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Abstract

QR factorization is most often used as a “black box” algo-
rithm, but is in fact an elegant computation on a factor graph.
By computing a rooted clique tree on this graph, the com-
putation can be parallelized across subtrees, which forms the
basis of so-called multifrontal QR methods. By judiciously
choosing the order in which variables are eliminated in the
clique tree computation, we show that one straightforwardly
obtains a method for performing inference in distributed sen-
sor networks. One obvious application is distributed localiza-
tion and mapping with a team of robots. We phrase the prob-
lem as inference on a large-scale Gaussian Markov Random
Field induced by the measurement factor graph, and show
how multifrontal QR on this graph solves for the global map
and all the robot poses in a distributed fashion. The method is
illustrated using both small and large-scale simulations, and
validated in practice through actual robot experiments.

Introduction
In this paper we show how multifrontal QR factorization,
a state of the art method for sparse matrix factorization, can
be used to efficiently implement distributed maximum a pos-
teriori (MAP) inference on a network of intelligent sensor
nodes. The approach is most suited to coarse-grained par-
allelism, for example, a network of nodes equipped with
enough computing power to perform floating point math.

One important application is distributed simultaneous lo-
calization and mapping (D-SLAM) with a team of au-
tonomous robots, where each robot collects a large amount
of sensor readings and the goal is to build a global map of
the environment. As discussed in (Thrun 2001), successful
mobile robot systems require maps for their operation, e.g.
delivery robots in hospitals, and museum tour-guide robots.
In some applications, e.g. teams of autonomous reconnais-
sance robots, detailed maps of the environment are the end-
product. Ideally, in such cases, the sensor data should be
processed locally and integrated into the global computation
with a minimum of communication. In what follows, we
show that multifrontal QR methods are ideal in this respect.

Here we focus on distributed inference tasks that can be
phrased in terms of continuous-valued graphical models,
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which lead to least-squares sub-problems. QR orthogonal-
ization is the method of choice for solving these (Golub &
Loan 1996). While expensive for dense problems, QR is
quite competitive for large sparse problems such as those
that arise in sensor networks. While often used as a “black
box” algorithm, QR factorization is in fact an elegant com-
putation on a graph. It can be argued that in many cases, a
straightforward problem statement in terms of matrices ob-
scures the graph-based nature of the computation. In con-
trast, the state of the art in linear algebra is often a blend
of numerical methods and advanced graph theory, shar-
ing many characteristics with inference algorithms typically
found in the graphical models literature (Cowell et al. 1999).

One such class of algorithms are the so-called multi-
frontal QR factorization (MFQR) methods (Matstoms 1994;
Lu & Barlow 1996). The basic idea is the use of effi-
cient dense QR methods, e.g. LAPACK Householder-based
QR, to attack small sub-problems in the larger factoriza-
tion. Because these dense methods make use of heavily opti-
mized level-3 BLAS routines, MFQR can be quite efficient.
However, the property of MFQR that makes it eminently
suited for distributed inference is that it is easily parallelized
(Amestoy, Duff, & Puglisi 1994; Lu & Barlow 1996). In
sensor networks, the spatial nature of the inference problem
induces a natural way of parallelizing the computation.

The central data structure that underlies multifrontal QR
is the clique tree (Pothen & Sun 1992; Blair & Peyton 1993),
also known as the junction tree in the AI literature (Cowell
et al. 1999). In what follows, we formalize the distributed
inference problem in terms of factor graphs (Kschischang,
Frey, & Loeliger 2001). After a factor graph is triangu-
lated one obtains a chordal graph with cliques that can be
structured into a tree-based data structure, the clique tree.
In multifrontal QR factorization, computation progresses in
this tree from the leaves to the root to factorize a sparse ma-
trix, and then from the root to the leaves to perform a back-
ward substitution step. If the clique-tree structure respects
the topology of the distributed network of sensor nodes, the
computation can be done in a completely distributed fashion.

In terms of related work, the closest is that of Paskin &
Guestrin, (Paskin & Guestrin 2004; Guestrin et al. 2004;
Paskin, Guestrin, & McFadden 2005), which is very elegant
and complimentary to ours. In particular, they have exam-
ined in detail how, given a topology of a sensor network, a



communication spanning tree and a clique tree can be built
via local message-passing only. The architecture described
in (Paskin, Guestrin, & McFadden 2005) supports optimiz-
ing the spanning trees to minimize communication and sepa-
rator width in the clique trees. They then perform distributed
inference via belief propagation in the junction tree.

