To appear in the Proceedings of 13th IEEE International Conference on Computer Vision (ICCV 2011) 1

Generalized Subgraph Preconditioners
for Large-Scale Bundle Adjustment

Yong-Dian Jian, Doru C. Balcan and Frank Dellaert
College of Computing, Georgia Institute of Technology
{ydjian,dbalcan,dellaert}@cc.gatech.edu

Abstract

We present a generalized subgraph preconditioning
(GSP) technique to solve large-scale bundle adjustment
problems efficiently. In contrast with previous work which
uses either direct or iterative methods as the linear solver,
GSP combines their advantages and is significantly faster
on large datasets. Similar to [1]], the main idea is to iden-
tify a sub-problem (subgraph) that can be solved efficiently
by sparse factorization methods and use it to build a precon-
ditioner for the conjugate gradient method. The difference
is that GSP is more general and leads to much more effec-
tive preconditioners. We design a greedy algorithm to build
subgraphs which have bounded maximum clique size in the
factorization phase, and also result in smaller condition
numbers than standard preconditioning techniques. When
applying the proposed method to the “bal” datasets []],
GSP displays promising performance.

1. Introduction

Large-scale visual modeling with Structure from Motion
(SfM) algorithms is an important problem. Recently, sys-
tems capable of handling millions of images have been built
to realize this task [2, 13, 19], enabling automated 3D model
generation from unstructured internet photo collections.

Bundle adjustment is used to find the optimal estimates
of camera poses and 3-D points [22]. Mathematically
speaking, it refers to the problem of minimizing the total re-
projection error of the 3-D points in the images. The classi-
cal strategy to solve this problem is to apply a damped New-
ton’s method (e.g., Levenberg-Marquardt) and solve the
reduced camera system by Cholesky factorization. How-
ever, this strategy does not scale well because the mem-
ory requirement of factorizing these large matrices grows
quadratically with the number of variables in the worst case.

Several recent works suggest using iterative methods

This work is supported in part by Intel and National Science Founda-
tion, Robust Intelligence program award 0713134.

such as the conjugate gradient (CG) method to solve the
linear systems arising in bundle adjustment, as its memory
requirement grows only linearly with the number of vari-
ables. The convergence speed of the CG method depends
on how well conditioned the original problem is. Hence
having a good preconditioner is crucial to make CG con-
verge faster, yet most of the previous approaches apply only
standard preconditioning techniques, neglecting to exploit
StM-specific constraints [1, 2, 7, 8, 14].

In robotics, Dellaert et al. [I1] recently proposed
Subgraph-Preconditioned Conjugate Gradients (SPCQG),
which aims to combine the advantages of direct and iterative
methods to solve 2-D Simultaneous Localization and Map-
ping (SLAM) problems. The main idea is to pick a subset of
measurements that can be solved efficiently by direct meth-
ods, and use it to build a preconditioner for the CG method.
They show that SPCG is superior to using either direct or it-
erative methods alone. However, for the bundle adjustment
problem, whose graph structure is bipartite and highly un-
balanced, SPCG may over-estimate the uncertainty of the
variables and hence lead to unsatisfactory preconditioners.

In this paper, we adapt the idea of SPCG to solve large-
scale bundle adjustment problems efficiently, and propose
the Generalized Subgraph Preconditioning (GSP) technique
to avoid the over-estimation of uncertainty. In contrast with
SPCG, which works with the Jacobian of measurements and
treats each of them as a factor, GSP operates on the Hessian
of measurements, and decompose each of them into three
factors. The resulting graph representation is more general
and provides a better tool to design subgraph precondition-
ers. From this perspective, the problem of designing a good
subgraph preconditioner is reduced to picking a subset of
the factors that (1) can be solved efficiently by direct meth-
ods, and also (2) make the linear systems well-conditioned.

Compared to conventional matrix preconditioning ma-
chinery, GSP not only provides an expressive language to
design subgraph preconditioners, but also explains the stan-
dard Jacobi preconditioner naturally. We will also show
how GSP leads to reducing the condition numbers.

An important open question in [!1] is how to pick a

good subgraph. To this end, we introduce the ideas devel-
oped in the field of combinatorial preconditioners to help
build good subgraph preconditioners [6]. The insight is that
a good subgraph should not only be sparse but also have
small structural distortion (stretch) with respect to the origi-
nal graph. Yet finding the optimal subgraph that satisfies the
above criteria is intractable for large graphs. Instead we pro-
pose a greedy algorithm to construct a family of subgraphs
by incrementally adding edges to reduce stretch without in-
ducing large cliques in the factorization phase.

