
The Georgia Tech Yellow Jackets:
A Marsupial Team for Urban Search and Rescue

Frank Dellaert, Tucker Balch, Michael Kaess, Ram Ravichandran,
Fernando Alegre, Marc Berhault, Robert McGuire,
Ernest Merrill, Lilia Moshkina, and Daniel Walker

College of Computing, Georgia Institute of Technology

Abstract

We describe our entry in the AAAI 2002 Urban Search and
Rescue (USAR) competition, a marsupial team consisting of
a larger wheeled robot and several small legged robots, car-
ried around by the larger robot. This setup exploits compli-
mentary strengths of each robot type in a challenging domain.
We describe both the hardware and software architecture, and
the on-board real-time mapping which forms the basis of ac-
curate victim-localization crucial to the USAR domain. We
also evaluate what challenges remain to be resolved in order
to deploy search and rescue robots in realistic scenarios.

1 Introduction

Figure 1: Our robot team, consisting of 1 ATRV-Mini and 4
Sony Aibo legged robots.

A team from the Georgia Tech’s College of Computing
participated in the AAAI 2002 Robotic Search and Rescue
competition, held annually to advance the state in the art
of robotics in the Urban Search and Rescue (USAR) do-
main. In the competition, a standard test arena provided by
the National Institute of Standards and Technology (NIST)

Copyright c© 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

provides a setting to evaluate different robot hardware and
software architectures in a more realistic setting than in the
lab. The goal of the competition is to accurately locate vic-
tims in the test-arena, which is off limits to human operators.
The arena has three sub-areas with varying degrees of debris,
but most of the competing teams never enter the more diffi-
cult orange or read areas, which are not navigable by typical
research robots.

Our entry (see Figures 1 and 2) was motivated by the ob-
servation that a heterogeneous team of a large robot and sev-
eral smaller robots compliment each other’s strengths. A
larger robot can carry more capable sensors, provide sub-
stantial computation, is faster and has more autonomy than
smaller robots. However, because of its size it is not able to
travel everywhere in the environment. This is certainly the
case for the challenging environments one expects to find
in the aftermath of a disaster, with fallen debris, collapsed
walls, and cluttered floors. Smaller robots, while having less
autonomy and sensing, compensate by their ability to go in
small and inaccessible places, small crevices etc.

Figure 2: The robot team while operating in the NIST-USAR
arena. One of the Aibos has un-docked and is looking for
victims, not seen in the image.

The marsupial team we entered consisted of an iRobot
ATRV-Mini as the main robot, providing many sensors
and computational resources, and four Sony Aibos legged
robots, able to explore small areas the main robot cannot



reach. Figure 2 shows the ATRV and three of the Aibos,
while in the NIST-USAR arena. The hardware used is dis-
cussed below in more detail in Section 2.

One perhaps unusual feature of our entry was that all the
software (except interaction with the Aibos) was written in
a functional programming language, ML. This is including
low-level communication to the sensors and cameras on the
robot. This ensured that the probability of run-time errors
and crashes due to segmentation faults etc. was minimized.
Also, ML lent itself surprisingly well to the specification
of the robot architecture, which was based on an ML ver-
sion of Clay. Clay is a robot architecture proposed by one
of us (Balch) as part of Teambots, a software architecture
for distributed robot teams (www.teambots.org). Finally, the
strong typing imposed by ML combined with its mechanism
of type inference allowed for a fast development cycle and
made it easy to share code between the different program-
mers on our team. ML-Clay and the architecture we used is
discussed briefly in Section 3.

Figure 3: The “away team” in Edmonton, with the robots.
From left to right: Tucker, Ram, Frank and Michael.

The main sensors on the ATRV are a SICK laser range
scanner and a custom-built omni-directional camera rig.
One of the main capabilities the larger robot brings is the
ability to construct an accurate map of the environment on
the fly, based on laser range scans provided by the SICK
scanner. This map can then be relayed to the operator for
tele-operation, and is also the basis for providing informa-
tion as to victim location. Mapping is explained in more
detail in Section 4. Where the scanner provides a map, the
camera rig functions as the “eyes” of the operator, who can
choose between each of the 8 cameras that together provide
a 360o field of view. Using these cameras, victims can be
identified and placed in the map by the operator.

