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Abstract— Separating sparse flow provides fast and robust
stereo visual odometry that deals with nearly degenerate
situations that often arise in practical applications. We make use
of the fact that in outdoor situations different constraints are
provided by close and far structure, where the notion of close
depends on the vehicle speed. The motion of distant features
determines the rotational component that we recover with a
robust two-point algorithm. Once the rotation is known, we
recover the translational component from close features using
a robust one-point algorithm. The overall algorithm is faster
than estimating the motion in one step by a standard RANSAC-
based three-point algorithm. And in contrast to other visual
odometry work, we avoid the problem of nearly degenerate
data, under which RANSAC is known to return inconsistent
results. We confirm our claims on data from an outdoor robot
equipped with a stereo rig.

I. INTRODUCTION

Visual odometry is a technique that estimates the ego-
motion from images perceived by moving cameras. A typical
use is autonomous navigation for mobile robots, where
getting accurate pose estimates is a crucial capability in many
settings. Visual odometry does not require sensors other
than cameras, which are cheap, passive and have low power
consumption. Therefore, there are many interesting applica-
tions ranging from search and rescue over reconnaissance to
commercial products such as entertainment and household
robots. Furthermore, visual odometry lays the foundation for
visual SLAM, which improves large-scale accuracy by taking
into account long-range constraints including loop closing.

Visual odometry is at its heart a camera pose estima-
tion [1], and has seen considerable renewed attention in
recent years. Olson [2] uses visual odometry and incorporates
an absolute orientation sensor to prevent drift over time.
Nister et al. [3] present a real-time system using a three-
point algorithm, which works in both monocular and stereo
settings. Levin and Szeliski [4] use loopy belief propagation
to calculate visual odometry based on map correlation in
an off-line system. Some systems [5], [6] also use omni-
directional sensors to increase the field of view. Ni and
Dellaert [7] present an image-based approach that has high
computational requirements and is not suitable for high frame
rates. Large-scale visual odometry in challenging outdoor
environments is presented by Konolige et al. [8]–[10] and
Nister et al. [11], but the problem of degenerate data is
not addressed. Recent work by Zhu et al. [12] remembers
landmarks to improve the accuracy of visual odometry.
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(a) Two runs of standard visual odometry on the same
data yield different sets of inliers in degenerate situations.

(b) Ground surface with low texture resulting in
degenerate data.

Fig. 1: Examples of nearly degenerate data based on low availability of
features close to the camera, which are needed to estimate the translation.
(a) An example in which the inliers for two different runs of RANSAC
significantly differ, as shown by the red plus signs and green crosses. In
this case, patches of strong light in otherwise dark areas of the image lead
to overexposure resulting in only a small number of close features along a
line. (b) A different scenario that causes a standard three-point RANSAC
approach to fail because most of the structure is too distant to provide
translational constraints, but a high inlier ratio can be achieved from the
features in the background.

Almost all visual odometry work use the random sample
consensus (RANSAC) algorithm [13] for robust model es-
timation, and are therefore susceptible to problems arising
from nearly degenerate situations. The expression “degener-
ate data” refers to data that is insufficient for constraining a
certain estimation problem. Nearly degenerate data means
that there are only a few data points without which the
remaining data is degenerate. It is well known that RANSAC
fails when directly applied to nearly degenerate data [14],
[15], but no visual odometry work addressed this so far. In
visual odometry nearly degenerate data occurs for a variety
of reasons, such a ground surfaces with low texture (see
Fig. 1(b)), bad lighting conditions that result in overexposure
(which resulted in the example in Fig. 1(a)), and motion
blur. The consequence is that multiple runs of RANSAC
on the same data yield different results, as the example in



Fig. 2: Our approach consists of four steps that are performed for each new
frame: (1) Sparse stereo and putative matching. (2) Separate the sparse flow
by disparity based on the threshold θ that adapts to the vehicle speed. (3)
Recover the rotational component of the camera motion from two distant
points At and Bt using RANSAC to robustly deal with outliers. (4) Recover
the translational component of the camera motion from one close point Ct

again using RANSAC.

