
Super-Resolved Texture Tracking of Planar Surface Patches

Frank Dellaert Chuck Thorpe Sebastian Thrun

Computer Science Department and The Robotics Institute

Carnegie Mellon University, Pittsburgh PA 15213

Abstract

We present a novel approach to tracking planar sur-

face patches over time. In addition to tracking a patch

with full six degrees of freedom, the algorithm also pro-

duces a super-resolved estimate of the texture present

on the patch. This texture estimate is kept as an ex-

plicit model texture image which is re�ned over time.

We then use it to infer the 3D motion of the patch

from the image sequence.

The main idea behind the approach is to use a

technique from computer graphics, known as texture

mapping, as the measurement model in an extended

Kalman �lter. We also calculate the partial derivative

of this image formation process with respect to the 3D

pose of the patch, which functions as the measurement

Jacobian. The super-resolved estimate of the texture

is obtained using the standard extended Kalman �l-

ter measurement update, with one essential approxi-

mation that makes this computationally feasible. The

resulting equations are remarkably simple, yet lead to

estimates that are properly super-resolved.

In addition to developing the theory behind the ap-

proach, we also demonstrate both the tracking and the

super-resolution aspect of the algorithm on real image

sequences.

1 Introduction

In this paper we present a novel approach to track
planar surface patches in a sequence of images. In
addition to an estimate of the 3D pose parameters
over time (position and orientation), our algorithm
produces a super-resolved estimate of the texture in-
formation that is present on the patch. This texture
estimate is kept as an explicit model texture image
which is re�ned over time. We then use it to infer the
3D motion of the patch from the image sequence. In
practice, this is done using an extended Kalman �lter,
which is also used to update and re�ne the texture
estimate over time.

The fact that a texture estimate is obtained during
tracking makes the approach applicable in a number
of domains, where tracking and resolving texture are
both important, for example modeling for virtual re-
ality. In addition, if the texture estimate is kept at
a higher resolution than the original image sequence,
we can super-resolve the texture on the surface. This
opens the door for new applications where achieving
super-resolution while tracking is useful. For exam-
ple, one could perform optical character recognition
on the texture estimated from some moving planar
surface. One example application is to to read the li-
cense plate attached to a moving car, or read tra�c
signs that are being tracked from a moving vehicle.

We know of one other instance in which a texture is
explicitly estimated for the purpose of tracking. This
is the work by La Cascia, Isodoro and Sclaro� [5] on
head tracking . They use mosaicing techniques to up-
date a texture map, which is then used to track a per-
son's head. They do this by registering incoming video
images to the texture, mapped onto a shape model of
the head. Our approach is similar in idea, but very
di�erent in its formulation. We use a Bayesian esti-
mation framework in the form of the Kalman �lter.
This allows us to reason about con�dence in the tex-
ture map in a more principled way. It is this �rm
grounding in Bayesian estimation theory that makes
it possible to achieve super-resolved texture estimates,
something which is not attempted in [5].

Cheeseman et al. [1] is the most referenced work on
super-resolution in the �eld of computer vision. Like
us, they use a Bayesian approach to registering multi-
ple images of a surface. Their goals and assumptions
are signi�cantly di�erent however. Whereas we are
concerned with the on-line tracking of a textured sur-
face in a video stream, they attempt to combine im-
ages o�-line, using an iterative minimization to solve
for registration between images and the construction
of a super-resolved estimate. There also exists a large
body of work in the video processing literature that
deals with the super-resolved reconstruction of video-
imagery. Two good overviews of recent work are by

Schultz and Stevenson [9], and by Patti et al [7]. How-
ever, this work is concerned only with 2D images; no
attempt is made to model motion of objects in 3D.

2 Approach

The main idea of our approach lies in the use of tex-
ture mapping, a technique from computer graphics, to
predict the appearance of a textured surface patch in
the image. In addition, we also calculate the deriva-

tive of this image formation process with respect to
the position and orientation of the patch. We then
use both the model and its derivative in an extended
Kalman �lter to track the patch over time in a se-
quence of images. Finally, we also use the derivative
to recursively update a model of the texture on the
surface being tracked.

