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Abstract

We investigate Intrinsic Localization and Mapping
(ILM) for teams of mobile robots, a multi-robot variant of
SLAM where the robots themselves are used as landmarks.
We develop what is essentially a straightforward application
of Bayesian estimation to the problem, and present two com-
plimentary views on the associated optimization problem that
provide insight into the problem and allows one to devise ini-
tialization strategies, indispensable in practice. We also pro-
vide a discussion of the degrees of freedom and ambiguities
in the solution. Finally, we introduce two applications of ILM
that bring out its potential: Diffusion Mapping and Marco Polo
localization.

1 Introduction

In many mobile robot applications it is essential to obtain
an accurate metric map of a previously unknown environment,
and to be able to accurately localize the robot(s) within it. The
process of reconstructing such a map from odometry and sen-
sor measurements collected by one or more robots is known
as Simultaneous Localization and Mapping (SLAM) [1]. Sen-
sors that are commonly brought to bear on this task include
cameras, sonar and laser range finders, radar, and GPS.

In this paper we investigate Intrinsic Localization and
Mapping (ILM) for teams of mobile robots, a multi-robot
variant of SLAM where the robots themselves are used as
landmarks. This idea has been explored before, first by Ku-
razume [2, 3], and later by Rekleitis et. al. [4]. However, in
both cases some robots are kept stationary while only a sub-
set is allowed to move. We do not impose such a restriction
here, although we do show that stationary “sentries” improve
the global accuracy of the solution. Collaborative localization
approaches with extrinsic landmarks were investigated, both
Kalman-filter based [5], as sample based [6], using a multi-
robot version of Monte Carlo Localization [7].

Our approach is more general than recent work at USC
[8], as it handles both bearings-only and range-only scenar-
ios, and does not require that the orientation of other robots
can be measured. Both our approach and [8] are essen-
tially straightforward applications of Bayesian estimation to
the problem, and hence, though they were independently de-
veloped, are similar in many respects. However, in addition
to this Bayesian framework, we present two complimentary
views on the associated optimization problem that provide in-
sight into the problem and allows one to devise initialization
strategies, indispensable in practice. We also provide a discus-

sion of the degrees of freedom and ambiguities in the solution.
Finally, we introduce two applications of ILM that bring out

its potential: first, Diffusion Mapping is an approach where
a highly redundant team of simple robots is used to map out a
previously unknown environment, simply by virtue of record-
ing the localization and line-of-sight traces, which provide a
detailed picture of the navigable space. Second, Marco Polo
Localization is a novel localization technique based on sound
only, where robots measure range to each other by listening to
a sound emitted by each robot in turn. The name is taken after
a children’s game that operates on a similar principle.

2 Problem Statement

The problem of intrinsic localization and mapping (ILM)
is to estimate the poses X of all robots at all times given
odometry data O and additional intrinsic measurements Z, i.e.,
which measure something about the relative pose between two
robots. Below we discuss the scenarios where either only bear-
ing or only range measurements to other robots are available,
and a third scenario with any arbitrary combination of bear-
ing and range measurements. It is not necessary to be able to
measure the orientation of other robots, although this type of
measurement is easily integrated in the framework if available.
We will also assume that there is no correspondence problem,
either because robots can be tracked in a recursive scheme, or
because identity is available as part of the measurement.

Without loss of generality we consider a synchronous mea-
surement scheme, where all the robots take a measurement at
the same time. This assumption can be relaxed in a straightfor-
ward manner. In terms of notation, we will refer to the entire
set of sought poses as X , whereas the poses of one robot only
are denoted as Xi, with i � 1 ��� m, and the poses of all robots at
a specific time t as X t , with t � 1 ��� T . The pose of robot i at
time t is denoted as xt

i . Similar conventions are used for the
odometry O and the intrinsic measurements Z. The set of in-
trinsic measurements between robots i and j is written as zi j,
and can be either empty, a bearing measurement, a range mea-

surement, or both. We define � e � 2Σ ∆� eT Σ � 1e to be the squared
Mahalanobis distance with covariance matrix Σ.

