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Abstract We investigate the problem of planning under uncertainty, which is of
interest in several robotic applications, ranging from autonomous navigation to ma-
nipulation. Recent effort from the research community has been devoted to design
planning approaches working in a continuous domain, relaxing the assumption that
the controls belong to a finite set. In this case robot policy is computed from the
current robot belief (planning in belief space), while the environment in which the
robot moves is usually assumed to be known or partially known. We contribute to
this branch of the literature by relaxing the assumption of known environment; for
this purpose we introduce the concept of generalized belief space (GBS), in which
the robot maintains a joint belief over its state and the state of the environment. We
use GBS within a Model Predictive Control (MPC) scheme; our formulation is valid
for general cost functions and incorporates a dual-layer optimization: the outer layer
computes the best control action, while the inner layer computes the generalized be-
lief given the action. The resulting approach does not require prior knowledge of
the environment and does not assume maximum likelihood observations. We also
present an application to a specific family of cost functions and we elucidate on the
theoretical derivation with numerical examples.

1 Introduction

Planning is an important component of robot navigation and manipulation, and it is
crucial in application endeavours in which the robot operates in full or partial auton-
omy, e.g., multi-robot exploration, autonomous surveillance, and robotic surgery.
The planning problem consists in establishing a map between the state space and
the control space, such that the robot can autonomously determine a suitable action
(e.g., a motion command), depending on its current state (e.g., current robot pose).
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The complexity of the problem stems from the fact that robot dynamics are stochas-
tic; in most practical applications, the state of the robot is not directly observable,
and can only be inferred from observations. Therefore, the robot maintains a prob-
ability distribution, the belief, over possible states, and computes a control policy
using the current belief. The corresponding problem falls in the general framework
of Partially Observable Markov Decision Process (POMDP).

The literature on planning under uncertainty can be sectioned in three main cate-
gories: simulation-based approaches, infinite-horizon strategies, and receding hori-
zon strategies. Simulation-based approaches generate a few potential plans and se-
lect the best policy according to a given metric (e.g., information gain). They are
referred to as simulation-based approaches, since they simulate the evolution of the
belief for each potential plan, in order to quantify its quality. Examples of this ap-
proach are the work of Stachniss et al. [23, 22], Blanco et al. [4], and Du et al. [7],
in which particle filters are used as inference engine. Martinez-Cantin et al. [17, 18]
and Bryson and Sukkarieh [5] investigate simulation-based approaches in conjunc-
tion with the use of EKF as inference engine. Carrillo et al. [6] provide an analysis of
the uncertainty metrics used in EKF-based planning. Other examples of simulation-
based approaches are [14, 24, 25] in which the belief is assumed to be a Gaussian
over current and past poses of the robot. These works assume maximum likelihood
observations: since future observations are not given at planning time, the robot
assumes that it will acquire the measurements that are most likely given the simu-
lated belief. We notice that, while all the previous examples are applied to mobile
robot navigation problems (the corresponding problem is usually referred to as ac-
tive Simultaneous Localization and Mapping), similar strategies can be found with
application to manipulation and computer vision (e.g., next best view problem [19]).

In the second category, infinite-horizon strategies, the search space is usually dis-
cretized (e.g., robot can only move between nodes of a uniformly spaced grid) and
the plan may be subject to given budget constraints. The corresponding problem is
also referred to as informative path planning. These problems are characterized by a
combinatorial complexity [8], which increases with the available budget. A greedy
strategy for informative path planning is proposed by Singh et al. [21] while a branch
and bound approach is proposed by Binney et al. in [3]. More recently, Hollinger et.
al [8] propose more efficient algorithms, based on rapidly-exploring random tree and
probabilistic roadmap. The approaches falling in these second category usually as-
sumes that the robot moves in a known environment; a remarkable property of these
techniques is that they approach optimality when increasing the runtime (which is
exponential in the size of the problem). A recent example of infinite-horizon plan-
ning is the work [1], in which Bai et al. apply a Monte Carlo sampling technique to
update an initial policy, assuming maximum likelihood observations.