Fig. 1(a) shows. While no previous visual odometry work has
dealt with the problem of degeneracy, Frahm and Pollefeys
[15] present a general method called QDEGSAC for robust
estimation in such cases. However, their general method is
not suitable here because of the hard real-time constraints of
visual odometry.

We present a novel approach to visual odometry that is fast
and robustly deals with nearly degenerate data. An overview
of the approach is shown in Fig. 2. Based on extracted image
features we first establish stereo correspondences as well as
putative matches between two successive frames. We then
separate the stereo features based on their disparity and the
vehicle speed into two sets. The set with low disparity is used
to recover the camera rotation with a two-point algorithm.
Based on the recovered rotations, we then use the second
set of features to recover the vehicle translation with a one-
point algorithm. We have implemented our algorithm as well
as a reference three-point algorithm on an outdoor robot with
a stereo rig. We show that our algorithm is faster than the
reference system, and that it successfully deals with nearly
degenerate data.

II. STEREO ODOMETRY BY SPARSE FLOW SEPARATION

As shown in Fig. 2 our algorithm performs the following
four steps on each new stereo pair:

1) Perform sparse stereo and putative matching.
2) Separate features based on disparity.
3) Recover rotation with two-point RANSAC.
4) Recover translation with one-point RANSAC.

Below we describe these steps in detail. We assume that we
have rectified images with equal calibration parameters for
both cameras of the stereo pair, in particular focal length f
and principal point (u0, v0). We define the reference camera
to be the one whose pose is tracked. The other view is
defined by the baseline b of the stereo pair. Camera poses
are represented by a translation vector t, and the three
Euler angles yaw φ, pitch θ and roll ψ, or alternatively the
corresponding rotation matrix R.

A. Sparse Stereo And Putative Matches

We extract features in the current frame and establish
stereo correspondences between the left and right image of
the stereo pair. For a feature in one image, the matching
feature in the other is searched for along the same scan
line, with the search region limited by a maximum disparity.
As there are often multiple possible matches, appearance is
typically used and the candidate with lowest difference in a
small neighborhood accepted, resulting in the set of stereo
features F = {(ui, vi, u′i)}i, where (u, v) is the location of a
feature in the reference frame and (u′, v) the corresponding
feature in the other frame.

Based on the stereo features Ft from the current frame
and the features Ft−1 from the previous frame we establish
putative matches. For a feature in the previous frame, we
predict its location in the current frame by creating a 3D
point using disparity and projecting it back. For this repro-
jection we need to have a prediction of the vehicle motion,
which is obtained in one of the following ways:
• Odometry: If wheel odometry or IMU are available.
• Filter: Predict camera motion based on previous motion.
• Stationary assumption: At high frame rate we obtain

a small enough motion to approximate by a stationary
camera.

As the predicted feature locations are not exact in any of
these cases, we select the best of multiple hypotheses. We
use the approximate nearest neighbors (ANN) algorithm [16]
to efficiently obtain a small set of features within a fixed
radius of the predicted location. The best candidate based
on template matching is accepted as a putative match. We
denote the set of putative matches withM. As some putative
matches will still be wrong, we use a robust estimation
method below to filter out incorrect matches.

B. Separate Features

We separate the stereo features based on their usefulness in
establishing the rotational and the translational components
of the stereo odometry. The key idea is that small changes
in the camera translation do not visibly influence points that
are far away. While points at infinity are not influenced by
translation and are therefore suitable to recover the rotation
of the camera, there might only be a small number or even
no such features visible due to occlusion, for example in a
forest or brush environment. However, as the camera cannot
translate far in the short time between two frames (0.067
seconds for our 15 frames per second system), we can also
use points that have disparities somewhat larger than 0. Even
if the camera translation is small, however, if a point is close
enough to the camera its projection will be influenced by this
translation.