The state variables we are trying to estimate are the
three-dimensional position, orientation, and the tex-
ture of a patch. To specify the 3D pose, we identify a
planar patch with a local coordinate frame L, situated
in a global world coordinate frame W (as in [10]). We
align the surface normal with the local Z axis, so that
the planar surface is de�ned by the X and Y axes.
Thus, the position of the planar patch is de�ned by
the six-dimensional state vector xp = [X Y Z � �]T ,
where [X Y Z]T is the origin of the local frame L, and
[� �]T are a set of Euler angles specifying its orien-
tation with respect to the world coordinate frame W .

A de�ning characteristic of our approach is that
we also estimate a model T̂ of the texture T that
is present on the patch. This model is stored as an
array of estimated intensity values, or alternatively,
RGB values. Following Cheeseman's terminology [1],
we will call these elements mixels (for model pixels).
The total state x to be estimated is then the tuple (xp,
T), i.e., the 3D pose and the texture.

To estimate these variables over time we use an ex-
tended Kalman �lter. A Kalman �lter is a recursive
measurement processing algorithm, that under certain
assumptions optimally tracks the state of a system [6].
The Kalman �lter takes a Bayesian approach to the es-
timation problem, representing the uncertainty about
the state as a probability density over states. As a
consequence of the assumptions made, this probabil-
ity density is a multivariate Gaussian, and remains
Gaussian at all times. Thus, we de�ne the state es-

timate x̂(t) and the state covariance matrix P(t), to-
gether completely specifying a Gaussian density that
encodes our knowledge about the true state x(t). In
our case, we use an extended Kalman �lter, which ap-

proximates the optimal linear �lter in the case of non-
linear dynamics and measurements.

In the sections below we explain our approach by
detailing how we implement each step of the main
Kalman �lter loop. Speci�cally, our algorithm con-
tinually loop over four steps:

1. Predicting Patch Position (Section 2.1): predict
where we will �nd the patch in the next image.

2. Predicting Patch Appearance (Section 2.2): pre-
dict what the patch will look like in the image.

3. Updating the Position Estimate (Section 2.3): use
the di�erence between predicted and actual image
to re�ne our patch position estimate x̂p.

4. Updating the Texture Estimate (Section 2.4): use
the di�erence between predicted and actual image
to re�ne our texture estimate T̂ .

These steps implement the dynamics update, mea-
surement prediction and measurement update steps of
the Kalman �lter, respectively. Our contribution lies
in the speci�c form of the measurement model that is
used, and in calculating its Jacobian.

2.1 Predicting Patch Position

The dynamics update step serves to predict the new
pose x̂p of the patch, given our estimate at the previ-
ous time step and a motion model. We simply use
the standard extended Kalman �lter formulation, re-
viewed brie
y below. One important approximation
we make is neglecting the cross-correlation terms be-
tween texture and position variables, i.e., in this dy-
namics update step we act as if the position portion
of the state xp is independent of the texture estimate

T̂ , and we only update that portion of the state here.

Speci�cally, we assume that a model for the dynam-

ics of the patch is available in the form of a continuous
stochastic di�erential equation:

_xp(t) = f[xp(t); u(t); t] + G(t)w(t) (1)

where f(:; :; t) encodes the possibly non-linear dynam-
ics, u(t) represents deterministic control inputs, and
G(t) distributes the Gaussian white noise process w(t)
over the variables of interest [6]. Although in general
f, G, and w are time-variant, we will omit their time
dependency below for clarity's sake.

The pose estimate (x̂p(t), Pp) is propagated in time
by integrating the dynamics equations forward to the

current time, starting from the previous estimate [6]:

_̂xp(t) = f[x̂p(t); u(t)] (2)

_Pp(t) = F(t)Pp(t) + Pp(t)FT (t) + GQGT (3)

where F(t) is the Jacobian of the system dynamics
f, and Q is the covariance kernel of the white noise
process w. F(t) represents the linearization of f around
the estimate x̂p(t) and will in general vary with time,
even if f is time-invariant.