Finally, receding horizon strategies compute a policy over the next L control ac-
tions, where L is a given horizon. Huang et al. [9] propose a model predictive control
(MPC) strategy, associated with EKF-SLAM. Leung et al. [16] propose an approach
in which the MPC strategy is associated with a heuristic based on global attractors.
Sim and Roy [20] propose A-optimal strategies for solving the active SLAM prob-
lem. While these approaches are based on a discretization of the state space [20], or
of the space of possible controls [16], recent efforts of the research community are
pushing towards the use of continuous-domain models in which controls belong to



Towards Planning in Generalized Belief Space 3

a continuous set. Continuous models appear as more natural representations for real
problems, in which robot states (e.g., poses) and controls (e.g., steering angles) are
not constrained to few discrete values. These approaches are usually referred to as
planning in the belief space (BS). Platt et al. [10] assume maximum likelihood ob-
servations and apply linear quadratic regulation (LQR) to compute locally optimal
policies. Kontitsis et al. [15] recently propose a sampling based approach for solv-
ing a constrained optimization problem in which the constraints correspond to state
dynamics, while the objective function to optimize includes uncertainty and robot
goal. A hierarchical goal regression for mobile manipulation is proposed by Kael-
bling et al. in [11, 12, 13]. While this branch of the literature has already produced
excellent results in real problem instances, it still relies on two basic assumptions:
(i) future observations are assumed to reflect current robot belief (maximum likeli-
hood observations), and (ii) the environment in which the robot moves is partially or
completely known. Van den Berg et al. [2] deal with the former issue and propose
a general planning strategy in which maximum likelihood assumption is relaxed:
future observations are treated as random variables and the future (predicted) belief
preserves the dependence on these random variables. In the present work, instead,
we deal with the second issue, as we assume no prior knowledge of the environment.

Our contribution belongs to the last category, as we use a receding horizon strat-
egy. We introduce the concept of generalized belief space (GBS): the robot keeps a
joint belief over both the state of the robot and the state of the surrounding environ-
ment. This allows relaxing the assumption that the environment is known or partially
known, and enables applications in completely unknown and unstructured scenar-
ios. Planning in GBS, similarly to planning in BS, is done in a continuous domain
and avoids the maximum likelihood assumption that characterize earlier works. Our
planning strategy, described in Section 2, comprises two layers: an inner layer that
performs inference in the GBS, and an outer layer that computes a locally-optimal
control action. In Section 3, we also present an application to a specific family of
cost functions and we elucidate on the theoretical derivation with a numerical ex-
ample in which a robot has to reach a goal while satisfying a soft bound on the
admissible position estimation uncertainty. Conclusions are drawn in Section 4.

2 Planning in Generalized Belief Space (GBS)

2.1 Notation and Probabilistic Formulation

Let xi and Wi denote the robot state and the world state at time ti. For instance, in
mobile robots navigation, xi may describe robot pose at time ti and Wi may describe
the positions of landmarks in the environment observed by the robot by time ti. In a
manipulation problem, instead, xi may represent the pose of the end effector of the
manipulator, and Wi may describe the pose of an object to be grasped. The world
state Wi is time-dependent in general (e.g., to account for possible variations in the
environment, or to model the fact that the robot may only have observed a subset
of the environment by time ti) and for this reason we keep the index i in Wi. Let
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zi denote the available observations at time ti and ui the control action applied at
time ti. We define the joint state at time tk as Xk

.
= {x0, . . . ,xk,Wk}, and we write the

probability distribution function (pdf) over the joint state as:

p(Xk|Zk,Uk−1) , (1)

whereZk
.
= {z0, . . . ,zk} represent all the available observations until time tk, and

Uk−1
.
= {u0, · · · ,uk−1} denotes all past controls. The probabilistic motion model

given the control ui and the state robot xi is

p(xi+1|xi,ui) . (2)

We consider a general observation model that involves at time ti a subset of joint
states Xo

i ⊆ Xi:
p(zi|Xo

i ) . (3)

The basic observation model, commonly used in motion planning, e.g., [2], involves
only the current robot state xi at each time ti and is a particular case of the above
general model (3).

The joint pdf (1) at the current time tk can be written according to the motion and
observation models (2) and (3) as

p(Xk|Zk,Uk−1) = priors ·
k

∏
i=1

p(xi|xi−1,ui−1) p(zi|Xo
i ) . (4)

The priors term includes p(x0) and any other available prior information.

2.2 Approach Overview

The aim of this paper is to present a general strategy that allows a robot (autonomous
vehicle, UAV, etc.) to plan a suitable control strategy to accomplish a given task.
Task accomplishment is modelled through an objective function to be optimized;
for instance the objective can penalize the distance to a goal position (path plan-
ning), the uncertainty in the state estimate (active sensing), or can model the ne-
cessity to visit new areas (exploration). We adopt a standard model predictive con-
trol (MPC) strategy in which the robot has to plan an optimal sequence of controls
uk:k+L−1 = {uk, . . . ,uk+L−1} for L look-ahead steps, so that a given objective func-
tion is minimized over the time horizon (see Figure 1). The presentation of this
section is general and does not assume a specific cost function, while in Section 3
we discuss practical choices of the cost function.