Below we provide measurement models for odometry and
the intrinsic measurements, respectively for a single robot and
at a single time. The next section then considers the entire
batch optimization problem over all robots and all times.

2.1 Odometry Measurements
Given no other information, the maximum a posteriori

(MAP) trajectory X̂i of a single robot i given odometry Oi is



obtained simply by integrating the odometry over time. If no
prior on the initial pose x1

i is available, the trajectory can be
determined up to a 2D displacement only, i.e., an arbitrary
translation and rotation in the plane. If a prior is available,
there is no remaining ambiguity. In detail, the MAP trajectory
is found by maximizing the posterior probability

P � Xi � Oi � ∝ P � Xi � P � Oi � Xi � � P � x1
i � ∏

t
P � ot

i � xt
i 	 xt 
 1

i � (1)

where we make the usual conditional independence assump-
tions, and the only prior knowledge available is a guess x̄1

i for
the initial pose x1

i . In the case of normally distributed mea-
surement noise, the associated error to be minimized is equal
(up to a constant) to the negative log-posterior, given by

Eoi
∆� � x1

i � x̄1
i � 2Q � ∑

t
� ot

i � g � xt
i 	 xt 
 1

i � � 2R (2)

where g � x 	 y � is the odometry measurement function between
two poses x and y, and Q and R are the covariances for the
prior on x1

i and odometry measurements ot
i , respectively.

2.2 Intrinsic Measurements
Similarly, assuming no prior for now, at each time-step t we

can obtain a maximum likelihood estimate X̂ t for the configu-
ration of poses X t given only the intrinsic measurements Zt at
time t, by maximizing

P � Zt � X t � � ∏
i j

P � zi j � xt
i 	 xt

j � (3)

or, alternatively, minimizing the associated error:

Et
z
� ∑

i j
� zi j � h � xt

i 	 xt
j � � 2S (4)

where h � x 	 y � is the intrinsic measurement function associated
with the ordered pair of poses x and y, S is the noise covari-
ance for each set of measurements, and the summation is over
all pairs � i 	 j � where a bearing and/or range measurement is
available. To determine whether the configuration X t can be
determined at all, we need to count the degrees of freedom
(DOF). The number of unknown parameters is 3m, i.e., � x 	 y 	 θ �
for each robot, and a solution can be obtained only if the num-
ber of measurements actually available is more than the DOF.
We distinguish three different cases:
 Bearing measurements only: the configuration can be de-

termined up to a 2D similarity transformation. Since a
similarity has 4 DOF, the system has 3m � 4 DOF, and
the maximum number of measurements is m � m � 1 � . Re-
covering the configuration (up to the stated ambiguity) is
possible when at least 3 robots are available, as discussed
in [9]. The latter paper also provides a linear method for
obtaining an initial estimate. When m � 3, it is possible
that a second flipped solution exists as well [9].
 Range measurements only: the orientation of the robots
is not observable, and robot positions (2 unknowns per
robot) can only be determined up to a 2D displacement
and an orientation flip. Hence, the DOF are 2m � 3
whereas Kmax

��� m
2 � , possibly yielding a solution (up to

the stated ambiguity) when at least 4 robots are available.


 Mixed measurements: in general, the configuration can
be determined up to a 2D displacement with a minimum
of 2 robots.

3 Intrinsic Localization and Mapping

The ILM problem as stated above can now be seen as com-
bining these two estimation problems, i.e.. obtaining the MAP
estimate for the poses X for all robots 1 ��� m and times 1 ��� T ,
given the odometry O and the intrinsic measurements Z:

X̂ � argmax
X

P � X � O 	 Z � � argmax
X

P � X � P � O � X � P � Z � X �
or, alternatively, minimizing the following error function:

E
∆� ∑i Eoi � ∑t Et

z
�

∑i � x1
i � x̄1

i � 2Q � ∑it � ot
i � g � xt

i 	 xt 
 1
i � � 2R � ∑ti j � zi j � h � xt

i 	 xt
j � � 2S

We use a non-linear optimization method, Levenberg-
Marquardt with a sparse QR solver, to obtain the MAP esti-
mate in a batch optimization procedure. For on-line applica-
tions, it is straightforward to use this method as a subroutine
in a fixed-lag smoothing scheme, where one only optimizes
for the last n time slices while keeping the other poses con-
stant. To compute the (sparse) Jacobian ∂E

∂X we have imple-
mented an automatic differentiation (AD) framework. AD is
neither symbolic nor numerical differentiation, and calculates
the Jacobian at any given value exactly, efficiently, and free of
numerical instabilities. See [10] for more details.

4 Of Tracks, Slices, and Sentries

In practice non-linear optimization is plagued by local min-
ima, and insight in the structure of the problem is needed to
provide a good initial estimate to the solver. This is especially
so if no prior P � X1 � for the initial poses is available, in which
case the problem of local minima is more severe. Below we
present two complimentary views of the problem that enable
us to tackle the initialization problem in a two-step approach.

4.1 Tracks View
The first view is to decompose the problem into m robot

localization problems, where the individual tracks Xi of the
robots are related only through the intrinsic measurements Z:

P � X � O 	 Z � ∝ P � Z � X � ∏
i

�
P � x1

i � P � Oi � Xi ���
If a prior P � X1 � � ∏i P � x1

i � is available, then the individual
MAP tracks are determined exactly (Section 2.1), and can be
seen as corrected by additional measurements Z between the
tracks, through P � Z � X � . Conversely, if P � X 1 � is not available,
then the tracks are only determined up to a 2D displacement,
and the intrinsic measurements Z have the additional effect of
registering the tracks to each other in the plane. A strategy to
avoid local minima in the latter case is then the following:

1. Create the m tracks Xi by integrating the odometry Oi.
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Figure 1: Diffusion Mapping: a simulated example where 15
robots are released on the left and execute a pure random walk
control strategy in a large environment, except that they re-
flect off walls. Shown are the traced trajectories at regular
time intervals between 0 and 1000 steps, which collectively
constitute a map of the empty space, and hence of the naviga-
ble environment. Gray lines indicate recorded lines of sight,
which complement the trajectory information.

2. Solve the 3m dimensional optimization problem of regis-
tering the tracks by maximizing P � Z � X 1 � , while keeping
the tracks rigid.

3. Use that as the starting point for the global optimization.

There is still no guarantee that step 2 will not get stuck in a
local minimum. However, since the related optimization prob-
lem is relatively small, it can be restarted several times at a low
computational overhead.

4.2 Slice View
The second view is to decompose the problem into T indi-

vidual time slices X t , with each slice X t coupled through the
aggregate odometry Ot at time t to the next slice X t 
 1:

P � X � O 	 Z � ∝ � P � X1 � ∏
t

P � Zt � X t ��� ∏
t

P � Ot � X t 	 X t 
 1 �
In case enough measurements Zt are available at time t, a max-
imum likelihood (ML) estimate for the slice configuration can
be obtained, up to a 2D displacement and possibly up to a scale
and orientation flip (Section 2.2). The corresponding staged
optimization strategy is:

1. Find the ML estimate for each slice X t , if possible.

2. Solve the 3T -dimensional (or 4T, if range-only) prob-
lem of the slice poses by maximizing ∏t P � Ot � X t 	 X t 
 1 � ,
while keeping the slices rigid.

3. Use that as the starting point for the global optimization.

The advantage of the optimization problem in step 2 is that
the Hessian is bandwidth limited, and hence can be solved in
linear time. However, in the range case there is the additional
problem that the orientation of each slice needs to be deter-
mined. The disadvantage of this approach is that step 1 might
not be possible, if not enough measurements are available in
some slices.