This paper has three major contributions: we (1) adapt
the ideas of SPCG to the bundle adjustment problem,
(2) propose GSP which generalizes SPCG and leads to
more effective subgraph preconditioners, and (3) develop a
greedy algorithm based on the ideas in combinatorial pre-
conditioners to construct a family of subgraph precondi-
tioners. We use the proposed method to solve large-scale
datasets and have promising results.

2. Bundle Adjustment

Below we review the bundle adjustment problem, whose
goal is to jointly estimate the optimal camera parameters
and 3-D structure by minimizing the total reprojection error.
We define x; (¢ € 1--- M) as the camera parameters, [;
(j €1---N)asthe 3-D points, and z, (k € 1--- K) as the
measurement of the 3-D point I; in camera xj;. We define
hi (s, lij) as the measurement function of a 3-D point in
a camera. The cost function can be written as

K
Z e (hi, ej) — 2| 1)

k=1

The standard approach is to linearize Eq. (1) around the
current estimate to derive a linear system

Adx = b, 2

where A is a rectangular matrix containing the Jacobian of
all measurements with respect to the variables, and b is a
vector of measurement error. An alternative is to form and
solve the normal equation

(ATA)ox = ATb, 3)

where AT A is an approximation to the Hessian of Eq. (1).
In Levenberg-Marquardt, we add a damping term:

(ATA + A\D)ox = ATb, “4)

where)\ is a non-negative scalar, and D can be an identity
matrix or the diagonal of AT A. The linear system corre-
sponding to the normal equation (4) is

Gole[3] e

2.1. Direct Methods

Using direct methods to solve Eq. (4) has been well-
studied in literature [15, 22]. A common practice is to
eliminate all 3-D points first, and use Cholesky factoriza-
tion to solve the reduced camera system. Yet as shown
in [2, 8, 14], this strategy works well on small problems, but
does not scale satisfactorily because (1) the cost of forming
and storing the reduced camera systems is prohibitive for
large problems, and (2) building the reduced camera system
could destroy the sparse problem structure and hence make
it more expensive to solve. Therefore direct methods can-
not be applied to solve large-scale bundle adjustment with-
out using hierarchical or incremental techniques [17, 20]. A
better alternative is to use iterative methods.

2.2. Iterative Methods

Using iterative methods such as the conjugate gradient
(CG) method to solve large-scale bundle adjustment is ben-
eficial because it involves only matrix-vector multiplica-
tion operations and hence requires less memory than direct
methods [18]. Yet the number of required CG iterations de-
pends on how well conditioned is the original problem.

Several preconditioners have been applied to make bun-
dle adjustment well-conditioned. Agarwal et al. [1] ex-
amined the performance of several standard precondition-
ers and implementation strategies on large-scale datasets.
Byrod and Astrdm proposed to use a multi-scale and the
block-Jacobi preconditioners [7, 8]. Jeong et al. [14] sug-
gested using the band-diagonal of the reduced camera sys-
tem as a preconditioner. Yet these methods are very generic;
we show that by exploiting the problem structure of bundle
adjustment we can obtain better preconditioners.

3. Subgraph-Preconditioned Conjugate Gradients

To proceed, we take a graphical perspective on the bun-
dle adjustment problem. In particular, the sparse Jacobian
matrix A in Eq. (2) can be regarded as representing a fac-
tor graph, where the cameras and the 3-D points are the
vertices, and each measurement (block-row) corresponds to
a factor connecting the corresponding camera and point.
Fig. 1 gives an example to illustrate the graph and matrix
representations of the bundle adjustment problem.

Recently Dellaert et al. [11] proposed the Subgraph-
Preconditioned Conjugate Gradient (SPCG) method, which
aims to combine the advantages of direct and iterative meth-
ods to solve 2-D Simultaneous Localization and Mapping
(SLAM) problems. The main idea is to identify a sub-
problem (subgraph) that can be solved efficiently by direct
methods (e.g., a subgraph with small tree-width) and use it
to build a preconditioner for the conjugate gradient method.
Their results show that this technique is a better alternative
to using either direct or iterative methods alone.