At planning time tk, the optimal control minimizes an objective function Jk(uk:k+L−1)
for L look-ahead steps. The objective function involves L immediate costs, one for
each look-ahead step. We consider a general immediate cost ck+l that may involve
any subset of states Xc

k+l ⊆ Xk+l , where l ∈ {0, . . . ,L−1} is the lth look-ahead step.
The immediate cost ck+l can be therefore written as
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x1 xk+Lx0 xk xk+1 xk+l... ...
u0 u1 uk−1 uk uk+1 uk+l−1 uk+L−1uk+l

z1 zk zk+1 zk+Lzk+l

Planning time

W

...

Fig. 1: Illustration of the L look-ahead steps planning problem. Past observations
Zk = {z0, . . . ,zk} and past controls Uk−1 = {u0, · · · ,uk−1} are known at the plan-
ning time tk. Future observations zk+1:k+L are instead unknown and treated as ran-
dom variables. The objective is to compute a suitable control strategy uk:k+L−1 =
{uk, . . . ,uk+L−1} for L look-ahead steps. The figure only illustrates the temporal
evolution of the system and we note that each observation may involve generic
subset of the states (robot states and world state W ) according to the observation
model (3).

ck+l
(

p
(
Xc

k+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1
)
,uk+l

)
, (5)

where the notation ai: j
.
=
{

ai, . . . ,a j
}

is used. As seen in Eq. (5), the immedi-
ate cost function ck+l directly involves a distribution over the subset of states
Xc

k+l . This distribution is conditioned on past measurements and controls Zk,Uk−1
(that are known at planning time), as well as on future controls and observations
zk+1:k+l ,uk:k+l−1 While the actual observations zk+1:k+l are not given at planning
time, the corresponding observation model is known (Eq. (3)) and involves ad-
ditional subsets of states Xo

k+ j with j = [0, . . . , l]. Therefore, calculating the pdf
p
(
Xc

k+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1
)

involves an extended subset of the joint state
Xk+l . For clarity of presentation, however, we will proceed with the entire joint state
Xk+l which contains Xc

k+l .
1

We thus define the generalized belief space (GBS) at the lth planning step as

gb(Xk+l)
.
= p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1) . (6)

The objective function Jk (uk:k+l−1) can now be defined as

Jk (uk:k+L−1)
.
= E

zk+1:k+L

{
L−1

∑
l=0

cl (gb(Xk+l) ,uk+l)+ cL (gb(Xk+L))

}
(7)

where the expectation is taken to account for all the possible observations during the
planning lag, since these are not given at planning time and are stochastic in nature.

1 In principle, for planning it is only necessary to maintain a distribution over the states Xc
k+l while

marginalizing out the remaining states. This would avoid performing computation over a large state
space, hence resulting in a computational advantage. We leave the investigation of this aspect as
an avenue for future research.
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Since the expectation is a linear operator we rewrite the objective function (7) as:

Jk (uk:k+L−1)
.
=

L−1

∑
l=0

E
zk+1:k+l

[cl (gb(Xk+l) ,uk+l)]+ E
zk+1:k+L

[cL (gb(Xk+L))] . (8)

The optimal control u∗k:k+L−1
.
=
{

u∗k , . . . ,u
∗
k+L−1

}
is the control policy π:

u∗k:k+L−1 = π (gb(Xk)) = argmin
uk:k+L−1

Jk (uk:k+L−1) . (9)

Calculating the optimal control policy (9) involves the optimization of the objective
function Jk (uk:k+L−1). According to (8), the objective depends on the (known) GBS
at planning time tk, on the predicted GBS at time tk+1, . . . , tk+L, and on the future
controls uk:k+L−1. Since in general the immediate costs cl (gb(Xk+l) ,uk+l) are non-

linear functions, E
zk+1:k+l

[cl (gb(Xk+l) ,uk+l)] 6= cl

(
E

zk+1:k+l
[gb(Xk+l)] ,uk+l

)
, and we

have to preserve the dependence of the belief gb(Xk+l) on the observations zk+1:k+l .
The latter are treated as random variables. Therefore, the belief at the lth look-ahead
step depends on uk:k+l−1 (which is our optimization variable) and zk+1:k+l (which is
a random variable).