The Sony Aibos were dispatched whenever the ATRV was
unable to enter a specific area, or when it was deemed un-
wise to do so. Operator training and experience played a
large role during the competition itself, where one operator
controlled all the robots, albeit in a serial manner. The local-
ization of the Aibos was done manually by the operator by

monitoring them from the ATRV camera rig. When an Aibo
(or the ATRV) then found a victim, it was marked manu-
ally on the map by the operator. In Section 5 we discuss the
operator interface for this and general tele-operation.

Our successful entry into the competition was made pos-
sible with the help of many students, graduate students as
well as undergraduates, and three dedicated faculty/research
scientists. The “away-team” in Edmonton consisted of two
faculty (Dellaert & Balch), one graduate student (Michael
Kaess), and one undergraduate (Ram Ravichandran), shown
in Figure 3. As with any experience, we have learned valu-
able lessons about our specific approach, as well as about
the realities associated with the USAR domain. They will
be discussed in Section 6.

2 Hardware Platform

2.1 ATRV-Mini

Figure 4: System architecture for the larger robot: the odom-
etry and SICK laser scans are handled by the on-board com-
puter, and relayed via Ethernet to a laptop on top of the
robot. This laptop interfaces to the cameras, and also pro-
vides wireless communication to the operator console.

The ATRV-Mini is a commercial robot platform from
iRobot. A SICK laser scanner was added in the front, as well
as an aluminum mount on the top to fit the omni-directional
camera rig together with a laptop for computer vision tasks.
As illustrated in Figure 4, the laptop connects to the on-
board PC over an Ethernet connection, and to the operator
console using a PCMCIA 802.11 card, providing wireless
communication with the robot. On the back of the robot an
aluminum platform was mounted which can hold up to four
Sony Aibos.



Figure 5: Omni-directional Camera Rig consisting of 8
FireWire DCAMs.

2.2 Omni-directional Camera Rig

The omni-directional camera rig was custom built in our lab,
and consists of eight FireWire DCAMs from Videre Design.
They are mounted every 45 degrees around a circle, their
principal axis parallel to the ground. They are connected
to the laptop over two FireWire busses, since each bus can
only handle synchronous data transfer from four cameras at
a time. Power is provided from an extra battery residing
between the cameras.

2.3 Sony Aibos

Figure 6: Sony Aibo with LED flashlight.

Four Aibos were used, which can be carried on the alu-
minum platform on the back of the ATRV. The Aibos are
commercial robot platforms from Sony with 17 degrees of
freedom, a color video camera built into their nose, and a
PCMCIA 802.11 card for wireless connection. They provide
on-board processing and were programmed using the Sony
SDK. To also enable vision in dark rooms, a LED flashlight
was added. Figure 6 shows three of the Aibos mounted on
the platform, which was designed so the robots can easily
dock and undock, respectively by standing up or taking on a
“clamp” position.

3 Software Architecture

The software architecture we used to control both types of
robots consists of a distributed set of applications, which are:

1. Aibo-Commander: a C application running on the Aibo
operator console, wirelessly controlling the Aibo legged
robots. Its interface is discussed below.

2. Control: a C application on board of the robot that pro-
vides low-level control and acquires SICK and odometry
measurements. It also acts as a server in communicating
over the Ethernet wire with the laptop.

3. Commander: the user interface on the operator console,
written entirely in ML, which acts as both client and
server in a wireless client-server communication scheme
with the laptop. It serves commands and consumes im-
ages, laser scans, and incremental map updates to relay
feedback to the operator.

4. Rescue: the main mapping and high-level robot control
software running on the laptop, also written in ML, act-
ing as a client to both Commander and Control, and also
serving images, laser, and map updates to Commander.
Images are JPEG-compressed before transmission to con-
serve bandwidth.

3.1 Use of a Functional Language

Both Rescue and Commander were written in a functional
language, ML, which provides strong typing, type inference,
and higher order functions. Strong typing proved to be in-
valuable in having a large team of programmers put together
a complex application in a relatively short amount of time.
Type inference is a mechanism by which types are automat-
ically inferred from context, at compile time, and hence ob-
viate the need to annotate the code with types. This gives
a ’scripting’ feel to the language, albeit with strong types.
Higher order functions are functions that take other func-
tions as input, and allows one to specify, for example, a
generic particle filter as in Figure 7.

The compiler we used was Objective Caml, which pro-
duces very fast code, achieving performance on par with
C/C++ code. We used Caml to do client-server communica-
tion, image processing, particle-filtering, map building etc,
all in real-time and distributed over two computers. Func-
tional languages are useful in the real world, can handle the
real-time constraints of robotics and vision, and provide a
vastly superior programming language than C or C++.