X0 X1 X2 l() 11 lz l3

(a) (b)

xoxixololi b3

(c) (@

Figure 1: A toy bundle adjustment problem with three camera poses and four landmarks. All of the landmarks are observed by all of
the cameras. Circles are variables and squares are factors. (a) The factor graph representation of the Jacobian A. Each factor indicates a
function between two variables. (b) The symbolic matrix representation of A. Each row denotes one factor, and each column indicates
one variable. (c) The Gaussian Markov Random Field representation of the approximated Hessian H ~ AT A.. (d) The symbolic matrix
representation of H. Both rows and columns indicate variables. A diagonal block indicates the certainty of a variable given the other
variables are known. An off-diagonal block indicates whether two variables are correlated given that the other variables are known, and

each block has a corresponding factor in (a) or edge in (c).

We summarize SPCG based on the above graphical rep-
resentation. Suppose we want to solve a linear system
(graph) as in Eq. (5). We pick a subset of the rows (fac-
tors), and denote it as (A1, b;), and denote the remaining
rows as (Az, by). We can re-arrange Eq. (5) as

Ay _ | b1
[Ag}ax[bg}. ©
When applying QR factorization to A;, we have A; =
Q:R,. By left-multiplying the upper part with Q7, we get

R, _[Qi
(B lso[On] g
Suppose ¢; = QTb; and X = Rl_lcl is the optimal so-

lution by considering only the upper part of (6). Then by
re-parameterizing y = R;(x — X), we have

I 0
|: AQRII :|6y: |: co :|7 (8)

where co = by — Anglcl. Eq. (8) couples the solution
of the subgraph part (Rl_l) to precondition the remaining
part. The intuition behind the re-parameterization is that we
penalize the deviation of y from the subgraph solution X.
Finally Eq. (8) is solved by using the least-squares variant
of the conjugate gradient method [4].

Fig. 2 illustrates the SPCG technique. Suppose we pick
a spanning tree of the original graph as in Fig. 2a, we can
solve it efficiently with sparse direct methods, and use its
solution to precondition the re-parameterized system.

Yet for bundle adjustment, whose graph structure is bi-
partite and unbalanced, SPCG over-estimates uncertainty of
the variables and produces unsatisfactory preconditioners.

4. Generalized Subgraph Preconditioners

We present a Generalized Subgraph Preconditioning
(GSP) technique, which generalize the idea of SPCG and

is more suitable for large-scale bundle adjustment. In con-
trast with SPCG, which works with the Jacobian of mea-
surements and treats each of them as a factor, GSP operates
on the Hessian, and decomposes each of the measurements
into three factors in the Gaussian Markov Random Field
(GMREF). The resulting graph representation is more gen-
eral and provides a better tool to design subgraph precondi-
tioners. Compared to conventional matrix preconditioning
machinery, GSP not only provides an expressive language
to design subgraph preconditioners, but also explains the
standard Jacobi preconditioner naturally.

4.1. A Factor Graph Representation of the Hessian

To gain insight into the performance properties of both
Jacobi and SPCG preconditioners, we investigate the struc-
ture of the approximated Hessian matrix H ~ AT A ap-
pearing in the normal equation (3). This sparse symmet-
ric matrix can also be represented as a graph, specifically a
Gaussian Markov Random Field (GMRF) [12, 16]. Figs. lc
and 2c illustrate the GMREF representation of the Hessian.

Yet the common undirected graph representation of the
Hessian is not expressive enough for designing good sub-
graph preconditioners in SfM, prompting us to resort to a
more fine-grained factor graph representation of the Hes-
sian. The main difference is that we create one binary and
two unary factors out of each measurement, and keep all
of them in the factor graph. The number of unary factors
attached to a variable is equal to the number of associated
measurements, with one binary factor per measurement.

As an example, consider the measurement between x
and o in Fig. la and assume A,, and A;, are the corre-
sponding block entries in the first row of the Jacobian. Then
three factors corresponding to AL A, A Ay, and AL Ay,
are added to the graph. Notice that the first two are unary
factors of xg and [, and the third is a binary factor between
them. They encode the information contributed by this mea-

X0 X1 X2 l() ll lz l3

() (b)

xox1x2loli b I3

O H0OE

I R
oJONONON =Ty =1

=

OE O
& @ @ | BB B

H| ~ATA,

© (d)

Figure 2: An illustration of the SPCG technique. (a) (b) The factor graph and symbolic Jacobian matrix that correspond to a subset of
the measurements (sub-problem). (c) (d) The Gaussian Markov Random Field and the approximated Hessian matrix of the sub-problem.
The corresponding non-zero off-diagonal blocks are identical to those in Fig. 1d, but the diagonal entries are smaller than those in Fig. 1d.
It leads to over-estimating the uncertainty of the variables, especially for the camera variables. This is problematic for large-scale bundle

adjustment where the graph is bipartite and highly unbalanced.