We find the threshold θ on the disparity of a point
for which the influence of the camera translation can be
neglected. The threshold is based on the maximum allowed
pixel error given by the constants ∆u and ∆v, for which
values in the range of 0.1 to 0.5 seem reasonable. It also
depends on the camera translation t = (tx, ty, tz) that can



again be based on odometry measurements, a motion filter,
or a maximum value provided by physical constraints of the
motion. Considering only the center pixel of the camera as
an approximation, we obtain the disparity threshold

θ = max

{
b

tx
∆u −

tz
f

,
b

ty
∆v −

tz
f

}
(1)

We separate the putative matches into the set Mrot =
{M|disparity ≤ θ} that is useful for estimating the rotation,
and the set Mtrans = {M|disparity > θ} that is useful for
estimating the translation. Note that we always have enough
putative matches inMrot even if the robot is close to a view
obstructing obstacle, due to physical constraints. As the robot
gets close to an obstacle, its speed has to be decreased in
order to avoid a collision, therefore increasing the threshold
θ, which allows closer points to be used for the rotation
estimation. On the other hand, it is possible that all putatives
have disparities below the threshold θ, in particular for t = 0.
In that case we still have to use some of the close putatives
for calculating the translation, as we do not know if the
translational speed of the camera is exactly 0 or just very
small. We therefore always use a minimum number of the
closest putative matches for translation estimation, even if
their disparities fall below θ.

C. Rotation: Two-point RANSAC

We recover the rotational component R of the motion
based on the set of putative matches Mrot that are not
influenced by translation. For points at infinity it is straight-
forward to recover rotation based on their direction. Even
if points are close to the camera such that reliable depth
information is available, but the camera performs a pure
rotational motion, the points can be treated as being at
infinity, as their depths cannot be determined from the
camera motion itself. Even though the camera’s translation is
not necessarily 0 in our case, we have chosen the threshold θ
so that the resulting putative matchesMrot can be treated as
points at infinity for the purpose of rotation estimation. We
therefore take a monocular approach to rotation recovery.

While the set of putative matches contains outliers, let
us for a moment assume that the matches (zRi,t, z

R
i,t−1) ∈

Mrot with zRi,t = (uRi,t, v
R
i,t) and zRi,t−1 = (uRi,t−1, v

R
i,t−1)

are correct and therefore correspond to the homogeneous
directions (ie. wRi = 0)

XR
i =

[
xRi yRi zRi 0

]T
(2)

Two such matches are necessary to determine the rotation of
the camera for either of the following two methods:
• We estimate the rotation R together with n directions
XR
i (2 degrees of freedom, because XR

i is homoge-
neous with wRi = 0), yielding 3+2n degrees of freedom
(DOF). Each match yields 4 constraints, therefore n = 2
is the minimum number of correspondences needed to
constrain the rotation.

• We estimate only the rotation R, by using the features
from the previous time t− 1 to obtain the direction of

the points. This yields 3 DOF, with only 2 remaining
constraints per match, again yielding n = 2.

For pure rotation (t = 0) the reprojection error E is

E =

∥∥∥∥∥∥zRi − νR(R,

 xRi
yRi
zRi

)

∥∥∥∥∥∥
2

(3)

where (u, v) = νR(R,X) is the monocular projection of
point X into the camera at pose R, t = 0. We numerically
obtain an estimate for the rotation R and optionally the point
directions by minimizing the non-linear error term

Rt = argmin
Rt

∑
i,τ∈{t,t−1}

∥∥∥∥∥∥zRi,τ − νR
Rτ ,

 xRi
yRi
zRi

∥∥∥∥∥∥
2

(4)

where Rt−1 = I and therefore Rt the rotational component
of the visual odometry. Note that we also need to enforce∥∥∥[ xRi yRi zRi

]T∥∥∥2

= 1 to restrict the extra degree of
freedom provided by the homogeneous parametrization.

While we have assumed correct matches so far, the puta-
tive matches in Mrot are in fact noisy and contain outliers.
We therefore use the random sample consensus (RANSAC)
algorithm [13] to robustly fit a model. The sample size is two,
as two putative matches fully determine the camera rotation,
as discussed above. RANSAC repeatedly samples two points
from the set of putatives and finds the corresponding rotation.
Other putatives are accepted as inliers if they agree with the
model based on thresholding the reprojection error E from
(3). Sampling continues until the correct solution is found
with some fixed probability. A better rotation estimate is
then determined based on all inliers. Finally, this improved
estimate is used to identify inliers from all putatives, which
are then used to calculate the final rotation estimate R̂.