3.2 Clay Architecture

The Rescue application is configured as a Clay architecture
shown in Figure 8. Clay (Balch, 1998) was originally writ-
ten in Java as a group of classes that can be easily combined
to create robot control systems. We have written a version
of Clay in ML, taking advantage of polymorphic types to fa-
cilitate combining, blending and abstracting behaviors and
processes.



type ’x likelihood = ’x -> float
type ’x samples = ’x list
type ’x motionModel = ’x -> ’x
val step: ’x likelihood -> ’x motionModel -> ’x samples -> ’x samples

Figure 7: Type specification of a generic particle filter in ML, using higher order functions. The function step takes two functions as
arguments, one that computes the likelihood for each sample, and another that moves a sample according to a motion model. These functions
generally are partially applied versions of other functions that take additional arguments concerning the likelihood calculation and motion
model used.

Figure 8: Clay node configuration.

The basic building block in Clay is anode. There are two
important phases in a node’s life: initialization and run time.
Most nodes have only two methods, corresponding to these
phases: the constructor, used for initialization; andvalue ,
called repeatedly at run time. Nodes often have other
nodes embedded within them (e.g. anavoid_obstacle
node typically has adetect_obstacle node embedded
within it). The embedding is specified at initialization time
using the node’s constructor. Here is an example of how we
would embed one node in another:

let avoid_obstacles =
let detect_obstacles =
new obstaclesNode abstract_robot in
new avoidNode 2.0 1.0 detect_obstacles;

In this example, adetect_obstacles node is created
using theobstaclesNode class (theobstacleNode
class knows how to query the robot hardware for informa-
tion about obstacles). Next anavoid_obstacles node
is generated by embedding thedetect_obstacles node
in aavoidNode object .

Once a Clay node configuration has been specified, it is
repeatedly called at run time for it’s present value, based on
the current situation of the robot. All thevalue methods
take a time stamp as a parameter, so it will only compute its
value once per time step.

4 Mapping

A B C D

Figure 9: The probability densities and particle sets for one
iteration of the MCL algorithm. See text below.

The real-time mapping algorithm we used is based on
Monte Carlo Localization (MCL) (Dellaert et al., 1999;
Fox et al., 1999), using the SICK laser range scanner and the
odometry as measurement inputs. MCL represents the prob-
ability density over robot pose by maintaining a set ofsam-
plesthat are randomly drawn from it. By using a sampling-
based representation one obtains a localization method that
can represent arbitrary distributions, in contrast to Kalman-
filter based approaches which are limited to using normal
densities over the state space.

One iteration of the algorithm is illustrated in Figure 9. In
the figure each panel in the top row shows the exact density,
whereas the panel below shows the particle-based represen-
tation of that density. In panel A, we start out with a cloud
of particlesS(k − 1) representing our uncertainty about the
robot position. In the example, the robot is fairly localized,
but its orientation is unknown. Panel B shows what happens
to our belief state when we are told the robot has moved
exactly one meter since the last time-step: we now know
the robot to be somewhere on a circle of 1 meter radius
around the previous location. Panel C shows what happens
when we observe a landmark, half a meter away, somewhere
in the top-right corner: the top panel shows the likelihood
P (Zk|Xk), and the bottom panel illustrates how the sample
setS′(k) is weighted according to this likelihood. Finally,
panel D shows the effect of resampling from this weighted
set, and this forms the starting point for the next iteration,



S(k).

Figure 10: Laser map built in real-time, with marked victims
(plus signs).

The measurement model used for the SICK laser calcu-
lates the overlap between the endpoints of the current laser
scan and an occupancy map that is created on the fly. The
overlap is used as an energy measure which is transformed
into a probability using the Gibbs distribution, and then used
as the likelihood. We typically used 250 samples, and use
the weighted mean pose of the weighted samples as the
point estimate of robot pose. This estimate is then used at
each time step to update the occupancy map with the current
laser-points.

A laser-map built in this way, during one of the compe-
tition runs, is shown in Figure 10. Victims found during
that run are shown as crosses. Note that the map is noisy in
places because some assumptions we made were violated. In
particular, several walls of the arena were made of transpar-
ent Plexiglas that behaved as a mirror under certain grazing
angles. Also, at one point the robot pushed open a doorway
which in effect changed the map, and this is not currently
handled by the algorithm.