Figure 3: The factor graph representations of the Hessian matri-
ces in Figs. 1 and 2, respectively.

surement to the conditional Gaussian densities. Repeating
this process for all measurements, we build the factor graph
representation of the Hessian illustrated in Fig. 3.

From this perspective, the problem of designing a good
subgraph preconditioner is reduced to picking a subset of
factors from the graph that (1) can be solved efficiently
by direct methods, and also (2) make the linear systems
well-conditioned. Once a subgraph is selected, we can use
sparse Cholesky factorization to build the preconditioner
(e, H; = Rle). The detail of how to to pick the sub-
graph will be discussed in Sec. 5.

The difference between GSP and SPCG is critical for
large-scale bundle adjustment, whose graph structure is bi-
partite and highly unbalanced. By using the factor graph
representation of the Hessian, GSP is more expressive than
SPCG because we can always build a GMRF from a subset
of measurements, but not vice versa. For instance, suppose
we want to pick a subset of factors in GMREF as in Fig. 4a
out of the GMREF in Fig. 3a. One can immediately see that
no subset of measurements in Fig. la corresponds to this
GMREF. Hence the GSP is indeed a generalization of SPCG.

The amount of information that SPCG brings in for each
variable corresponds to the associated measurements in the
subgraph. In bundle adjustment, if SPCG picks a spanning
tree as the subgraph, then it can only collect at most two out
of potentially thousands of unary factors for the camera ver-

xox1xalp i by I3

(b)

Figure 4: Subgraph that GSP produces but SPCG cannot.

tices. This results in over-estimating the uncertainty of the
variables and hence leads to unsatisfactory preconditioners.
This idea is illustrated in Fig. 2d.

Adding more measurements to the subgraph might help,
but it also makes the resulting subgraph harder to solve by
sparse direct methods. In contrast, GSP provides the flexi-
bility to keep part or all of the unary factors (information)
for each variable, and hence overcomes this problem.

4.2. The Jacobi Preconditioner

The Jacobi method is a generic preconditioning tech-
nique. Here we show it has a simple explanation within
the GSP framework. The Jacobi preconditioner works by
taking only the diagonal entries of the Hessian matrix, and
discarding all off-diagonal entries. A simple generalization
is the block-Jacobi preconditioner which treats each cam-
era or 3-D point as an entity, and it corresponds to pick-
ing the block diagonal of the Hessian matrix. They can
be solved efficiently because all blocks are independent.
In GSP machinery, the block-Jacobi preconditioner corre-
sponds to picking all unary factors and discarding all binary
factors of the Hessian. The idea is illustrated in Fig. 5. Note
that hereafter when we refer to the Jacobi preconditioner,
we actually mean the block-Jacobi preconditioner.

xoxix2loly b I3

HOO O | Ty
R R R "

(b)

Figure 5: Block-Jacobi preconditioner of the toy problem.

4.3. The Positive Semidefiniteness of GSP

Any GSP preconditioner matrix is positive semidefinite
(psd). Discarding off-diagonal block pairs A7 Aj,, Al A,
in the Hessian while leaving the block-diagonal unchanged
corresponds to replacing a binary factor by two unary fac-
tors in the Jacobian factor graph. The replaced binary
factor corresponds to A’s block-row with nonzero blocks
Az, and A;,, while each new unary factor contains exactly
one of these blocks. The inner product of the new factor
matrix with itself is psd, which guarantees the validity of
GSP preconditioners. Note that discarding symmetrical off-
diagonal entries of an arbitrary symmetric psd matrix may
not produce a psd matrix. In the scalar case, Boman et al.
[5] proved that matrices with this property must admit a fac-
torization AT A, with A having a factor width < 2.

