈ kP (Zt|Xt)
∑

r

π
(r)
t−1P (Xt|X(r)

t−1) (1)

One way to view a particle filter is as an importance
sampler for this distribution. Specifically,N samplesX(s)

t

are drawn from theproposal distribution

q(Xt) =
∑

r

π
(r)
t−1P (Xt|X(r)

t−1)

and then weighted by the likelihood, i.e.

π
(s)
t = P (Zt|X(s)

t )

This results in a weighted particle approximation
{X(s)

t , π
(s)
t }N

s=1 for the posteriorP (Xt|Zt) at timet. Note
that there are other ways to explain the particle filter (see
e.g. [13]) that also accommodate other variants, but the
mixture proposal view above is particularly suited for our
application.

The general operation of the particle filter tracker is
illustrated in Figure 1 for tracking ants in video. In our
case, each hypothesis (or particle) is represented by a

rectangular region about the size of our ant targets. Each
target is tracked by 5 particles in the illustrated example,
but in actual runs we typically use 200 particles per target.
We assume we start with particles distributed around the
target to be tracked. The principal steps in the algorithm
include:

1) Score:each particle is scored according to how well
the underlying pixels match an appearance model,
by weighting it withP (Zt|Xt) (see next section).

2) Resample:the particles are “resampled” according
to their score. This operation results in the same
number of particles, but very likely particles are du-
plicated while unlikely ones are dropped. Note that
this is equivalent to choosing a mixture component
to sample from in (1).

3) Average: the location of the target is estimated by
computing the mean of all the associated particles.
This is the estimate reported by the algorithm as the
location of the target in the current video frame.

4) Apply motion model: each particle is stochastically
repositioned according to a model of the target’s
motion. This is implemented by sampling from the
chosen mixture component in (1).

III. APPEARANCE-BASED TRACKING

For completeness, we describe here the details of the
appearance based measurement model we used for track-
ing insects in video, given that all the results we show
in Section V are based on this. We assume that the
measurementZt consists of a local image neighborhood
I, formed as the superposition of a sprite with shape
s on a background (this is similar to [14], but without
occlusion). In particular, for the ant-tracking experiments
below we model the sprite as a rectangular image with
three parameters: length, width, and position of rotational
center (along the length).

In the following, we refer to the appearance model
parameters asθf . We also model the background of the
image with parametersθb. An estimate for the background
model is obtained by averaging all the images over the
entire video sequence. For notational convenience, let
x = Xt in what follows. Assuming that pixel values in
I are conditionally independent givenx, we can factor



P (I|x, θ) into foreground and background components:

P (I|x, θ) =
∏

p∈B(s,x)

P (Ip|θb)
∏

p∈F (s,x)

P (Ip|x, θf )

wherep is an individual pixel, and

•
∏

p∈B(s,x) P (Ip|θb) is the likelihood factor due to
the background pixelsB(s, x). The set of background
pixelsB(s, x) depends on sprite shapes and position
x.

•
∏

p∈F (s,x) P (Ip|x, θf ) is the likelihood factor due to
pixels part of the foreground. The set of foreground
pixels F (s, x) again depends on sprite shapes and
position.

Because the setsB(s, x) andF (s, x) add up toI, we can
simplify this as

P (I|x, θ) = k′
∏

p∈F (s,x)

P (Ip|x, θf )
P (Ip|θb)

(2)

where the new constantk′ does not depend on the sprite
shapes or target statex. This is a large computational
win, as (2) is simply the product of the likelihood ratios
in the foreground areaF (s, x).

The exposition above is independent of the actual pixel
measurement models used. Below we use a simple appear-
ance model for both background and foreground model,
modeling pixels as corrupted versions of a known fore-
ground and background model. Using zero-mean Gaussian
additive noise, the log-likelihoodlogP (I|x, θ) is then
equal to:

C +
1
2

∑
p∈F

(
Ip − µbp

σbp

)2

−
(
Ip − µf (p, x)

σfp

)2

(3)

whereC is a constant. We use Equation 3 as our score for
the appearance underlying a particular sample. Note that
the terms in the background sum can be pre-computed
once for the entire image and stored. The second sum of
squares is simply a transformation of the template, and
a subtraction from the image. Multi-channel images are
easily accommodated, by noting thatp can index both
location and channel (e.g., for RGB images).

IV. MULTI-TARGET TRACKING

This section describes the main contribution of the
paper. We show how multiple targets can be modeled
using a joint particle tracker, using a Markov random field
(MRF) model for how they interact. We then show how
to approximate this correct but intractable joint filter with
multiple nearly independent trackers.

A. The Joint Particle Filter

A joint particle filter is quite similar to a simple particle
filter. The primary difference is that each “particle” esti-
mates the locations of all the targets being tracked. Thus in

Fig. 2. Example Markov random field for a group of ants. Only targets
that are close to one another have the potential for interacting in their
motion. Links in the graph indicate this potential. Targets that are very
far from one another do not have an edge connecting them – reflecting
that there is no interaction.