5 Interface & Experience

A large part of the programming effort concentrated on the
remote control user interface and the wireless communica-
tion protocols to make real-time control a possibility. The
interface is split in two parts running on two different lap-
tops to allow the operator to see everything at once. The
ATRV interface controls the main robot and its cameras, the
Aibo interface provides control over one of the Aibos at a
time.

The ATRV interface (Figure 11) consists of four parts:

1. A control window to switch between cameras and modes.

2. A camera window showing live images from one of the
eight cameras.

3. A laser window showing the most recent scan consisting
of 361 points with an outline of the ATRV for easy navi-
gation.

Figure 11: ATRV Operator remote-control interface.

4. A map window providing an integration of all laser scans
into an accurate map.

Figure 12: Aibo remote-control interface.

The Aibo interface, shown in Figure 12, allows the oper-
ator to select one of the four Aibos for control. It shows live
images from the selected Aibo’s built-in camera, allows to
undock and dock the robot on the aluminum platform on the
back of the ATRV, walk forward and backward, turn left and
right, and select from several different gaits.

6 Discussion

Our team came in third in a field of 9, and won a technical
award for its real-time mapping capabilities.

We also participated in the HCI study by the University
of Massachusetts at Lowell, led by Holly Yanko. As part
of that study, a local fire-chief evaluated our system by tak-
ing the operator role during an evaluation run. The resulting



Figure 13: Map created during the fire-chief run.

map is shown in Figure 13. The chief communicated to us
that especially the accurate and real-time mapping provided
a valuable resource that could be used in realistic rescue sce-
narios. A negative was that our larger robot proved to be
difficult to navigate in the confined space of the test arena.

The difficulty in navigating with the robot in the context
of a real-time, remote link suggests an immediate improve-
ment, namely semi-autonomy. The operator should be able
to provide a goal location and leave the robot to do the nec-
essary configuration planning and path execution to achieve
the goal with a much tighter control loop than possible over
the remote link. This is well within reach of the current state
of the art and would save a lot on time now lost by an overly
conservative control strategy on the part of the operator.

The absence of reliable wireless communication was the
biggest handicap that faced our team in the competition, and
hence robust communication has to be considered as much
part of the problem as the more academic research questions
of semi-autonomy and real-time mapping. In the world-
trade center disaster, where USAR robots where deployed
in a realistic setting for the first time, all robots were teth-
ered with long lines to avoid this type of communication
breakdown.

Ultimately, one of the most crucial factors in making
robots useful in the USAR domain is purely mechanical: can
the robots robustly navigate in a post-disaster environment
cluttered with debris and non-trivial obstacles ? Not sur-
prisingly our robot platforms, one a wheeled research robot
and the other designed for the toy-market (albeit very capa-
ble), were not able to enter either the orange or red areas
of the test arena, which resembled more closely the type of

Figure 14: During one of the competition runs, the ATRV
was retro-fitted with an improvised contraption to avoid get-
ting tangled in debris hanging from the ceiling, which would
have otherwise torn off some of the cameras or cables con-
necting them together.

environment USAR robots will eventually encounter. Even
the “easy” area sometimes provided challenges that needed
some improvising at the time of the competition, as shown
in Figure 14. The design of rugged robots that can perform
the task is really up to industry, although researchers could
play an important role in devising new paradigms for robust
locomotion, for example inspired by the fundamental prin-
ciples of effective animal locomotion (Clark et al., 2001).

Acknowledgments

We gratefully acknowledge Sven Koenig, who funded the
ATRV platform. Jonathan Shaw, Amy Hurst, Karthik Sub-
ramanyam, and Brian Feinstein provided additional support.
We are especially grateful to NIST and the organizers of the
competition for organizing a successful event.

References

Balch, T. (1998).Behavioral Diversity in Learning Robot
Teams. PhD thesis, College of Computing, Georgia Insti-
tute of Technology.
Clark, J., Cham, J., Bailey, S., Froehlich, E., Nahata, P.,
Full, R., and Cutkosky, M. (2001). Biomimetic design and
fabrication of a hexapedal running robot. InIEEE Int. Conf.
on Robotics and Automation (ICRA).
Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999).
Monte Carlo Localization for mobile robots. InIEEE Int.
Conf. on Robotics and Automation (ICRA).
Fox, D., Burgard, W., Dellaert, F., and Thrun, S. (1999).
Monte Carlo Localization – Efficient position estimation
for mobile robots. InAAAI Nat. Conf. on Artificial Intelli-
gence.