In our approach we perform a different calculation on the
clique tree, but our work is very similar in spirit, and can in-
deed benefit from their robust architecture. We are focused
on solving large non-linear inference problems using suc-
cessive QR factorization phases, and are less interested in
the clique marginals obtained by belief propagation. The
update messages sent in the QR computation are generally
much smaller than the ones for belief propagation, as they
represent partial square-root factorizations. However, we do
not obtain clique marginals, only the MAP estimate.

To the best of our knowledge, our approach represents
the first comprehensive approach to distributed, landmark-
based SLAM. Both Howard (Howard, Matarić, & Sukhatme
2002) and Dellaert (Dellaert, Alegre, & Martinson 2003)
used MLE approaches to a SLAM problem where the
robots themselves function as landmarks. However, the
computation in these approaches takes place on a cen-
tral server, introducing a severe communication problem.
A distributed version of the robot configuration problem
(Howard, Matarić, & Sukhatme 2003) uses a gradient de-
scent method and hence suffers from slow convergence, in
contrast to the quadratic convergence provided by MFQR.

MAP Inference on Factor Graphs/MRFs
As the underlying graphical representation of the distributed
inference problem we choose factor graphs, a class of bipar-
tite graphical models that can be used to represent factored
distributions (Kschischang, Frey, & Loeliger 2001). There
are nodes for unknowns and nodes for probability factors
defined on them. The graph structure expresses which un-
knowns are involved in each factor. Without loss of gener-
ality, below we consider only single and pairwise cliques,
leading to the following factored probability:

P (X) ∝
∏

i

φ(xi)
∏

{i,j}

ψ(xi, xj) (1)

Typically the potentials φ(xi) encode a prior or a single
measurement constraint at an unknown xi ∈ X , whereas
the pairwise potentials ψ(xi, xj) relate to measurements
that involve the relationship between two unknowns xi and
xj . Note that the second product is over pairwise cliques
{i, j}, counted once. The form (1) is also exactly the
expression for a pairwise Markov random field (Yedidia,
Freeman, & Y.Weiss 2000): MRFs and factor graphs are
equivalent representations. In the case of Gaussian pri-
ors φi(xi) ∝ P (xi) and Gaussian measurement models
ψk(xi, xj) ∝ P (zij |xi, xj) we obtain a Gaussian MRF:

φi(xi) = exp

{

−
1

2
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}
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Figure 1: Equivalent factor graph (top) and MRF (bottom) rep-
resentations for a distributed SLAM problem. Two robots move
from left to right and perceive a set of landmarks, with each mea-
surement inducing a factor node that relates pose and landmark un-
knowns. In the MRF we have rendered the landmarks as squares.

where k is the index of the measurement corresponding to
the edge {i, j}. Ignoring the priors, this corresponds exactly
to a least-squares problem of the form

argmin
X

‖AX − b‖2
Σ (2)

where A is the sparse measurement matrix, b the right-hand
side (RHS), and Σ a block-diagonal covariance matrix. Typ-
ically the graphs are very sparse: as an example, the fac-
tor graph and the MRF associated with a small distributed
SLAM problem are shown in Figure 1.

For a full-rank m × n matrix A, with m ≥ n, the unique
LS solution to (2) can be found by computing the QR-
factorization of A itself along with its corresponding right
hand side (Golub & Loan 1996):

QTA =

[

R
0

]

QT b =

[

d
e

]

Here Q is an m×m orthogonal matrix, and R is the n× n
upper-triangular Cholesky triangle. The orthogonal matrix
Q is not usually formed: instead, the transformed RHS QT b



Figure 2: A clique tree, out of many possible, for the example
from Figure 1. In this example, the two larger subtrees correspond
to both robots and the structure they alone see, whereas he root
node contains the structure seen by both.

is computed by appending b as an extra column to A. Be-
cause the Q factor is orthogonal, we have:

‖Aθ − b‖
2

2
=

∥

∥QTAθ −QT b
∥

∥

2

2
= ‖Rθ − d‖

2

2
+ ‖e‖

2

2

Clearly, ‖e‖2

2
will be the least-squares residual, and the LS

solution θ∗ can be obtained by solving the square system

Rθ = d (3)

using efficient back-substitution, as R is upper-triangular.