Equation 1Xt refers to thejoint state of all the targets.
An important consequence of the joint representation
is that each particle isdn-dimensional, whered is the
dimensionality of an individual filter. As a consequence,
if N particles are necessary for reliable tracking of a
single target,Nn are typically required for trackingn
target. Tracking multiple targets with joint hypotheses is
an exponentially complex problem both in terms of space
and computational time.

In what follows, we first discuss the joint appearance-
based likelihood model, and then show how we can mod-
ify the basic particle filter equation 1 above to incorporate
interactions between different targets.

B. Joint Appearance Model

First, we assume that the joint appearance likelihood
P (Zt|Xt) factors over the different targetsXit, with i ∈
1..n:

P (Zt|Xt) =
n∏

i=1

P (Zit|Xit)

This assumes targets will not occlude each other. This
assumption is in fact not needed for the joint tracker,
but is crucial in approximating the joint tracker withn
independent trackers as in Section IV-E.

C. Markov Random Field Interaction and Blocking

The benefit of using a joint tracker is that we can
model non-trivial interactions between targets at the mo-
tion model stage, i.e. intelligent targets that take ac-
count of each other’s position in order to avoid col-
lisions. If the targets do not interact at all, the joint
motion modelP (Xt|Xt−1) also factors over all targets as∏

j P (Xjt|Xj(t−1)), and one could just usen independent
particle filters.

We model the interaction between targets by a Markov
random field (MRF) constructed on the fly for the current
time-slice. An MRF is a graph(V,E) with undirected
edges between nodes where the joint probability is fac-
tored as a product of local potential functions at each node,
and interactions are defined on neighborhood cliques. See



Fig. 3. Blocking. Samples relating to one target are penalized if they
fall within a certain radius of the estimated location of another target.

[15], [16] for a thorough exposition. The most commonly
used form is a pairwise MRF, where the cliques are pairs
of nodes that are connected in the undirected graph. We
will assume the following pairwise MRF form:

P (Xt|Xt−1) ∝
∏

i

P (Xit|Xi(t−1))
∏

ij∈E

ψ(Xit, Xjt)

where theψ(Xit, Xjt) are pairwiseinteraction potentials.
The particular interaction we model in this paper is

the domain knowledge in the insect tracking application
that two insects will not occupy the same space. Taking
advantage of this assumption can help greatly in tracking
two targets that pass close to one another. An example
MRF for our test domain is illustrated in Figure 2. In our
experiments the MRF constructed at each time step links
targets within 30 pixels (about 1 cm) of one another. Since
it is easier to specify the interaction potential in the log-
domain, we expressψ(Xit, Xjt) by means of the Gibbs
distribution:

ψ(Xit, Xjt) ∝ exp (−g(Xit, Xjt)) (4)

where g(Xit, Xjt) is a penalty function. In our appli-
cation, we penalize joint particles where some targets
overlap the location of another target. Figure 3 illustrates
this idea. The penalty functiong(Xit, Xjt) we used only
depends on the distanced(Xit, Xjt) between two targets,
is maximal when two targets coincide, and gradually falls
off as targets move apart. This models the fact that targets
will not overlap, as is appropriate in the insect tracking
application.

D. The Joint MRF Particle Filter

Note that the interaction potential (4) does not depend
on the previous target stateXt−1, and hence the target
posterior distribution (1) for the joint MRF filter factors
as

kP (Zt|Xt)
∏

ij∈E

ψ(Xit, Xjt)
∑

r

π
(r)
t−1

∏
i

P (Xit|X(r)
i(t−1))

i.e. the interaction term moves out of the mixture distribu-
tion. This means thatwe can simply treat the interaction
term as an additional factor in the importance weight. In

other words, we sample from the joint proposal distribu-
tion function

q(Xt) =
∑

r

π
(r)
t−1

∏
i

P (Xit|X(r)
i(t−1))

by drawing a mixture component at random, and then
moving each individual target independently. Then, we
weight each of the particlesX(s)

t so obtained by

π
(s)
t =

n∏
i=1

P (Zit|X(s)
it )

∏
ij∈E

ψ(X(s)
it , X

(s)
jt ) (5)

E. Split Trackers

Importance sampling is notoriously inefficient in high-
dimensional state spaces: if not enough particles are used,
all but a few particles will have a near zero-weight. As
a result, the Monte Carlo approximation for the posterior,
while asymptotically unbiased, will have high variance.
We illustrate this fact in the results section below.

We hypothesize thatn nearly independent trackers,
wheren is the number of targets, may provide trajectories
nearly as well as the optimal joint tracker, while requiring
substantially less computation. The trackers are not fully
independent, because they consider the locations of other
targets when scoring particles. In particular, we penalize
particles that overlap the locations of other targets (as
described above for the joint tracker).

The scoring in the independent trackers is a simplifica-
tion of the scoring in the joint tracker, as follows:

π
(s)
it = P (Zit|X(s)

it )
∏

ij∈E

ψ(X(s)
it , X̄j(t−1))

whereX̄j(t−1) is the estimated state for targetj at time
t− 1, i.e. the mean of the particles of thejth tracker.