In order to optimize the objective function (8) we resort to an iterative optimiza-
tion approach, starting from a known initial guess on the controls. The overall ap-
proach can be described as a dual-layer inference: the inner layer performs inference
to calculate the GBS at each of the look-ahead steps, for a given uk:k+L−1. The outer
layer performs inference over the control uk:k+L−1, minimizing the objective func-
tion (8). A schematic representation of the approach is provided in Figure 2, while
in the next sections we describe in detail each of these two inference processes,
starting from the outer layer: inference over the control.

2.3 Outer Layer: Inference over the Control

Finding a locally-optimal control policy u∗k:k+L−1 corresponds to minimizing the
general objective function (8). The outer layer is an iterative optimization over the
non-linear function Jk (uk:k+L−1). In each iteration of this layer we are looking for
the delta vector ∆uk:k+L−1 that is used to update the current values of the controls:

u(i+1)
k:k+L−1← u(i)k:k+L−1 +∆uk:k+L−1, (10)

where i denotes the iteration number. Calculating ∆uk:k+L−1 involves computing
the GBS of all the L look-ahead steps based on the current value of the controls
u(i)k:k+L−1. This process of calculating the GBS is by itself a non-linear optimization
and represents the inner layer inference in our approach. We describe this infer-
ence in Section 2.4. The GBS gb(Xk+l), given the current values of the controls
uk:k+L−1, is represented by the mean X̂∗k+l (zk+1:k+l) and the information matrix Ik+l .
The mean is a linear function in the unknown observations zk+1:k+l . The immediate
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gb(Xk)

gb(Xk+1)

gb(Xk+l)

gb(Xk+L) E
zk+1:k+L

[ck+L (gb(Xk+L))]

E
zk+1:k+l

[ck+l (gb(Xk+l), uk+l)]

E
zk+1

[ck+1 (gb(Xk+1), uk+1)]

...

...

ck (gb(Xk), uk)

+ J(uk:k+L−1)

uk:k+L−1

...

...

u∗
k:k+L−1

Fig. 2: Illustration of the dual-layer inference planning approach. The algorithm
takes as an input the GBS at the current time tk, gb(Xk), and produces as output a
locally-optimal control u∗k:k+L−1. The outer layer performs inference over the control
uk:k+L−1, while the inner layer evaluates the GBS for a given value of uk:k+L−1. Note
that the GBS at the lth look-ahead step is a function of controls uk:k+l−1 as well as of
the random observations zk+1:k+l : gb(Xk+l) = p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1).

cost function, in the general case, may involve both the mean and the information
matrix, and is therefore also a function of zk+1:k+l . Taking the expectation over these
random variables produces the expected cost that is only a function of uk:k+L−1 and
captures the effect of the current controls on the lth look-ahead step.

We conclude this section by noting that the control update (10) is performed in
a continuous domain and can be realized using different optimization techniques
(e.g., dynamic programming, gradient descent, Gauss-Newton).

2.4 Inner Layer: Inference in GBS

In this section we focus on calculating the GBS at the lth look-ahead step gb(Xk+l)≡
p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1), with l ∈ [1,L]. As this inference is performed
as part of the higher-level optimization over the control (see Section 2.2), the current
values for uk:k+l−1 are given in the inner inference layer.

The GBS gb(Xk+l) can be expressed in terms of the joint pdf at the planning time
tk and the individual motion and observation models applied since then:

gb(Xk+l) = p(Xk|Zk,Uk−1)
l

∏
j=1

p
(
xk+ j|xk+ j−1,uk+ j−1

)
p
(

zk+ j|Xo
k+ j

)
. (11)
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We consider the case of motion and observation models with additive Gaussian
noise:

xi+1 = f (xi,ui)+wi , wi ∼ N (0,Ωw) (12)
zi = h(Xo

i )+ vi , vi ∼ N (0,Ωv) , (13)

where for notational convenience, we use ε ∼N(µ,Ω) to denote a Gaussian random
variable ε with mean µ and information matrix Ω (inverse of the covariance matrix).
Then the distribution p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1) can also be modeled as a
Gaussian and can be expressed as

p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1)∼ N
(
X̂∗k+l , Ik+l

)
. (14)

Our goal is then to calculate the mean X̂∗k+l and the information matrix Ik+l describ-
ing the GBS at the lth look ahead step, bearing in mind that the observations zk+1:k+l
are unknown at planning time tk.