4.3 Drift and Sentries
Note that neither of the strategies outlined above is a recipe

for success: it might still be the case that the global optimiza-
tion process in step 3 gets stuck in a local minimum. The slice
view also provides another insight, which is that the global
optimization problem is very similar to the single robot lo-
calization process, when one views the slices as an evolving
articulated robot system. That makes it clear that, much like
the single robot case, error will accumulate over time and the
entire system will drift away from the ground truth situation.

A possible solution to the drift problem is to use sentry
robots that remain stationary over time, and provide a series
of landmarks that can help “close the loop”, when part of the
team wanders back into a previously visited area. The number
of ways in which this can be done is endless and will depend
on the application. One way is to leave a “coordinate frame”
team of two or three robots at the starting point of the robot-
team. Another approach, possible with highly redundant robot
swarms, is to occasionally “drop” sentries along the trajectory,
according to some distance or line of sight criterion.
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Figure 2: Simulation with 10 robots (and 3 sentries) over 200 timesteps. The first panel shows the actual simulated tracks. The
simulated environment outline (modeled after an existing museum building) is shown in gray in all other panels, which show the
MAP estimate X̂ at different time steps, respectively 20, 40, 60, 100, and 200.

Figure 3: Simulation that illustrates the global correction by sentry robots. The ground truth tracks of 5 robots running for 100
timesteps are shown in gray. The 3 stars in the middle are sentries that establish a coordinate frame. Left: the estimated tracks using
the measurements from the sentries. Bottom: the estimated tracks without using the sentries.
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5 Application I: Diffusion Mapping

Mapping navigable space is important for mobile robots and
can also be a product in its own right, e.g., in the case of re-
connaissance. In this paper we introduce one way of tackling
this problem, diffusion mapping, which is based on the ILM
framework discussed above and is illustrated in Figure 1. The
idea is to use teams of many small robots as a dynamically de-
ploying, richly connected net of sensors, in order to map out
navigable space. We call this diffusion mapping, as very sim-
ple random walk or diffusion control strategies are used for the
individual team members.

Diffusion mapping is a straightforward implementation of
the ILM framework for the case of bearing-only measure-
ments. We maintain the global position and configuration of
the evolving sensor net, using robot odometry and relative
bearing measurements between the robots themselves. The
traces of the robots through space as well as lines of sight be-
tween the robots at successive times are used to carve out the
free space.

We are currently building a large number of small robots in
the BORG lab at Georgia Tech (http://borg.cc.gatech.edu) in
order to, among other goals, validate diffusion mapping ex-
perimentally. However, the system already runs in simulation
and will be used to test the algorithms and help determine the
accuracy specifications of the bearing sensors that we will put
on the robots. Under consideration are both IR and RF-based
bearing and range sensors.

Figure 2 shows the results of a simulation with 13 robots, of
which three were used as sentry robots as discussed in Section
4.3. The simulation was run for 200 time-steps, and the fig-
ure shows the ground truth tracks of the robots, as well as the
MAP estimate X̂ at different times in the simulation, super-
imposed on the ground truth. In this case we used simulated
odometry with a positional accuracy of 10cm, orientation ac-
curacy of 5 degrees, and bearing sensors with an accuracy of
5 degrees. All the accuracy figures correspond to the stan-
dard deviation of normally distributed noise that was generated
during the simulation of the measurement values. In the last
timestep, the optimization is over 7800 unknowns, using infor-
mation from 5683 bearing measurements and 7761 odometry
measurements. Using the sparse QR solver, each Levenberg-
Marquardt iteration for that size takes a couple of seconds.

Figure 3 more clearly illustrates the beneficial effect of ded-
icating some of the robots as sentry robots, in order to establish
a global frame of reference.

6 Application II: Marco Polo Localization

In Marco Polo Localization, we apply sound as a tool for
gathering the range measurements between robots, and solve
those as a range-only Simultaneous Localization and Mapping
(SLAM) [1] problem. By applying sound as a sensor for gath-
ering range estimates, we hope to demonstrate the feasibility
of using sound for localization and to increase the generality of
the SLAM problem. Marco Polo Localization is described in
more detail in [11], but below we present some experimental
results to illustrate the approach.