V. EXPERIMENTAL RESULTS

Multi-target trackers are commonly evaluated using real
or simulated ground-based radar data of airborne targets
[2]. Radar data is typified by a sparse distribution of small
targets. Target motion is easy to predict because the targets
are subject to momentum and acceleration constraints. In
contrast, our work is demonstrated on video of 20 1.0
cm long ants (Aphaenogaster cockerelli) roaming about
an arena measuring 15 cm by 10 cm (6 inches by 4
inches). The ants move about the arena as quickly as 3
cm per second and they encounter one another frequently.
The motion of these animals is difficult to predict – they
often walk sideways or even backward. This experimental
domain provides a substantial challenge.

The test data for these experiments was gathered by
videotaping the ants’ activities for 30 minutes. We selected
a 30 second interval at random to analyze. Image frames
are collected at 30 Hz, thus the test sequence includes
of 900 frames. Each frame is composed of 720 by 480
pixels of 24 bits coded as RGB intensities. We applied



tracker tracks correct tracks percent correct total particles run time
no block / block no block / block (seconds)

joint 1 1 / 1 100 / 100 200 54 / 54
joint 2 1 / 2 50 / 100 40,000 8,113 / 8,240
split 1 1 / 1 100 / 100 200 53 / 54
split 2 1 / 2 50 / 100 400 87 / 115
split 10 8/ 9 80 / 90 2,000 451 / 464
split 20 15 / 17 75 / 85 4,000 711 / 716

TABLE I

QUANTITATIVE PERFORMANCE OF THE JOINT AND SPLIT TRACKERS WITH AND WITHOUT BLOCKING.

all variations of our algorithm to this same 900 frame
sequence. The algorithm is coded in the CML language
and compiled and run on a 2.5 GHz Pentium-4 machine
under Linux. We make use of Intel’s IPP library for some
image processing operations.

Results were evaluated on the following criteria

1) Run time: the total time to process 900 frames in
seconds.

2) Correct tracks: the total number of targets tracked
from start to end of the sequence without errors.
Correctness is evaluated manually by comparing the
computed trajectories against the actual paths of the
ants.

Numerical results are summarized in Table I.

A. Results with a Joint Tracker without Blocking

The prohibitive run time of the joint tracker limited the
number test cases we could examine. We tested the joint
tracker by having it track one and two ants with 200, and
2002 particles respectively. Run time for one ant was 54
seconds to process the entire 30-second video segment,
and run time for two ants was 8113 seconds (2 hours, 15
minutes). The particular ants we chose to track interacted
in such a way that the track for one ant was lost and
transferred to the other. Figure 4 illustrates the interaction
and the track failure.

B. Results with a Joint Tracker and Blocking

We tested MRF Blocking in the joint filter over the same
test case. The tracker successfully tracks both ants through
the interaction that confused the tracker without blocking.
The sequence is illustrated in Figure 5. Run times for the
two cases were the similar to those without blocking.

C. Results with Split Trackers

With independent or “split” trackers, run time perfor-
mance is significantly improved, and a more comprehen-
sive evaluation is possible. We evaluated runs tracking 1,
2, 10 and 20 ants with 200, 400, 2000 and 4000 total
particles respectively. Run times were 53 seconds, 87
seconds, 451 seconds and 711 seconds.

Without blocking enabled, the split trackers frequently
fail to correctly trace a target’s trajectory. Many errors
occur, similar to the one illustrated in Figure 4. In the
case of 1 ant, the tracker does not lose the ant, but for 10
tracks there are 2 failures and for 20 tracks there are 5
failures.

D. Results with Split Trackers and MRF Blocking

We evaluated runs tracking 1, 2, 10 and 20 ants with
200, 400, 2000 and 4000 total particles respectively. Run
times were 54 seconds, 115 seconds, 464 seconds and 716
seconds.

In all three multi-track cases (2, 10 and 20 ants) with
blocking enabled, split trackers are more likely to trace
a target’s trajectory correctly. We also note that the two
ants examined in Figure 4, for which the joint tracker
without blocking failed, are tracked successfully by split
trackers with blocking. The performance improvements
are summarized in Table I.

VI. CONCLUSIONS

We examined the problem of tracking multiple interact-
ing targets with an MRF-augmented particle filter. While
a theoretically optimal joint filter is too computationally
expensive to track more than two targets at once, we
show that multiple nearly independent trackers (with an
interaction term) generate tracks of similar quality to those
generated by a joint tracker, but at a substantially lower
cost.

The blocking prior from the insect-domain is but one
example of what can potentially be modeled in an MRF
framework. In that domain, it is the most salient interac-
tion that can be observed without assuming more about
the particular social role of each insect. Mutual attraction
and short stereotyped social behaviors could potentially
be modeled using an MRF, as well.

However, more complex interactions are possible when
conditioning on insect roles. For exampe, we are looking
at the elaborate dance of honey bees as an example of
behavior that probably go beyond the capabilities of an
MRF, and will necessitate more complex machinery.



Fig. 4. Two ants interact and cause the track of one of them to fail.

Fig. 5. The same interaction is tracked successfully with MRF blocking.
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