In many practical applications a model for the sys-
tem dynamics will be available. E.g., when tracking
objects from a moving vehicle, the vehicle dynamics
can be accurately modeled, and the movement of the
objects to be tracked is related to the vehicle move-
ment [2]. In the worst case, when no domain knowl-
edge is available, one can simply use a constant ve-
locity model [6], with appropriate noise terms to com-
pensate for the uncertainty in the model dynamics.

2.2 Predicting Patch Appearance

Figure 1: Example of a disc-shaped planar patch with a

checkerboard texture mapped onto it.

The main idea in our approach is to use texture

mapping as the measurement model in the Kalman
�lter. Texture mapping is an image synthesis tech-
nique from computer graphics, in which a texture im-
age is mapped onto a surface in a three-dimensional
scene, much as wallpaper is applied to a wall [4, 8].
For example, Figure 1 shows the result of mapping a
checkerboard pattern onto a circular patch, pitched 30
degrees forward, then rolled 30 degrees to the right.

Formally, we model the measurement process as
a non-linear function h of the state, corrupted by a
Gaussian white noise process v(t):

z(t) = h[x(t); t] + v(t) (4)

In our case the measurement z is a subset of the cur-
rent image, and consists of a collection of image in-
tensity values I(p; xp; T), one for each pixel p in the
area occupied by image of the patch. As indicated,
these pixel values will be a function of both the 3D

pose xpof the patch and its texture T . Modeling the
measurement can then be reformulated as asking the
question: given a pose estimate x̂p and a model of the

texture T̂ , what will be the value I(p; x̂p; T̂) of each

pixel in the image of the patch ? This is exactly the
problem addressed by texture mapping.

The simplest form of texture mapping is known as
point sampling, and simply inverts the mappingm be-
tween (homogeneous) texture coordinates (s; t; u) and
image coordinates (x; y; w). In this scheme, each pixel
is inverse-mapped to its pre-image in texture space,
and assigned the value of the nearest integer texture
coordinate [8]:

I(p; x̂p; T̂) = T̂ (round(m�1(p))) (5)

In our case, the dependence on the pose estimate
x̂p is subsumed in the mappingm. If we de�ne a 4� 4
matrix function w

l
T(xp) to be the homogeneous coordi-

nate transformation between local patch coordinates
and world coordinates, collect the camera parameters
in a 3� 4 i

wT, and de�ne the scale of the texture in a
4� 3 coordinate transformation matrix l

tT, we obtain

p = m(k) = i
tT(xp) k =

i
wT

w
l
T(xp) l

tTk (6)

i.e., a 3 � 3 matrix i
tT, dependent on xp, de�ning a

projective mapping that maps points k in texture space
to pixels p in image space.. Since this is a 2D to 2D

projective mapping, it is invertible, and we can apply
the method outlined above.

To model the image formation process more realis-
tically we use the elliptical Gaussian �lter, a method
due to Heckbert [4], for resampling the texture. Point
sampling, as described above, leads to severe alias-
ing e�ects, i.e., it produces artifacts such as jaggies in
the image. This can be remedied by convolving the
texture with an appropriately shaped low-pass �lter.
We have chosen Heckbert's approach over alternative
methods (such as bilinear interpolation) because (a)
it is more realistic, (b) it is better at mapping high-
resolution textures to lower-resolution images, and (c)
the derivatives of the �lters, which we will need below,
are smooth and continuous. Thus, the pixel values are
calculated by convolving the texture image T̂ with an
elliptical resampling �lter � centered around m�1(p):

I(p; x̂p; T̂) =
X

k2Z2

T̂ (k) �(m�1(p); k) (7)

Lack of space prevents us from deriving a formula
for �. However, the shape of the �lter can be intu-
itively understood as follows: if you imagine a circular
Gaussian �lter in the image plane, and project it back

-4

-2

0

2

4

s

-4

-2

0

2

4

t

0

0.05

0.1
z

-4

-2

0

2s

Figure 2: The elliptical resampling �lter that was used to

render the patch in Figure 1.

to the surface of the planar patch, the shape of this
warped �lter will depend on the pose of the patch. If it
is parallel to the image plane, the projection will just
be an enlarged circular Gaussian �lter. If the patch
is oriented arbitrarily, however, the projection will in
general be an elliptical Gaussian �lter. As an illustra-
tion, Figure 2 shows the resampling �lter in texture
space that was used to produce Figure 1. Note that
it is rotated and elongated, as the patch is tilted with
respect to the image plane.