5. Subgraph Construction Algorithm
5.1. Matrix Preconditioners

Conventional matrix preconditioning techniques focus
more on the efficiency of solving the preconditioners rather
than on directly minimizing the condition number of the
preconditioned system [18]. For example, the Jacobi pre-
conditioner offers good computational efficiency by dis-
carding the conditional correlation between variables. The
incomplete Cholesky preconditioner controls the compu-
tational cost by limiting the amount of fill-in and dis-
carding negligible entries during the factorization process.
The Symmetric Successive Over-relaxation preconditioner
splits the matrix into lower- and upper-triangular pieces to
avoid any factorization. Although these techniques work to
some extent in practice, deriving theoretical bounds on their
condition numbers is not trivial, and their actual meaning is
also hard to interpret graphically or probabilistically.

5.2. Combinatorial Preconditioners

Recently, combinatorial preconditioners have been stud-
ied to analyze and construct effective preconditioners for
the conjugate gradient method. Promising results have been
reported on solving linear systems with symmetric and di-
agonally dominant matrices [0, 2 1]. The main idea is to find
ultra-sparsifiers such that the original graph and the approx-

imating graph have similar conductance — a measure of how
fast information travels between different parts of the graph.
Insisting on sparse approximating graphs produces precon-
ditioners that can be solved efficiently by direct methods,
while maintaining the graph conductance effectively re-
duces the condition number of the preconditioned systems,
therefore the number of CG iterations.

If the subgraph is restricted to be a spanning tree, Boman
and Hendrickson [6] recognized that the condition num-
ber of the preconditioned system is upper bounded by the
stretch of the original graph with respect to the spanning
tree. More specifically, suppose G = (V, E, w) is the graph
of the original system where V', E' and w denote the ver-
tices, edges and the weights of the edges respectively. If T’
is a spanning tree of GG, then for every edge e = (u,v) € E,
there is a unique path in 7" connecting w and v. The stretch
of e with respect to 7" is defined as

st(Toe)= Z((;)) fore € ©)
feP(Te)

where P(T,e) denotes the edges on the unique path be-
tween v and v in 7. The stretch of G with respect to T’
is defined as the sum of the stretches of all the edges in G:

st(T,G) = Zst(T7 e). (10)

ecE

Intuitively speaking, the higher the stretch of a tree, the
more time it takes for information to percolate, negatively
affecting convergence.

If we relax the restriction and consider a general sub-
graph, a common practice is to use a low-stretch spanning
tree as a skeleton and augment it with additional edges to
further reduce the stretch. However, when additional edges
are added to the subgraph, not only may the subgraph take
longer to build, but also the preconditioners will become
more expensive to apply in the conjugate gradient method.
Clearly, there is a trade-off between the quality of the pre-
conditioner and the time required to build and apply it.

5.3. The Proposed Algorithm

Here we propose a greedy algorithm to find a family of
subgraph preconditioners based on GSP and the ideas de-
veloped in the combinatorial preconditioners.

The bundle adjustment graph is a bipartite graph G =
(X,L,E), where X and L denote the vertices of cameras
and 3-D points respectively on the two sides of G. Each
edge in E denotes a measurement that connects the corre-
sponding camera and point vertices. The goal of this algo-
rithm is to find a subset E'g of E, such that (1) the resulting
subgraph G s has low stretch with respect to GG, and (2) the
maximum size of the induced cliques does not exceed a pre-
defined parameter n. By the maximum size of the induced

cliques we actually mean the clique number in the factor-
ization phase, which can indirectly affect the computational
complexity. A straightforward strategy would be to use a
low-stretch spanning tree in G as the subgraph, but this does
not exploit the bipartite and unbalanced nature of G.

We make some notations to facilitate the explanation.
We denote X (1) as the set of cameras associated with a 3-D
point [, and E(l) as the corresponding set of edges (mea-
surements). Note that by picking ¢ edges from E(I) into the
subgraph, we will induce a clique of size ¢ between the cor-
responding cameras after eliminating the 3-D point [in the
factorization phase. Moreover, if the edges and the elim-
ination ordering are not chosen appropriately, even larger
cliques will appear in the factorization phase.

Here we propose a greedy algorithm to construct a fam-
ily of subgraphs. We first build a camera graph Gx where
the vertices consist of all cameras and the edge weight be-
tween two cameras is defined as the number of 3-D points
that are observed by both of them. Then we find a low-
stretch spanning tree T'x in G x. This tree aims to preserve
the structural information of G, and provide a reference to
control the size of induced cliques when adding the edges.

