
Factor Graphs in Logic and Constraint Satisfaction

Frank Dellaert
College of Computing, Georgia Institute of Technology

February 1, 2012

Factor graphs can be seen as a unifying representation of information about and relationships between
variables. They can represent statements in logic, constraints in constraint satisfaction problems (CSPs),
sparse linear systems of equations, probabilistic relationships between variables, etc. Another important
graph is the corresponding primal graph: it represents less detailed information than a factor graph but is
useful to reason about structure. Below I illustrate both graph types in the context of logic and constraint
satisfaction. I also briefly discuss two search-based algorithms to find satisfying assignments in both.

1 Logic

First, let us see how a factor graph can make propositional logic come alive. A propositional variable, also
called Boolean or binary variable, can take on the value true or f alse (we often write 1 and 0). A knowledge
base (KB) or propositional theory j is a conjunction of logic sentences. An assignment or interpretation
x is an assignment of true or false to all propositional variables. A satisfying assignment or model of the
theory j is an assignment to the propositional variables X such that the theory j(X) evaluates to true.

1 M ) I
2 ¬M ) (¬I^A)
3 (I_A)) H
4 H ) G

Table 1: A simple propositional theory j about unicorns.

Example. Let us consider a simple knowledge base (KB) about unicorns, from an exercise in AIMA:
“If a unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If a

unicorn is either immortal or a mammal, then it is horned. A unicorn is magical if it is horned.”
To state this in the language of propositional logic, let us define five propositional variables,

X

D= {M, I,A,H,G}

that correspond to mythical, immortal, mammal, horned, and magical, respectively. Then our knowledge
about unicorns can be stated in the four propositional formulas listed in Table 1. It is easy to check that the
assignment (M, I,A,G,H) = (1,1,1,1,1) is a model for this theory.

1



1 LOGIC

Factor Graphs

M I

A H G

f1 : M ) I

f2 : ¬M ) (¬I ^A)

f3 : (I _A)) H f4 : H ) G

Figure 1: Factor graph representation of the propositional theory j1.

The compositional structure of a propositional theory can be made apparent by drawing a factor graph, a
bipartite graph G = (X ,F,E) with one variable node x j 2 X for every variable, one factor node fi 2 F for
every logic sentence. Given a factor graph G and the corresponding factors fi, the propositional theory f (X)
is then obtained by joining all factors using the conjunction operator:

f (X) =
^

i
fi(Xi)

where Xi ⇢ X is defined as the subset of variables connected to factor fi. The factor graph for the unicorn
example is shown in Figure 1.

Primal Graphs

M I

A H G

Figure 2: Primal or interaction graph corresponding to the factor graph in Figure 1.

Another graph that is useful is the variable interaction graph, or primal graph. This is an undirected graph
G = (X ,E) with again one variable node x j per variable, and an edge e jk if two variables x j and xk interact.
The primal graph for the unicorn example is shown in Figure 2.

2



1 LOGIC

M

I

A

f1 = 1

0

f2 = 0

H

f2 = 1

0

f3 = 0

G

f3 = 1

0

f4 = 0

1

f4 = 1

A

f1 = 1

0

f2 = 0

0

f2 = 0

I

0

f1 = 0

A

f1 = 1

H

f2 = 1

0

f3 = 0

G

f3 = 1

0

f4 = 0

1

f4 = 1

H

f2 = 1

0

f3 = 0

G

f3 = 1

0

f4 = 0

1

f4 = 1

Figure 3: Search tree for satisfiability. At each variable node (e.g., the root) we either assign 0 to the
corresponding variable (M for the root) by going left or 1 by going right, pruning subtrees whenever one of
the clauses f1 . . . f4 evaluates to 0.

Satisfiability

One of the key questions to ask about any propositional theory f is whether it is satisfiable, i.e., does there
exist an assignment of truth values to the variables X such that f (X) =

V
i fi(Xi) evaluates to 1. This is

essential in reasoning, as any theorem a can be disproved (proved) by adding its negation ¬a to the theory
and finding a satisfying counter-example (or proved by finding that the augmented theory is unsatisfiable).

An easy way to search for a satisfying assignment X is simply through depth-first-search in a tree that
represents the entire truth table f (X), evaluating each factor fi(Xi) as soon as the variables Xi it depends on
have been assigned a value. Entire subtrees can be pruned if a factor fi(Xi) evaluates to 0, making it so that
we do not have to search the entire (exponentially large) search space.