At this point, it is convenient to assume that the joint pdf at planning time tk can
be parametrized by a Gaussian distribution

p(Xk|Zk,Uk−1)∼ N
(
X̂k, Ik

)
, (15)

with known X̂k, Ik. Taking the negative log of p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1)
from Eq. (11) results in

− log p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1) =
∥∥Xk− X̂k

∥∥2
Ik
+

l

∑
i=1

[
‖xk+i− f (xk+i−1,uk+i−1)‖2

Ωw
+
∥∥zk+i−h

(
Xo

k+i
)∥∥2

Ωv

]
, (16)

where we use the standard notation ‖y−µ‖2
Ω
= (y−µ)T

Ω (y−µ) for the Maha-
lanobis norm. The maximum a posteriori (MAP) estimate of Xk+l is then given by

X̂∗k+l = argmin
Xk+l

− log p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1) . (17)

This optimization problem lies at the core of the inner inference layer of our plan-
ning approach. In principle, solving (17) involves iterative nonlinear optimization.
A standard way to solve the minimization problem is the Gauss-Newton method,
where a single iteration involves linearizing the above equation about the cur-
rent estimate X̄l+l , calculating the delta vector ∆Xk+l and updating the estimate
X̄l+l← X̄l+l +∆Xk+l . This process should be repeated until convergence. While this
is standard practice in information fusion, what makes it interesting in the context
of planning is that the observations zk+1:k+l are unknown and considered instead as
random variables.

In order to perform a Gauss-Newton iteration on (17), we linearize the motion
and observation models in Eq. (16) about the linearization point X̄k+l (uk:k+l−1).
The linearization point for the existing states at planning time is set to X̂k, while the
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future states are predicted via the motion model (12) using the current values of the
controls uk:k+l−1:

X̄k+l (uk:k+l−1)≡


X̄k

x̄k+1
x̄k+2

...
x̄k+l

 .
=


X̂k

f
(
x̂k|k,uk

)
f (x̄k+1,uk+1)

...
f (x̄k+l−1,uk+l−1)

 . (18)

Using this linearization point, Eq. (16) turns into:

− log p(Xk+l |Zk,Uk−1,zk+1:k+l ,uk:k+l−1) = ‖∆Xk‖2
Ik +

l

∑
i=1

[∥∥∥∆xk+i−Fi∆xk+i−1−b f
i

∥∥∥2

Ωw
+
∥∥∥Hi∆Xo

k+i−bh
i

∥∥∥2

Ωv

]
, (19)

where the Jacobian matrices Fi
.
=∇x f and Hi

.
=∇xh are evaluated about X̄k+l (uk:k+l−1).

The right hand side vectors b f
i and bh

i are defined as

b f
i
.
= f (x̄k+i−1,uk+i−1)− x̄k+i , bh

i (zk+i)
.
= zk+i−h

(
X̄o

k+i
)

(20)

Note that bh
i is a function of the random variable zk+i. Also note that under the

maximum-likelihood assumption this terms would be nullified: assuming maximum
likelihood measurements essentially means assuming zero innovation, and bh

i is ex-
actly the innovation for measurement zk+i. We instead keep, for now, the observation
zk+i as a variable and we will compute the expectation over this random variable
only when evaluating the objective function (8). In order to calculate the update
vectors ∆Xk and ∆xk+1, . . . ,∆xk+l , it is convenient to write Eq. (19) in a matrix
formulation, which can be compactly represented as:∥∥Ak+l (uk:k+l−1)∆Xk+l− b̆k+l (uk:k+l−1,zk+1:k+l)

∥∥2
, (21)

where we used the relation ‖a‖2
Ω
≡
∥∥Ω 1/2a

∥∥2
, and Ak+l and b̆k+l are of the follow-

ing form:

Ak+l
.
=


[

I1/2
k 0

]
Fk+l
Hk+l

 , b̆k+l =

 0
Ω

1/2
w b̆ f

k+l

Ω
1/2
v b̆h

k+l

 . (22)

Here, Fk+l and Hk+l include all the Jacobian-related entries Ω
1/2
w Fi and Ω

1/2
v Hi

(for all i ∈ [1, l]), respectively, and zeros in appropriate locations. Likewise, the vec-
tors b̆ f

k+l and b̆h
k+l respectively collect the terms b f

i and bh
i (zk+i). The term

[
I1/2
k 0

]
includes a matrix of zeros of appropriate size for padding.