Now we explain how to pick edges into the subgraph.
Initially the set Fs is empty. For each point /, we sort X (1)
according to their average distance to the other cameras in
X (1) with respect to T'x. Then we pick the edges of E(I)
into the subgraph according to this ordering. An edge is
added into E'g if it does not induce a camera clique of size
greater than n. To this end, we also maintain an array (ini-
tially set to 0, whose length is the number of cameras) which
holds the size of the maximum clique that a camera belongs
to. The array is updated whenever an edge is added. Re-
peating this process for all 3-D points results in edge set
FEg, which we use to construct the subgraph preconditioner.

6. Results
6.1. Configurations

Here we compare the sparse factorization method (DBA)
and the conjugate gradient (CG) method with three precon-
ditioners: (1) the block-Jacobi preconditioner (JACOBI),
(2) the subgraph preconditioner (SPCG), and (3) the gen-
eralized subgraph preconditioner (GSP-n). The number at-
tached to "GSP-n ” indicates the maximum clique size al-
lowed in the greedy algorithm.

We use the Levenberg-Marquardt method as the nonlin-
ear solver. The stopping criteria are (1) the number of iter-
ations exceeds 20, (2) the average reprojection error is less
than 0.8, or (3) the relative decrease of total reprojection
error is less than 1072,

For the linear solvers, DBA uses the cholmod package
with an approximate mininum degree ordering [9]. For the
solvers using the CG method, we solve Eq. (5) by using

Algorithm 1:
Preconditioned Conjugate Gradient Least-Squares Method

Input: let o be an initial, and € be the tolerance
ro =b— Axo,po = S0 = RiT(ATTo), Yo = HS()Hg
for k = 0 to maximum iterations do

if v, < ethenbreak t, = R py,

qdr = Atk

o = vi/llgx 13

Tk4+1 = Tk + arli

Thk4+1 = Tk — Qkqk

Sk+1 = R_T(AT’r’kJrl)

Yerr = [[skt]3

Br = Yr+1/7k

DPk+1 = Skt1 + BrPr

end

the least-squares variant of CG [4] without forming the nor-
mal equation (see Algo. 1). The stopping criteria for the
CG method are (1) the number of iterations exceeds 2000,
(2) the relative decrease of residual is less than 1072,

For JACOBI, we accumulate all unary factors for each
variable (i.e., the diagonal blocks of A7 A) and solve them
independently. For SPCG, we use the Sparse QR factor-
ization package [10]. For GSP-n, we use the proposed
greedy algorithm to pick the subgraph in the Hessian fac-
tor graph and factorize it to build the preconditioners by
using cholmod with an ordering in which 3-D points are
eliminated first and the cameras are eliminated according to
the topological ordering of the camera low-stretch spanning
tree. We use Alon et al.’s algorithm to find a low-stretch
spanning tree in the camera graph [3]. Note that for SPCG
and GSP-n, the topology of the subgraph is determined at
the beginning, and never changed during the optimization.

Although GSP offers the flexibility to use various num-
ber of unary factors for each variable, we choose to use all
of the unary factors for simplicity. In this case, GSP-0 and
is mathematically equivalent to JACOBI. Also, GSP-c0 is
like DBA if CG runs only one iteration.

We run the experiments on the bal datasets released by
Agarwal et al. [1]. Since bal contains many datasets and
some of them cannot fit into the memory of a regular PC,
we select ten proper datasets from bal which have 100K to
500K points (see Table. 2). We run all of the experiments
on a Core2 Duo PC with 8G RAM.

6.2. The Performance of GSP-n

We first investigate the performance of GSP-n for dif-
ferent values of n, and show the timing results in Fig. 6.
We exclude the linearization time and focus on comparing
the linear solvers. The results show that GSP-n converges
faster than JACOBI by 10-30% in most cases.

We also observe that as n increases, the overall time de-
creases at first, but increases if n is set too high. To better

1000 F b

= Jacobi
= GSP1
m GSP2
m GSP3
= GSP4
o
[0
L
© 500 1
E
=
0 L J

0 1 2 3 4 5 6 7 8 9
Dataset Index

Figure 6: Timing results of JACOBI and GSP-n on bal.