Multifrontal QR Factorization
For sparse QR factorization, the key to efficiency is ex-
ploiting the sparsity structure of the matrix A. In particu-
lar, multifrontal QR factorization (MFQR) (Matstoms 1994;
Lu & Barlow 1996) builds a clique tree by eliminating ei-
ther the factor graph or the MRF (efficient algorithms exist
for both), and then recursively factorizes the matrix from the
leaves up, using a sequence of dense QR factorizations. By
structuring the computation as a series of small but dense
factorizations, it is possible to use highly optimized dense
QR subroutines for the bulk of the computation, while max-
imally exploiting sparsity at the structural level. In many
ways, the structure of the computation is similar to that of
belief propagation in junction trees.

The key insight is that Householder reflections, when used
to eliminate column j of a partially factored matrix,

Hj (Hj−1 · · ·H1A) =

[

R1:j,1:j R1:j,j+1:n

0 A22

]

only affect those rows in A with (below-diagonal) non-zero
entries in the column. When these rows do not intersect for
two given columns i and j, they can be eliminated in any
order by two smaller, dense QR factorizations.

Which columns interact and in what way can be com-
puted in advance, exactly by building the clique tree. The
structure of the tree encodes the structural dependencies be-
tween the columns ofA (Pothen & Sun 1992; Blair & Peyton
1993). In particular, factorizations in different subtrees can
be done in parallel. As an example, a clique tree for the ex-
ample from Figure 1 is shown in Figure 2. Importantly, the

Algorithm 1 Multifrontal QR, adapted from (Lu & Barlow 1996).
Given a full-rank m× n matrix A and its clique tree T , call
the following recursive procedure once for the root n:

• Given node j, calculate Rj and an update matrix Uj :

1. Compute the update matrices {Uc} for all s children c
of j by making s recursive calls to this procedure

2. LetA[j] be the row-slice ofAwhich has non-zeroes as-
sociated with unknowns in the clique j, excluding un-
knowns in the separator between j and its clique π(j).

3. Form the the frontal matrix Fj as








A[j]
Uc1

...
Ucs









4. Factorize the frontal matrix Fj using dense QR as

QT
j Fj =

[

Rjj Rj,j+1:n

0 Uj

]

5. Use Rj = [ Rjj Rj,j+1:n ] as the jth slice of R, and
return Uj as the update matrix for node j

clique tree has to be computed only once, and can then be re-
used to factorize matrices with the same sparsity pattern over
and over. This is well suited to non-linear inference, where
the linearized system will have the same structure at every
non-linear minimization iteration. An example is D-SLAM,
where both bearing and range measurements are non-linear
functions in pose and landmark unknowns.

After this analysis phase, the clique tree is used to drive
a recursive, depth-first tree traversal that constitutes the nu-
merical phase of the algorithm, described in detail as Algo-
rithm 1. For each node j a frontal matrix Fj is factorized
into a row Rj of the final product R, and an update ma-
trix Uj , used to create the frontal matrix of its parent π(j).
The name “frontal” originates as MFQR proceeds on several
“fronts” in parallel.

Distributed MFQR Inference for SLAM
SLAM refers to the problem of localizing a robot while si-
multaneously mapping its environment. For a thorough in-
troduction to the typical Extended Kalman Filter (EKF) ap-
proaches to SLAM, see (Smith, Self, & Cheeseman 1990;
Leonard, Cox, & Durrant-Whyte 1992). In contrast, in
this paper we take a non-linear smoothing approach, where
we will be interested in obtaining the entire trajectory for
each robot. This is a large-scale inference problem, given
the number of unknowns involved, and would typically be
done on a central server with ample computing power. Not
counting the related 3D reconstruction in vision and pho-
togrammetry (Triggs et al. 2000), we do not know of any
robotics work that solves distributed SLAM problems this
way. However, it is a fairly simple extension of single-robot
smoothing and mapping as in (Lu & Milios 1997).
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Figure 3: A sequence diagram describing the data flow for the
distributed SLAM inference algorithm. In the figure, N refers to a
generic network node, and C refers to the coordinating node. See
text for a detailed explanation.