2.3 Updating the Position Estimate

Figure 3: I : the partial derivative of Figure 1 with respect

to yaw (rotating around Z). Gray is zero.

The key to making texture mapping work for the
purposes of tracking, is to calculate the Jacobian of the
measurement model h with respect to the pose state
vector xp. Indeed, most of the work in the Kalman
�lter is done in the measurement update equations1:

K = Pp H
T [HPp H

T + R]�1 (8)

x̂p (x̂p + K [z� h(x̂p)] (9)

Pp (Pp � KHPp (10)

These equations express how the di�erence between
the predicted measurement h(x̂p) and the actual mea-
surement z is used to calculate a new state estimate

1To avoid clutter, we omit the time dependence here.

x̂p. A crucial element in the computation of the gain
matrix K, which determines how much weight will be
given to the new measurement, is the measurement

Jacobian H, de�ned as:

H(x̂p)
def
=

@h(xp)

@xp

����
xp=x̂p

(11)

In our case, we calculate the measurement Jaco-

bian H as the partial derivative of the texture map-

ping process with respect to the pose state variable

xp = [X Y Z � �]T . Thus, H will be composed of
six partial derivatives, each expressing how the image
of the patch will change in response to a small change
in position or orientation. Interestingly, these partial
derivatives can also be visualized as images. For ex-
ample, in Figure 3, we have shown what happens when
the patch is rotated around its surface normal. As is
expected, most change occurs furthest away from the
rotation center.

-4

-2

0

2

4

s

-4

-2

0

2

4

t

-0.05

0

0.05
Gs

-4

-2

0

2s

-4

-2

0

2

4

s

-4

-2

0

2

4

t

-0.05

0

0.05
Gt

-4

-2

0

2s

Figure 4: Gradient kernels

The way in which these delta-images are obtained
provides considerable insight into the texture track-
ing process. If we rewrite � using separate, scalar
functions s(p) and t(p) for the texture coordinates of
m�1(p), equation (7) becomes:

I(p; T̂) =
X

k2Z2

T̂ (k) �(s(p); t(p); k) (12)

Taking the partial derivative of equation (12) with re-
spect to (for example) yaw , we get:

@I(p; T̂)

@
=
@s(p)

@

X

k2Z2

T̂ (k)
@�(s(p); t(p); k)

@s

+
@t(p)

@

X

k2Z2

T̂ (k)
@�(s(p); t(p); k)

@t
(13)

The derivatives of the elliptical resampling �lter � in
this expression are derivative of Gaussian �lters. For
the �lter in Figure 2 these gradient kernels are illus-
trated in Figure 4. The derivative is taken along the

Figure 5: Gradient images

principal axes of the elliptical �lter, so in general the
axes of symmetry of these �lters are not axis-parallel.

Convolving the texture T̂ with these gradient ker-
nels yields two gradient images, illustrated in Figure
5 (corresponding to the patch in Figure 1).

Figure 6: Vector �eld induced by a change in yaw .

Equation (13) can now be interpreted as follows:
the delta-images, representing the partial derivatives
of the image with respect to one pose variable, can
be obtained as a linear combination of two gradient
images. The coe�cients of the linear combination are
pixel dependent and are the components of a vector
�eld, induced by the motion of the patch. For exam-
ple, the vector �eld induced by yaw is shown in Figure
6. Since the patch has six degrees of freedoms, there
are 6 vector �elds, yielding 6 di�erent delta-images.

These vector �elds correspond to the motion in tex-

ture space of the pre-images of the pixels, as a result
of a change in one of the pose parameters. Intuitively,
if one casts rays from the camera center to the surface
patch, these rays intersect with the patch at speci�c lo-
cations. When the patch moves, these locations move
as well. This is what the vector �eld shows.