The information matrix Ik+l can now be calculated from Eq. (21) as

Ik+l (uk:k+l−1)
.
= A T

k+lAk+l , (23)
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and the update vector ∆Xk+l , that minimizes (21), is given by

∆Xk+l (uk:k+l−1,zk+1:k+l)
.
=
(
A T

k+lAk+l
)−1

A T
k+l b̆k+l = I−1

k+lA
T

k+l b̆k+l . (24)

Noting that the right hand side vectors b f
i are zero for the linearization point (18),

the only non-zero entries in the vector b̆k+l are the right hand side vectors bh
i , which

depend linearly on zk+1, . . . ,zk+L. Using the definitions (22), Eq. (24) can hence be
written as ∆Xk+l (uk:k+l−1,zk+1:k+l) = I−1

k+lH
T

k+lΩ̆vb̆h
k+l , where Ω̆v is an appropriate

block diagonal matrix with Ωv elements. The updated estimate is then calculated as

X̂k+l (uk:k+l−1,zk+1:k+l) = X̄k+l +∆Xk+l = X̄k+l + I−1
k+lH

T
k+lΩ̆vb̆h

k+l . (25)

The estimate X̂k+l (uk:k+l−1,zk+1:k+l) is the outcome of a single iteration of the non-
linear optimization (17). We remark that for a single iteration, the information ma-
trix Ik+l (uk:k+l−1) does not depend on zk+1:k+l and the mean depends on zk+1:k+l
linearly. This fact greatly helps when taking the expectation over zk+1:k+l of the
immediate cost function (8). Considering more iterations would better capture the
dependence of the estimate on the measurements; however, more iterations would
make X̂k+l (uk:k+l−1,zk+1:k+l) a nonlinear function of zk+1, . . . ,zk+L. We currently
assume a single iteration sufficiently captures the effect of the measurements for a
certain control action on the GBS. Therefore,

X̂∗k+l (uk:k+l−1,zk+1:k+l) = X̂k+l (uk:k+l−1,zk+1:k+l) .

The difference with the maximum-likelihood observations assumption is evident
from Eq. (25): in that case only the first term would appear in the above equation.
Lastly, we notice that the same linearization point (18) will be used also for the
next look-ahead step (l + 1), in which only a few additional terms will be added
to Eq. (19); this allows large re-use of calculations. Moreover we notice the matri-
ces appearing in Eqs. (23) and (24) are sparse. We leave the investigation of these
computational aspects to future research.

3 Application to a Specific Family of Cost Functions

3.1 Choice of the Cost Functions

The exposition of the approach thus far has been given for general immediate cost
functions. To demonstrate the effectiveness of our approach we will now focus on a
specific family of cost functions. We define:

cl (gb(Xk+l) ,uk+l)
.
=
∥∥EG

k+lX̂
∗
k+l−XG∥∥

Mx
+ tr

(
MΣ I−1

k+lM
T
Σ

)
+‖ζ (uk+l)‖Mu

(26)

cL (gb(Xk+L))
.
=
∥∥EG

k+LX̂∗k+L−XG∥∥
Mx

+ tr
(
MΣ I−1

k+LMT
Σ

)
. (27)
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Here MΣ ,Mu and Mx are given weight matrices, and ζ (u) is some known function
that, depending on the application, quantifies the usage of control u. XG is the goal
for some subset of states (e.g. the last pose), and EG

k+l is a selection matrix, such
that the matrix EG

k+lX̂
∗
k+l contains a subset of states for which we want to impose a

goal. Similarly, the matrix MΣ may also be used to choose the covariance of some
subset of states from the joint covariance I−1

k+l (e.g. consider only uncertainty of the
landmarks in the environment).

Plugging Eqs. (26) and (27) into Eq. (8), taking the expectation, and rearranging
the terms, we get

Jk (uk:k+L−1)
.
=

L−1

∑
l=0
‖ζ (uk+l)‖Mu

+
L

∑
l=0

tr
(
MΣ I−1

k+lM
T
Σ

)
+

L

∑
l=0

E
zk+1:k+l

[∥∥EG
k+lX̂

∗
k+l−XG∥∥

Mx

]
.

We recall that the posterior X̂∗k+l at a generic step l is a function of the observa-
tions zk+1:k+l , which are random variables. In order to obtain the final expression
of the objective function we have to compute the expectation in the last summand
in the above equation. We omit the complete derivation for space reasons; in this
article we report the final result after taking the expectation:

Jk (uk:k+L−1)
.
=

L−1

∑
l=0
‖ζ (uk+l)‖Mu

+
L

∑
l=0

tr
(
MΣ I−1

k+lM
T
Σ

)
+

L

∑
l=0

[∥∥EG
k+lX̄k+l−XG∥∥

Mx
+ tr

(
Qk+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆

−1
v
))]

︸ ︷︷ ︸
(a)

, (28)

where X̄k+l is the nominal belief (18), Īk+l is the information matrix of the nominal
belief X̄k+l and Qk+l =