D. Translation: One-point RANSAC

Based on the now known camera rotation, we recover the
translation from the close putative matches Mtrans. We de-
note a putative match as zt

i,t and the corresponding 3D points
as Xt

i . Each measurement imposes 2×3 = 6 constraints, i.e.
zt
i,t = (ut

i,t, v
t,
i,t, u

′t
i,t) and zt

i,t−1 = (ut
i,t−1, v

t
i,t−1, u

′t
i,t−1),

which now includes stereo information in contrast to Section
II-C. Intuitively we can recover the translation from a single
putative match, as each of the two stereo frames defines a
3D point and the difference between the points is just the
camera translation. Practically we again have two different
approaches:

1) We estimate both the translational component t with
3 DOF and the 3D points

{
Xt
i

}
i

with 3 DOF each.
Each measurement contributes 6 constraints, therefore
a single match will make the system determinable.

2) We estimate only the translation t yielding 3 DOF,
by using the previous stereo feature to generate the
3D point. Each measurement then only contributes
3 constraints, again requiring only a single match to
constrain the camera translation.
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(a) Multiple runs yield different trajectories for three-point.
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(b) Our algorithm returns nearly stable results.

(c) Camera images.

Fig. 3: Trajectories from multiple runs on the San Antonio data set of (a) the
reference three-point implementation and (b) our algorithm. Some images of
the environment are shown in (c). It is apparent that the three-point algorithm
returns inconsistent trajectories, while our algorithm provides almost the
same result in each run.

Similar to Section II-C, the translation is recovered by
optimizing over the translation and optionally the 3D points:

tt,
{
Xt
i

}
i

= argmin
tt,{Xt

i}i

∑
i,τ∈{t,t−1}

∥∥∥zt
i,τ − νt

(
R̂τ , tτ , Xt

i

)∥∥∥2

(5)
where (u, v, u′) = νt(R, t,X) is the stereo projection
function, and we choose Rt−1, tt−1 to be a camera at the
origin, and Rt = R̂ is the rotation recovered by the two-point
algorithm. Consequently, tt is the translation of the camera
that we are interest in. Again, we use RANSAC to robustly
deal with outliers, where each sample defines a translation
according to (5) and the final model is also determined by
(5) using all inliers.

III. EXPERIMENTS AND DISCUSSION

We compare both efficiency and accuracy of our algorithm
with a reference three-point algorithm based on multiple data
sets from an outdoor robot equipped with a stereo camera.

Fig. 4: Standard deviations for the x, y and z components of 15 runs over
the first 200 frames of the San Antonio sequence for both the reference
three-point algorithm (left column) and our algorithm (right column). While
the three-point algorithm shows significant variation on some frames, our
algorithm yields almost stable results, in agreement with Fig. 3.

For our reference three-point algorithm we again use non-
linear optimization, but this time to simultaneously recover
rotation, translation and optionally the 3D points by

R, t, {Xi}i = argmin
R,t,{Xt

i}i

∑
i

∥∥zi − ν (K [ R t
]
Xi

)∥∥2

(6)
where we use the measurements zi and corresponding points
Xi from all putative matches Mrot ∪Mtrans. The imple-
mentation is shared between the two algorithms to make
comparison as fair as possible.

In our implementation, we use the Harris corner detector
[17] to obtain features in the reference frame and use
dense stereo information to establish stereo correspondences
for those features. Based on images with a resolution of
512×384 pixels, we extract a maximum of 600 features per
image, by detecting a maximum of 50 features in each region
of a 3×4 grid to ensure that the features are well spread out
over the image. We use the Levenberg-Marquardt algorithm
for all non-linear optimizations. For RANSAC, we use a
99% confidence, with a maximum number of 1000 iterations
to guarantee real-time performance even for frames where
no consistent model can be found. We do not estimate 3D
points and directions, but instead generate them based on the
previous frame to speed up the non-linear optimization. For
sparse stereo flow separation we use the constant threshold
of θ = 8 pixels determined from (1) with a baseline of
0.12m and based on the maximum speed of the mobile
robot platform. Timing results are obtained on a Core 2 Duo
2.2GHz laptop computer.
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Fig. 5: Results from our construction site data set, that compare our algorithm with the reference three-point algorithm, showing increased efficiency under
comparable quality. (a) The start and end points of the actual trajectory are at the origin. (b) The robot was driven over grass and gravel under difficult
lighting conditions. (c) Top: Time required for RANSAC for our approach (one-point and two-point together) and the reference three-point implementation.
Bottom: Inlier ratios for the two-point component of our algorithm and the reference three-point algorithm. The inlier ratio is comparable for all, but
RANSAC converges faster for a smaller sample size, and therefore our algorithm is faster.