We introduce the use of MFQR as a novel way in which
to perform the inference in a completely distributed fash-
ion, cutting down on both communication and the need for a
highly capable central server. No measurements will have to
be communicated between robots or robots and a server. In-
stead, the communication is limited to QR update messages,
which condense the entire measurement history on the indi-
vidual robots into a small upper trapezoidal matrix.

A complete characterization of the problem is outside the
scope of the paper, but below we introduce our notation and
the high-level equations involved. In the distributed version
of SLAM, we shall denote the state of a robot r at the ith
time step by xri, with r ∈ 1..R and i ∈ 0..M , a landmark by
lj , with j ∈ 1..N , and a measurement by zk, with k ∈ 1..K.
The joint probability model corresponding to SLAM is ex-
actly modeled by a factor graph or equivalently an MRF:

R
∏

r=1

{

P (xr0)

M
∏

i=1

P (xri|xri−1, uri)

}

K
∏

k=1

P (zk|xrik
, ljk

)

Here P (xr0) is a prior on the initial state of robot r,
P (xri|xri−1, uri) is the motion model, parameterized by a
control input uri, and P (z|x, l) is the landmark measure-
ment model. The above assumes that the data-association
problem has been solved, i.e., that the indices rik and jk
corresponding to each measurement zk are known.

As is standard in the SLAM literature we assume Gaus-
sian process and measurement models, defined by

xi = fi(xi−1, ui) + wi (4)

where fi(.) is a process model, wi is normally distributed
zero-mean process noise with covariance matrix Λi, and

zk = hk(xik
, ljk

) + vk (5)

where hk(.) is a measurement equation, and vk is normally
distributed zero-mean measurement noise with covariance
Σk. The equations above model the robot’s behavior in re-
sponse to control input, and its sensors, respectively.

Algorithm 2 Distributed SLAM.
As a one-time setup procedure:

1. All nodes N send a symbolic version S of the local mea-
surement matrix A to the root C.

2. The coordinator C computes the clique tree T and com-
municates it to all nodes N .

Then, we perform multiple iterations until convergence:

1. Node N calculates RN corresponding to the subtree
rooted by N , and sends an update matrix UN to C.

2. Given the update matrices {UN} for all nodes N , the co-
ordinator C performs the factorization at the clique tree
root to produce RC .

3. The coordinator C computes the solution ∆C for the un-
knowns in the root clique, and sends this to all nodes N

4. The nodesN use this to compute the solutions ∆N for all
the unknowns in their subtree.

In practice one always considers a linearized version of
the SLAM problem as the process models fi and measure-
ment equations hk are typically non-linear and a succession
of linear approximations will need to be considered. Below
we assume that we are working on one of these iterations.

The data-flow of our current implementation is shown in
Figure 3. We used a simple scheme where one of the robots
is chosen as the coordinating node C, and other nodes N
are connected in a trivial spanning tree with C as the root.
Note that any of the schemes in (Paskin, Guestrin, & Mc-
Fadden 2005) can be used instead: this will not substantially
modify the algorithm. To achieve a clique tree topology that
allows for this distributed computation, we first eliminate all
structure seen by one robot, then the trajectory unknowns
for each robot, and finally the structure seen by more than
one robot. This leads to a clique tree where the root (or top
tree) contains the common structure, with subtrees hanging
off the root corresponding to each robot.

The computation then proceeds as in Algorithm 2. As a
one-time setup procedure, a clique tree T is computed on
the coordinator node C and communicated to all nodes N
in the network. This incurs low communication overhead as
only a symbolic version S of the measurement matrices A
needs to be sent over the network. Then, each iteration ex-
ecutes a factorization and a back-substitution phase. In the
non-linear case, the solutions computed are update vectors
for the current linearization, hence they are denoted by ∆C
and ∆N . As a useful fact, after the local factorization is
computed on a node N , it can already update a local view of
the world, e.g. to perform navigation or obstacle avoidance.
When finally the update ∆C from the coordinator arrives,
the local view is updated to align with the global solution.
Note that multifrontal QR is used both as the top-layer dis-
tributed computation scheme, as well as to perform the fac-
torizations on the nodes N and C. Only, in this case the
clique tree spans multiple network nodes, and hence some
of the edges in the tree are in fact links across the network.
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Figure 4: MRF structure and final solution for a simulated sce-
nario in which three robots all pass through the same central loca-
tion, but at three different times. Hence, they never actually see the
same landmarks at the same time.