(
EG

k+lI
−1
k+lH

T
k+lΩ̆v

)T
Mx
(
EG

k+lI
−1
k+lH

T
k+lΩ̆v

)
. The first sum

contains the terms penalizing the control actions; the second sum contains terms pe-
nalizing uncertainty (captured by the information matrix Ik+l of the belief); the last
term (a) was derived from E

zk+1:k+l

[∥∥EG
k+lX̂

∗
k+l−XG

∥∥
Mx

]
and represents the expected

incentive in reaching the goal. We notice that the term (a), thus being connected
to goal achievement, also contains a term, tr

(
Qk+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆−1

v
))

, that
depends on the uncertainty. This term appears because we did not assume maxi-
mum likelihood observations, therefore the random nature of the estimate X̂∗k+l (as
a function of the random variables zk+1:k+l) is preserved.

3.2 Choice of the Weight Matrices

In this section we discuss how to properly choose the weight matrices Mu, MΣ ,
and Mx. Most related work assume these matrices are given, while in practice their
choice can be scenario dependent and can largely influence the control policy. The
matrix Mu, appearing in the summand (a) of (28) has a very intuitive function: a
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larger Mu induces conservative policies that will penalize large controls (or large
variations in the controls, depending on the definition of the function ζ (u)). Con-
sequently, Mu can be tuned to have smoother trajectories or when it is important to
keep the controls small (e.g., in presence of strict fuel/power constraints).

The choice of the matrices Mx and MΣ is instead less intuitive. A balance be-
tween these two matrices is crucial for letting the robot satisfy the concurrent tasks
of reaching a goal and minimizing the estimation uncertainty. In this section, we
propose a grounded way to select these matrices. For simplicity we first assume that
the two matrices can be written as Mx = αxM̄x and MΣ =

√
αΣ M̄Σ for some constant

and known matrices M̄x and M̄Σ . For instance, M̄x can simply be a selection matrix
that “extract” the subset of states for which we want to set a goal; similarly M̄Σ can
be a selection matrix extracting from I−1

k+l the marginal covariance that we want to
minimize at planning time. Under these assumption the objective function becomes:

Jk (uk:k+L−1) =
L−1

∑
l=0
‖ζ (uk+l)‖Mu

+αΣ

L

∑
l=0

tr
(
M̄Σ I−1

k+lM̄
T
Σ

)
+

αx

[
L

∑
l=0

[∥∥EG
k+lX̄k+l−XG∥∥

M̄x
+ tr

(
Q̄k+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆

−1
v
))]]

.

with Q̄k+l =
(
EG

k+lI
−1
k+lH

T
k+lΩ̆v

)T
M̄x
(
EG

k+lI
−1
k+lH

T
k+lΩ̆v

)
. The scalar αx controls the

“attraction” towards the goal; similarly αΣ represents the “importance” of minimiz-
ing the uncertainty of the selected states. In order to determine suitable αx and αΣ we
notice that we can divide the cost function by a constant term, without altering the
solution of the optimization problem. Therefore, we divide the cost by (αx +αΣ ),
obtaining:

Jk (uk:k+L−1) =
L−1

∑
l=0
‖ζ (uk+l)‖M̄u

+(α)
L

∑
l=0

tr
(
M̄Σ I−1

k+lM̄
T
Σ

)
+

+(1−α)

[
L

∑
l=0

[∥∥EG
k+lX̄k+l−XG∥∥

M̄x
+ tr

(
Q̄k+l

(
H T

k+l Ī
−1
k+lH

T
k+l + Ω̆

−1
v
))]]

.

(29)
where α = αΣ

αx+αΣ
and M̄u =

1
αx+αΣ

Mu. The previous expression highlights the trade-
off between the last two terms in the cost function (uncertainty reduction VS goal
achievement). In order to set α we assume the robot is given an upper bound β on
tr
(
M̄xI−1

k+LM̄T
x
)

(which represents the uncertainty of a selected set of states at the
end of the horizon) and we want to compute α so that this upper bound is satisfied.