Table 1: Timing results of GSP-n on the "F-05" dataset. We only
show the components relevant to the linear solvers. The columns
indicate (1) the maximum clique size in GSP-n, (2) the percentage
of edges used in the subgraph, (3) the time of building the sub-
graph, (4) the time per CG iteration, and (5) the number of total
CG iterations, and (6) the total time.

n edges (%) build(s) time/iter (s) #iters total (s)
0 0.0 27.2 0.48 1438 732.6
1 19.8 334 053 1130 648.8
2 26.6 48.7 0.56 866 550.5
3 325 69.1 0.62 631 473.7
4 39.0 101.5 0.78 526 512.8

understand the behavior of GSP-n, we break down the tim-
ing results of one dataset and show the major components of
the linear solvers in Table 1. We can see that as n increases,
the subgraph becomes less sparse and hence harder to solve,
but the time spent on building the subgraph preconditioner
is not significant when n is still small. Here the more im-
portant parts are (1) the time to apply the preconditioner
per CG iteration, and (2) the number of total CG iterations.
The former increases because the preconditioner becomes
more dense and hence more computation is involved in the
back substitution. The latter decreases because the linear
systems become better conditioned. We can see that their
product dominate the total time. Clearly there is a trade-off
between these two factors.

6.3. Timing Results

Here we compare the timing results of four linear solvers
on the bal datasets. According to Sec. 6.2, we use n = 3
to build subgraphs for both SPCG and GSP-n. The tim-
ing results in Table 2 are sorted according to the DBA time,
which reflects the intrinsic difficulty of the datasets. The re-
sults confirm that sparse factorization methods are efficient
for small datasets, but preconditioned CG methods are bet-

Table 3: The Condition numbers of the SPCG, JACOBI, and
GSP-3 preconditioners on three bal datasets.

set Original SPCG JACOBI GSP-3
D-15 5.58e+21 1.87e+06 5.94e+04 4.36e+03
V-02 6.54e+21 6.46e+09 6.35¢+05 1.38e+05
F-01 3.68e+11 1.92e+08 7.54e+06 8.71e+05

ter alternatives for large datasets. Comparing JACOBI and
GSP, the results show that by adding extra edges (binary
factors) to the subgraph preconditioners, GSP provide bet-
ter preconditioners than JACOBI in most of the cases. Com-
paring SPCG and GSP, the results show that being able to
add more unary factors to the graph is crucial to improve
the convergence speed of the CG method.

6.4. The Condition Numbers

In addition to the running time, the quality of a precon-
ditioner can be evaluated by the condition number of the
preconditioned systems. Here we show the condition num-
bers of the SPCG, JACOBI and GSP-3 preconditioners on
several medium bal datasets in Table 3. We can see that
the original condition numbers (of Eq. 4) are huge, which
indicate the slow convergence of using a plain CG solver.
The SPCG precondtitioner works to some extent, but is not
as good as JACOBI and GSP-3. The condition numbers of
GSP-3 are 5-10 times smaller than JACOBI.

7. Conclusions and Future Work

While direct methods are efficient for small datasets and
iterative methods are more appropriate if the memory re-
quirement is of concern, a subgraph-based preconditioning
method combines their advantages and provides a better al-
ternative for solving large-scale bundle adjustment. One
such method is SPCG, which to the best of our knowledge
has not been applied to the bundle adjustment problem until
now. Although for large datasets SPCG is significantly bet-
ter than direct methods and the plain CG method, its behav-
ior is sub-optimal: as the bundle adjustment graph is bipar-
tite and unbalanced, SPCG overestimates the uncertainty of
the variables. In contrast, GSP avoids this problem, and is
more expressive and suitable for bundle adjustment. Well-
known preconditioners like Jacobi fit naturally in the GSP
context. To exploit the graphical structure of the problem,
we develop an efficient algorithm rooted in combinatorial
preconditioning, to construct a family of subgraph precon-
ditioners. When applied to large datasets, GSP precondi-
tioners display promising performance.