In summary, the calculation of the measurement
Jacobians H proceeds as follows: (1) calculate the
gradient images; (2) calculate the vector �elds; (3)
combine them as in equation (13). This results in

six di�erent delta-images, or, in other words, in six
elements of the Jacobian per pixel (the correspond-
ing pixels in the delta-images). In practice, we do
not calculate complete delta-images, but proceed on
a pixel per pixel basis. This is useful, because -using
sequential updating- randomly picked pixels can be in-
tegrated one at a time, until the motion uncertainty
has dropped below a certain threshold. This yields
considerable computational savings.

2.4 Updating the Texture Estimate

After the position update, the newly aligned im-
age measurement is incorporated to re�ne the texture
estimate T̂ . The usual Kalman measurement update
equations are used to update the texture, but to keep
the computation tractable we make a number of ap-
proximations. Since the estimated texture is typically
large (especially when working at super-resolved res-
olutions), it is infeasible to keep a full covariance ma-
trix around. Instead, we neglect all cross-correlation
terms between neighboring texture mixels, i.e. we as-
sume a diagonal covariance matrix Pt. Furthermore,
we currently neglect any cross-correlation terms be-
tween texture mixel values in T̂ and the pose x̂p.

The measurement update equation is of exactly the
same form as the equations (8-10). But now, the Ja-
cobian H is given to us 'for free' by the texture map-
ping calculations. Indeed, H describes the derivative
of image pixel intensity with respect to a change in
texture mixel value. From equation (7) we see that
this derivative is simply �(m�1(p); k).

The mixel update equations are then simple. Sum-
marizing, we have a diagonal covariance matrix Pt,
having as elements the mixel variances �2kk, and we
have the Jacobian H containing the resampling weights
Wk = �(m�1(p); k). When integrating one pixel mea-
surement at a time, the innovation v(p) = z(p) �
I(p; x̂p; T̂) reduces to a scalar, as does the measure-
ment noise variance R. It can then be easily derived
that the update equations (8-10) reduce to:

Kk = �2kkWk=(R+
X

j

�2jjW
2
j) (14)

T̂ (k)(T̂ (k) +Kkv(p) (15)

�2kk (�2kk(1�WkKk) (16)

Remarkably, these simple equations produce quite sat-
isfactory super-resolved estimates of the texture T
over time, despite the large approximation in neglect-
ing cross-correlation terms.

Figure 7: Frames 0,7,14,21,28, and 34 of a tracking sequence that has 16 patches tracking the texture on the cube in parallel. This

sequence is available for viewing on the web at URL http://www.cs.cmu.edu/~dellaert/research/patches.html

3 Results and Future Work

We present some preliminary results on real im-
age sequences, that demonstrate the viability of the
approachWorking with real image sequences (as op-
posed to synthetic image sequences) raises a host of
issues that highlight areas for future improvement.

The tracking sequence in Figure 7 shows 16 patches
tracking the texture on the cube in parallel. We had
precise control over the motion parameters of the cube
in this 35 frame sequence. In particular, the cube
moves backwards, 1 inch at a time, while simultane-
ously rotating by 2 degrees at each time step. Track-
ing 16 patches at once gives a good overview of the
strengths but also of the remaining problems of the
approach. It also hints at a generalization to arbitrary
surfaces, as using multiple small patches one could ap-
proximate curved and other surfaces. The patches can
be combined in one multiple patch model, e.g. using
the oriented particle approach by Szeliski [10, 3]. As
can be appreciated from the �gures, all patches track
the surface accurately, and in full 3D. The current
implementation is not tuned for speed, but can track
between 1 and 4 frames per second per surface patch.

However, the sequence brings out a number of ap-
parent problems as well. In the beginning of the se-
quence, some of the patches slide over the cube sur-
face. Only a few frames into the sequence do they lock

on to the texture. We suspect that this is because the
texture map is still too blurred at that point to ac-
curately track. In addition, the sequence of images
actually moves out of focus about halfway. We have
no explicit model to deal with this.