Therefore, we set α =
tr(M̄xI−1

k+LM̄T
x )

β
such that for values of tr

(
M̄xI−1

k+LM̄T
x
)

close to
the bound β , the ratio α is closer to 1 and the robot will give more importance to the
second summand in (29) (i.e., it will prefer minimizing the uncertainty). Conversely,
when the uncertainty is far from the upper bound, the term (1−α) will be large and
the robot will prefer reaching the goal. We notice that the quantity tr

(
M̄xI−1

k+LM̄T
x
)

can eventually become larger than β , as we are not imposing a hard constraint on

this term, and for this reason we set α = min
(

tr(M̄xI−1
k+LM̄T

x )
β

,1
)
.
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3.3 Simulation Results

We demonstrate our approach in simulated scenarios in which the robot has to nav-
igate to different goals while operating in an unknown environment, comprising
randomly scattered landmarks. The control is found by minimizing the objective
function (29), according to our dual-layer inference approach. We use a gradient
descent method for optimizing the outer layer and Gauss-Newton for calculating
inference in the inner layer. The number of look-ahead steps (L) is set to 5.

For simplicity we assume the robot can only control its heading angle while keep-
ing the velocity constant. The control effort ζ (u) in Eq. (29) is therefore defined as
the change in the heading angle. We assume on-board camera and range sensors
with measurements corrupted by Gaussian noise with standard deviation of 0.5 pix-
els and 1 meters, respectively. Using these sensors the robot can detect and measure
the relative positions of nearby landmarks. The corresponding measurements can
be described by the observation model (3), where the subset of states Xo comprises
the robot’s pose and the observed landmark. The motion model is represented by
a zero-mean Gaussian with standard deviation of 0.05 meters in position and 0.5
degrees in orientation. The matrices M̄x and M̄Σ are set to extract the current robot
state and covariance at each of the look-ahead steps; Mu is chosen to be the identity
matrix.
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Fig. 3: A mobile robot starts from the configuration (a) and has to plan a motion
strategy to reach a goal position, while reducing estimation uncertainty. Legend:
{1} unknown environment W ; {2} Goal; {3-4} Actual and estimated trajectories of
the robot with 1σ uncertainty bounds; {5} mapped environment Wk. (a) Robot tra-
jectory before planning begins. (b) Trajectory before loop closure. Planned motion
(for L = 5 look ahead steps) is shown by ’diamond’ marks. (c) Final trajectory after
reaching the goal.
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We first present a basic scenario where the robot needs to navigate to a single goal
(Figure 3). For explanation purposes, in this first example we consider the planning
phase starts from the configuration shown in Figure 3a. During the first planning
steps the distance to the goal is the dominant component in the objective function
(28) and the calculated control guides the robot towards the goal. However, as the
robot uncertainty increases, the parameter α increases causing more weight to be
placed on uncertainty reduction. The planner then guides the robot towards previ-
ously observed landmarks in the environment (Figure 3b). After the robot makes
observations of these landmarks (loop closure), the uncertainty is reduced, hence
the parameter α drops to lower values and more weight is put on guiding the robot
to the goal (Figure 3c).
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Fig. 4: Multi-goal planning example. The same notations as in Figure 3 are used.
Resulting trajectories when planning with and without uncertainty terms in the ob-
jective function are shown in (a) and (c), respectively. (b) Covariance evolution in
the two cases, with the covariance threshold β indicated by a dashed-dotted line.
The drops in the covariance values correspond to loop closure events. (d) Miss dis-
tance at each of the goals.
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We now consider a more complicated scenario, where the planning is carried out
from the beginning and the robot has to navigate to a series of goals. The resulting
robot trajectory using our approach is shown in Figure 4a. As seen, robot uncer-
tainty exceeds the threshold β twice (on the way to goals 4 and 7), see also Figure
4b, and our planning strategy leads it to re-visiting previously observed landmarks.
For comparison, Figure 4c shows the trajectory when the objective function does
not account for the uncertainty (i.e. without second and last terms in Eq. (29)). Ne-
glecting the uncertainty during planning leads to much larger covariances, as shown
in Figure 4c. Moreover, this results in higher estimation errors, which leads to larger
miss distances2 with respect to the goals (Figure 4d).

4 Conclusion

This work presents an approach for planning in the belief space assuming no prior
knowledge of the environment in which the robot operates. In order to deal with the
uncertainty about the surrounding environment and its state, the robot maintains a
joint belief over its own state and the state of the world; this joint belief is used in
the computation of a suitable control policy, leading to the concept of generalized
belief space (GBS) planning. Our approach for planning in the GBS includes two
layers of inference: the inner layer performs inference to calculate the belief at each
of the look-ahead steps, for a given control action; the outer layer performs infer-
ence over the control, minimizing a suitable objective function. The approach does
not assume maximum likelihood observations and allows planning in a continuous
domain (i.e., without assuming a finite set of possible control actions). We elucidate
on the theoretical derivation by presenting an application to a specific family of cost
functions and discussing the policies computed in simulated examples.
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