The first possible direction for future work is to develop
a more expressive subgraph preconditioner language to ex-
plain and understand other matrix preconditioners such as

Table 2: Timing results (secs) of the four methods on ten bal datasets. The second column corresponds to the name and index in the
original bal: ”D” for "Dubrovnik”, ”L” for ”Ladybug”, ”V” for ”Venice” and ”F” for ’Final”.

set source cameras points measurements DBA JACOBI SPCG GSP-3
0 V-01 89 110,973 562,976 42 84 401 89
1 F-01 394 100,368 534,408 79 113 256 96
2 V-02 245 198,739 1,091,386 155 245 415 196
3 D-15 356 226,730 1,255,268 187 397 804 285
4 V-03 427 310,384 1,699,145 313 273 695 212
5 L-30 1,723 156,502 678,718 578 312 718 223
6 V-04 744 543,562 3,058,863 886 506 913 407
7 F-03 91 187,103 1,692,975 1148 252 741 191
8 F-02 871 527,480 2,785,977 1939 776 1154 564
9 F-05 3,068 310,854 1,653,812 3504 894 2035 473

SSOR and Incomplete Cholesky factorization in terms of
graphs. The second is to develop a better algorithm to con-
struct the subgraph preconditioners, and provide theoretical
guarantees for their performance.

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

S. Agarwal, N. Snavely, S. M. Seitz, and R. Szeliski. Bundle
adjustment in the large. In European Conference on Com-
puter Vision, 2010. 1, 2, 6

S. Agarwal, N. Snavely, I. Simon, S. Seitz, and R. Szeliski.
Building rome in a day. In IEEE 12th International Confer-
ence on Computer Vision, pages 72-79, 2009. 1, 2

N. Alon, R. Karp, D. Peleg, and D. West. A graph-theoretic
game and its application to the k-server problem. SIAM Jour-
nal on Computing, 24, 1995. 6

Bjorck, A. Numerical Methods for Least Squares Problems.
SIAM Publications, 1996. 3, 6

E. Boman, D. Chen, O. Parekh, and S. Toledo. On factor
width and symmetric h-matrices. Linear algebra and its ap-
plications, 405:239-248, 2005. 5

E. Boman and B. Hendrickson. Support theory for precondi-
tioning. SIAM Journal on Matrix Analysis and Applications,
25(3):694-717, 2003. 2, 5

M. Byrod and K. Astrom. Bundle adjustment using conju-
gate gradients with multiscale preconditioning. In British
Machine Vision Conference, 2009. 1, 2

M. Byrod and K. Astrom. Conjugate gradient bundle adjust-
ment. In European Conf. on Computer Vision, 2010. 1, 2

Y. Chen, T. Davis, W. Hager, and S. Rajamanickam. Algo-
rithm 887: CHOLMOD, supernodal sparse Cholesky factor-
ization and update/downdate. ACM Transactions on Mathe-
matical Software, 35(3):1-14, 2008. 6

T. Davis. Algorithm 9xx, SuiteSparseQR: multifrontal mul-
tithreaded rank-revealing sparse QR factorization. 6

F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe.
Subgraph-preconditioned conjugate gradient for large scale

(12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

slam. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2010. 1, 2

F. Dellaert and M. Kaess. Square Root SAM: Simultane-
ous localization and mapping via square root information
smoothing. Intl. J. of Robotics Research, 25(12):1181-1203,
Dec 2006. 3

J.-M. Frahm, P. F. Georgel, D. Gallup, T. Johnson, R. Ragu-
ram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, and S. Lazebnik.
Building Rome on a cloudless day. In European Conference
on Computer Vision, 2010. 1

Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon.
Pushing the envelope of modern methods for bundle adjust-
ment. In JEEE Conference on Computer Vision and Pattern
Recognition, pages 1474-1481, 2010. 1, 2

M. Lourakis and A. Argyros. Sba: A software package for
generic sparse bundle adjustment. ACM Transactions on
Mathematical Software, 36(1):2, 2009. 2

D. MacKay. Information theory, inference, and learning al-
gorithms. Cambridge Univ Press, 2003. 3

K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle ad-
justment for large-scale 3D reconstruction. In IEEE 1lth
International Conference on Computer Vision, 2007. 2

Y. Saad. Iterative methods for sparse linear systems. Society
for Industrial Mathematics, 2003. 2, 5

N. Snavely, S. Seitz, and R. Szeliski. Modeling the world
from internet photo collections. International Journal of
Computer Vision, 80(2):189-210, 2008. 1

N. Snavely, S. M. Seitz, and R. S. Szeliski. Skeletal graphs
for efficient structure from motion. In IEEE Conference on
Computer Vision and Pattern Recognition, 2008. 2

D. A. Spielman. Algorithms, graph theory, and linear equa-
tions. In Int’l Congress of Mathematicians, 2010. 5

B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment - a modern synthesis. Vision algorithms:
theory and practice, pages 298-372, 2000. 1, 2