The process is illustrated for the unicorn example in Figure 3. The factor graph in Figure 1 acts as
a guide throughout. Here, in a depth-first traversal, the leftmost subtree is pruned after assigning M = 0,
I = 0, and A = 0 because f2(M, I,A) = ¬M ) (¬I ^A) evaluates to false. At the leaves we find that there
are exactly three models, i.e., (xM,xI,xA,xH ,xG) 2 {(0,0,1,1,1),(1,1,0,1,1),(1,1,1,1,1)}.

The best algorithms for satisfiability, which solve problems with millions of variables in reasonable
time, are based on search. Industry-strength solvers use a variety of SAT-specific tricks, such as efficiently
propagating the effects of assigning a value through the constraints, and remembering nogood assignments
to subsets of variables. Interestingly, SAT problems typically fall into two classes: hard ones, and easy ones.
The easy ones can often be solved by random guessing, the basis for algorithms like WalkSAT.

3



2 CONSTRAINT SATISFACTION

2 Constraint Satisfaction

Constraint satisfaction is a simple generalization of logic where variables are allowed to take on more values
than just true or false. Problems such as Sudoku puzzles or graph coloring problems are examples of
constraint satisfaction problems (abbreviated CSP), where a set of variables have to be assigned values
while satisfying a number of application-specific constraints. CSP’s have numerous applications such as
scheduling and planning, and Boolean satisfiability is a special case.

Definitions

Formally, a CSP is defined by

1. a set of variables X =
�

x j| j 2 1 . . .n
 

;

2. their domains D = {D j| j 2 1 . . .n};

3. a set of constraints fi : Xi ! {0,1}, with i 2 1 . . .m.

An assignment A is a set of individual assignments (x j,a j) of a value a j 2D j to variable x j. Each constraint
fi is defined over its scope Xi ✓ X , and returns 1 for a set of assignments Ai that are said to satisfy fi, and 0
otherwise. A satisfying assignment A for the CSP is an assignment such that ’i fi(Ai)=1.

WA

ID
OR

CA

NV

AZ

MT

WY

UT

CO

NM

WA

ID
OR

CA

NV

AZ

MT

WY

UT

CO

NM

Figure 4: The factor graph and primal graph for a map coloring example, showing the western U.S.

Example. The factor graph and primal graph for a simple map coloring example are shown in Figure 4.
In this example there are 11 variables and 11 constraints. The variables correspond to states on a map, and
the constraints indicate that neighboring states should be assigned different colors. For example, suppose
DCA = {Red,Green,Blue} and DOR = {Blue,Green,Yellow}, then the constraint between CA and OR would
include f (xCA = Red,xOR = Green) = 1 and f (xCA = Green,xOR = Green) = 0. Note that both binary,
ternary, and quaternary factors (constraints) are used. In the primal graph, however, that information is lost:
an edge only indicates that two variables are connected through some constraint.

4



2 CONSTRAINT SATISFACTION

Divide and Conquer for CSPs

WA

IDOR

CA

NV

AZ

UT

ID

AZ

MT

WY

UT

CO

NM

AZ

UT

CO

NM

ID
MT

WY

UT

CO

WA

IDOR

OR

CA

NV

AZ

WA

ID
OR

CA

NV

AZ

MT

WY

UT

CO

NM

UT

ID

Figure 5: The nested dissection process on the example map coloring problem.

A simple recursive algorithm uses a divide and conquer approach to solve CSPs. In a nutshell, each
recursive call to the algorithm partitions the given CSP into two smaller problems, conditioned on a separator
in the primal graph which we enumerate over. The algorithm is illustrated in Figure 5 for the simple map
coloring example. In the figure, the first separator is indicated by red nodes, and the second by blue nodes.

There are some ways to dramatically speed up this algorithm if you can afford some time (constraint con-
sistency pre-processing and constraint propagation) or memory (by memoizing). In addition, the algorithm
can be trivially modified to solve Boolean Satisfiability (a special case of CSP) or Constraint Optimization
Problems (COP). I call this (unpublished sketch for an) algorithm a “nested dissection solver” as it is based
on the so-named technique in sparse linear algebra, which was analyzed by our own Richard Lipton.

Acknowledgements

Collating this note was prompted by my giving a guest lecture in Merrick Furst’s algorithms class. Thanks!

5