Experimental Results
Simulations We performed multiple experiments with
simulated data, including the simple example from Figures 1
and 2. Here we discuss a different, representative simulation
involving three robots. The MRF topology induced by the
simulated trajectories and measurements is shown in Figure
4. In this scenario, three robots all pass through the same
central location, but at three different times. Hence, they
never actually see the same landmarks at the same time.

The quality of the solution is very good despite non-trivial
simulated measurement noise: in our simulated environ-
ment, both the landmarks and robot were aligned along the
main 2D axes. The global rotation that can be seen in the
figure is a fundamental ambiguity that cannot be recovered
by any algorithm that uses relative landmark measurements
only. The clique tree computed by our implementation is
shown in Figure 5. The root, shown in black, in fact contains
all the landmarks corresponding to the one central location
that was visited by all robots, as well as some of the other
landmarks that were seen by at least two robots. Note that
the algorithm has no trouble at all dealing with the multiple
loops in this example. The three main subtrees correspond
to one robot each, with the leaf nodes in each subtree corre-
sponding to the landmarks seen only by that robot.

Using 10 Real Robots We also tested the algorithm in
practice, using 10 four-legged Sony Aibo robots in a lab set-
ting. The 10 robots where placed at regular intervals in a
“hallway” around a 5 × 5 meter field of obstacles, as shown
in Figure 6a. The hallway also contained 32 regularly placed
artificial landmarks, consisting of cylinders wrapped with

Figure 5: The clique tree computed in our distributed implemen-
tation for the simulation from Figure 4.

colored paper, as frequently used in the Robocup competi-
tions. Each robot was instructed to walk 3m back and forth,
while its built-in camera took images and stored them on a
memory stick. The Aibo robots are challenging for SLAM
applications as their odometry is notoriously unreliable, dif-
fers from robot to robot, and depends heavily on factors such
as the floor texture or even the battery level.

We did not implement the MFQR algorithm on the Ai-
bos, but have tested the entire distributed computation that
would take place on the robots, using 10 executables, one
for each robot. The images were processed off-line to de-
tect landmarks and generate the measurement data for each
robot. Data association was not an issue as each landmark
was locally unique and confusion was not possible. After
landmarks were detected in the image, bearing and range
of each landmark were determined using the centroid image
coordinates and the size of the landmarks.

The clique tree used and the final result are also shown in
Figure 6. The reconstruction is noisy but reasonable given
the unreliable odometry and the relatively few measurement
sightings. Still, the loop is closed and the computation was
flawless, matching that of a single server implementation.

Conclusion and Future Work
We believe that MFQR will play a large role in the future
of distributed inference such as needed in intelligent sen-
sor networks and more involved computations such as dis-
tributed SLAM with a team of intelligent robots. We demon-
strated the viability of the approach in the domain of dis-
tributed SLAM, but the framework applies more generally
to any distributed computation whose sub-problems can be
mapped to a Gaussian MRF.

Our implementation was tested both in simulation as well
as using a team of 10 robots, collaboratively mapping an
environment of which a single robot sees only a small part.
We believe that this is a first in landmark-based SLAM.

In future work we will examine more sophisticated
schemes to build the clique tree, to reconcile the conflict-



(a) Experimental Setup (b) Clique Tree (c) Final D-SLAM Result

Figure 6: A Distributed SLAM experiment with 10 legged robots in a lab setting. A photograph conveys the experimental setup, and also
shown are the clique tree used in the computation (10 subtrees), and the final result. See also the text.

ing objectives of reducing fill-in of the graph (leading to
increased computation) and keeping the measurements lo-
cal (to keep communication costs down). In this respect.
the robust distributed inference architecture from (Paskin,
Guestrin, & McFadden 2005) is an obvious candidate for us
to implement and adapt to the MFQR method.
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