Figures 8 and 9 highlight the super-resolution as-
pect of our approach. These images were taken from
a 20 frame sequence in which the patch simply moves
backwards 1 inch at a time. In Figure 8, the top left
is the original image as seen by the camera (50 by 50
pixels). It is hard if not impossible to read the words
in the oval. The second panel shows the initial tex-
ture state T̂ of the Kalman �lter, obtained by inverse
texture mapping. The third panel is the texture esti-
mate after the �rst texture update step, described in
Section 2.4. The bottom two rows in Figure 8 show
the texture estimate over time in the remainder of the
sequence. In this case, the texture map is kept at a
resolution three times higher than the image. As you
can see, the texture is gradually super-resolved, and
halfway through the sequence we can read the words in
the oval, as well as make out some other detail previ-
ously hidden. The last frame is actually a little worse
than the one before that, as here too the cube moves
out of focus. Finally, in Figure 9, a high-zoom expo-
sure of the original image is compared with the texture
estimate at the end of the sequence.

Figure 8: Super-resolving the texture while tracking. Top:

�rst original image, initial estimate, and �rst re�nement. Rows

below that: texture estimates after frames 3,6,9,12,15, and 18.

The texture is only re�ned in the central circular region, hence

the blurring in the corners

4 Conclusion

We have presented a novel algorithm that can be
used to simultaneously track and super-resolve the
texture on a planar textured surface. We can think
of many extensions and improvements to the current
implementation, some of which were discussed in the
previous section. Losing focus and changes in lighting
are two issues our approach does not yet deal with,
and provide interesting areas for future research.

However, the main issue we have not discussed is
that of initialization. In our current implementation,
we always assume that the initial pose of the surface
is accurately known. Dealing with initialization is a
hard problem, and it will be the key to making the
approach applicable in real world settings.

A related issue is the generalization to arbitrary
surface representations. We have already mentioned
and shown how tracking multiple patches in parallel
maps nicely to an oriented particle approach [10, 3].
However, other surface representations are available
and might be preferable. This also means that we will
be forced to relax the planar assumption, but the tex-
ture mapping measurement model we use easily lends
itself to this.

Figure 9: Comparison between high zoom exposure of the

original, and an enlarged version of the last panel in Figure 8.

Acknowledgements

We would like to thank Paul Heckbert for his useful comments,
and Daniel Morris for introducing us to the Calibrated Imaging Lab.

This work was supported in part by USDOT under Coopera-
tive Agreement Number DTFH61-94-X-00001 as part of the Na-
tional Automated Highway System Consortium, and by the Na-
tional Highway Tra�c Safety Administration (NHTSA) under con-
tract DTNH22-93-C-07023.

References

[1] P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, and R. Hanson.
Super-resolved surface reconstruction from multiple images. In
G. R. Heidbreder, editor, Maximum Entropy and Bayesian
Methods, pages 293{308. Kluwer, the Netherlands, 1996.

[2] F. Dellaert, D. Pomerleau, and C. Thorpe. Model-based car
tracking integrated with a road-follower. In Proceedings of
IEEE Conference on Robotics and Automation (ICRA), Leu-
ven, Belgium, 1998.

[3] P. Fua. From multiple stereo views to multiple 3d surfaces. In-
ternational Journal of Computer Vision, 24(1):19{35, August
1997.

[4] P. S. Heckbert. Fundamentals of texture mapping and image
warping. Master's thesis, University of California, Berkeley,
1989.

[5] M. La Cascia, J. Isidoro, and S. Sclaro�. Head tracking via
robust registration in texture map images. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
Santa Barbara, CA, June 1998.

[6] P. Maybeck. Stochastic Models, Estimation and Control, vol-
ume 2. Academic Press, New York, 1982.

[7] A. Patti, M. Sezan, and A. Tekalp. Superresolution video
reconstruction with arbitrary sampling lattices and nonzero
aperture time. IEEE Trans. Image Processing, 6(8):1064{
1076, August 1997.

[8] D. F. Rogers. Procedural Elements for Computer Graphics.
McGraw Hill, Boston, MA, second edition, 1998.

[9] R. R. Schultz and R. L. Stevenson. Extraction of high-
resolution frames from video sequences. IEEE Trans. Image
Processing, 5(6):996{1011, June 1996.

[10] R. Szeliski and D. Tonnesen. Surface modeling with oriented
particle systems. Technical Report CRL 91/14, Digital Equip-
ment Corporation, Cambridge Research Lab, 1991.