Figure 4: Robots used to test Marco Polo Localization.

The scenario is as follows: a group of robots are scattered
about the environment in unknown starting positions. They
each generate a sound, and time differences are gathered be-
tween each of the robots, allowing us to obtain range esti-
mates. This is called a slice, as it reveals the position of the
robots at one point in time. After sounding off, the robots
move about the room, recording their change in odometry. At
some time later, the robots are stopped, and another slice is
gathered. This procedure of moving, stopping, and sounding
off is repeated regularly throughout the experiment.

Experiments were run on four Nomad 150 robots, see Fig-
ure 4, equipped with laptops and a wireless connection. Each
Nomad had a speaker mounted on one side of the laptop, and a
microphone mounted on the other. In order to synchronize the
recordings between channels, microphones were plugged into
a single desktop computer with a 16bit sound card. The digital
sampling quality of all recording was performed at 16bit qual-
ity, and 22050 Hz. While the microphones used were wired,
the system can in principle be implemented wirelessly without
difficulty.

Distance estimates were gathered from the robots in pairs.
One robot played a sound while recording data, while a second
robot was also recording data. These two files were then saved.
Then the robot started recording again and repeated the sound
while another robot was listening. This process repeated until
every pair of robots had recorded a time-delay between them.
We were limited to two robots at a time, because the standard
sound we used was limited to recording two channels at a time.
In principle, one sound could be used to generate n � 1 read-
ings using the appropriate hardware to synchronize n channels.

Once all the data was recorded, each pair of sound files was

p. 5



−1 0 1 2

−3

−2

−1

0

1

2

3

−4 −3 −2 −1 0

−2

−1

0

1

2

3

4

5

Figure 5: (left) Real Robot results for 4 robots, and 3 slices.
(right) True positions. In this experimental run, 14 range mea-
surements were used to align the tracks.

compared using a cross-correlation algorithm to find the time-
delay between the two channels. The sound used was a click-
ing noise that was experimentally determined to provide the
best time-delay estimates using cross-correlation. The soft-
ware used for the actual cross-correlation was Ishmael 1.0, de-
veloped by the Office of Naval Research [12]. If the cross-
correlation algorithm returned an estimated time-delay greater
than 15ms, then that measurement was discarded. This thresh-
old value was experimentally determined to be the physical
limit of the microphones/amplifier used.

In practice, a large number of the actual time-delay mea-
surements will not be available to help align the tracks. Es-
pecially as robots start to move around in the environment, it
occurs more often that they are located in positions where a
good time-delay estimate is difficult to obtain. On the exper-
iments with 4 robots and 3 stops, three tests recorded 14, 10,
and 10 useful time-delay estimates out of a possible 18. The
rest were removed by thresholding. Actual bad measurements
which were not removed by thresholding were rare, and did
not influence the data much. The error here is mostly due to
the off centered position of the microphones on each robot.
Microphones could not be placed exactly center because of
existing equipment on the robots.

Figure 5 displays the reconstructed results from test 1, using
the track view method. Two changes to procedure would help
correct for this error. First, the microphones should be located
as close to the center as possible, or their position on the robot
needs to be incorporated into the model. Second, the more
range estimates obtained, the better.

7 Conclusion

The Intrinsic Mapping and Localization framework we pro-
pose can be efficient, as demonstrated using the large scale
Diffusion Mapping simulations. It has been validated in prac-
tice in the context of Marco Polo Localization. And it can
be implemented easily, using automatic differentiation to take
care of the most tedious aspect of optimization. We have
shown results for both bearing only and range-only scenarios,

and the method handles any combination thereof. In future
work we will attempt to validate the concept of diffusion map-
ping in practice using a highly redundant team of small mobile
robots, using between 15 and 100 robots. We are also planning
to further explore the use of sound localization, using both an
intrinsic measurement scheme as discussed here, as well as
extrinsic sound measurements from the environment.
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