A. Nearly Degenerate Data and Robustness

We show that our algorithm deals well with nearly de-
generate data, which is often encountered in outdoor visual
odometry settings, but has not been addressed by any visual
odometry work so far. Fig. 3(a) shows how degeneracy
influences the recovered trajectory by returning inconsistent
results. This San Antonio sequence consists of putative
matches (without images) recorded at 15 frames per second
during a live demo of our work. As can be seen, each
run on the same data yields a different trajectory. Fig. 3(b)
shows that our algorithm returns nearly consistent results
over multiple runs. Fig. 4 analyzes the problem in more
detail for the first 200 frames of this sequence. While
our algorithm suffers only minor variations (right column),
the three-point algorithm suffers significant variations for
some frames (left column). The variations are mainly in
the forward (x) direction that is most difficult to constrain,
but also in the other two directions. Fig. 1(b) shows an
example of two different sets of inliers for one frame,
which results in significantly different translation estimates.
As discussed earlier, the problem is that RANSAC quickly
finds a large number of inliers, most of which constrain the
rotation, while only a few matches provide a possibly wrong
translation estimate. Based on the large number of inliers,
RANSAC severely underestimates the number of samples
needed to achieve a certain confidence in the results. Our
algorithm instead splits the problem and therefore avoids the
degeneracy as can be seen from the results presented here.

B. Speed and Accuracy

We show that our algorithm performs faster than the
standard three-point algorithm, while producing at least com-
parable results. Fig. 5 shows results from our construction
site data set, for which the images have been recorded
at 15 frames per second. Fig. 5(a) shows the recovered
robot trajectory together with the combination of wheel
odometry and inertial measurement unit (IMU), as well as
combined with GPS. Fig. 5(b) shows sample images from
this challenging sequence, which features vastly changing
lighting conditions. In Fig. 5(c) we show comparisons for
the execution times and inlier ratios. Our algorithm performs
faster than the three-point algorithm, even though we perform
RANSAC twice, once for rotation and once for translation.
The faster execution is explained by the smaller sample size
for each case as compared to three-point. Therefore it is more
likely to randomly select a good sample and consequently
RANSAC needs less iterations, assuming that both have
the same inlier ratio. The inlier ratios for the two-point
component of our algorithm as well as for the three-point
algorithm are very similar as shown in the bottom diagram.

IV. CONCLUSION

We have presented a novel approach to stereo visual
odometry that successfully deals with nearly degenerate
data and is faster than a standard three-point algorithm.
The key component is splitting the translation and rotation
recovery into two separate estimation problems, and using

appropriate features for each one based on disparity and
camera speed. We implemented this system and compared
it to a reference three-point implementation, which is the
most common approach underlying visual odometry systems
today. In addition to running the system on log files, we have
presented our system live on a mobile robot in the context
of the DARPA LAGR program, from which the San Antonio
data set was obtained.

While accuracy of the presented system can further be
improved by applying fixed-lag smoothing [11], by using
key frames to prevent drift [10], and by using landmarks
to provide longer range constraints [12], these methods
are orthogonal to the presented work, and were not the
focus of this publication. Note that fixed-lag smoothing does
not solve the problem of degeneracy, as only frame-to-
frame correspondences are used. As those frame-to-frame
correspondences are affected by a failure of RANSAC to
find correct matches that constrain the translation, the same
error will also be present after fixed-lag smoothing as no
new matches will be added by fixed-lag smoothing.
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