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Abstract

We showv how to recover 2D structureand motion linearly
in orderto initialize SimultaneousMappingandLocalization
(SLAM) for bearings-onlymeasurementand planarmotion.
The methodsuppliesa goodinitial estimateof the geometry
evenwithoutodometryor in multiple robotscenariosHence,
it substantiallyenlaigesthe scopein which non-linearbatch-
type SLAM algorithmscanbeapplied. Themethodis applica-
blewhenatleastsevenlandmarksareseerfrom threedifferent
vantagepoints,whetherby onerobotthatmovesovertime or
by multiple robotsthatobsene a setof commonlandmarks.

1 Introduction

In mary mobile robot applicationsit is essentiato obtain
anaccuratenetricmapof a previously unknavn ervironment,
andto beableto accurateljocalizetherobot(s)within it. The
procesof reconstructinggucha mapfrom odometryandsen-
sor measurementsollectedby one or morerobotsis known
asSimultaneous ocalizationandMapping(SLAM) [1]. Sen-
sorsthat are commonlybroughtto bearon this taskinclude
camerassonarandlaserrangefinders,radar andGPS.

In the casea single robot obsenes a set of landmarks,
SLAM algorithms are often basedon variable dimension
Kalmanfilters[2, 1, 3]. In theseon-lineapproachegherobot
poseandthe landmarkspositionsare recursvely updatedas
eachnew measuremeris obtained.Becauseof the recursve
natureof thesealgorithms,andbecaus@dometrycanbeused
to predictchangesn poseandrelative landmarkpositions,a
goodinitial estimatds alwaysavailablein the Kalmanupdate
step. This is essentialn practice,asthe measuremenéqua-
tionsinvolvedareoftennon-linearin the state-ariables.

However, if multiple robotsobsene a commonsetof land-
marks, a recursve algorithm is not applicable. While the
SLAM problemcanbeformulatedin termsof non-lineamin-
imization,animportantproblemin practiceis the existenceof
localminimawhich canpreventtheoptimizationprocessrom
cornverging. In addition,evenif they corvergeto the correct
solution,thisis oftenslow whentheinitial estimatds farfrom
theglobalminimum. Thus,anessentiaklemento solvingthe
SLAM problemin the multiple robotscenarids the ability to
easilyobtaina goodinitial estimatefor thesolution.

We show that, with planarmotion andbearings-onlymea-
surementsaninitial estimateis efficiently provided by a lin-
ear algorithm borrowved from computervision. To this end,
the bearingsare corvertedto projective coordinatesn a vir-
tual 1-D cameraafterwhichalinear2D methodfor projective
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Figure 1: The SLAM problemis to recover both the positionsx? of the
landmarksandtherelative motionparameter&,t andQ, s for the secondand
third robot, respecitiely, from bearingmeasurements.

structurefrom motion(SFM) is usedto recoverthe positionof
thelandmarksandthe robot poses.As we startfrom bearing
measurements)o calibrationis neededand a metric recon-
structionis obtainedup to a 2D similarity transform.
Whereasthe underlying mathematicshas been presented
beforein the computervision community the presentpaper
providesasynthesi®f resultsspreacverseveralrelatively in-
accessibl@apers.We alsoshav how to corvertthe bearings-
only SLAM problemto the 2D projective SFM problem,and
omit detailsirrelevant to the SLAM problem (such as self-
calibration).We believe theresultto be of considerablgracti-
calvalueto researchermiterestedn thebearings-oniysLAM
problem. Theresultinglinear algorithm providesa quick ap-
proximatesolutionto the SLAM problem,whichis usefulto
1. avoid local minimaof non-lineaminimization,
2. save computatiorby startingneartheglobal minimum,
3. provide a quick anddirty SLAM estimatein casenon-
linearminimizationis infeasible.
The techniqueis applicablefor a singlerobotor in the case
wheresomeor all of the robotsmake multiple obsenations
overtime. In this caseto it canseneto initialize anincremen-
tal estimatoye.g.avariabledimensionKalmanfilter [2, 3].

2 Simultaneous L ocalization and M apping

2.1 Problem Formulation

Assumean unknownn ervironmentis obsened by one or
multiple robotswith m differentposesa, b, ¢, etc.,andn land-
marksx? areobsened(seeFig. 1). Thesuperscripaindicates



that landmarkcoordinatesare expressedwith respectto the
refeenceposea. The bearings-onlySLAM problemcanbe
statedasfollows: givenmbearingmeasurements, (3, v,... for
eachof then landmarksyecoverthen landmarkpositionsand
themrobotposesNotethatthesolutioncanonly berecovered
up to asimilarity transformin the plane.

2.2 Maximum a Posteriori SLAM

If measurementmrenoisy, theproblemis bestformulatedas
maximuma posteriori (MAP) estimation. The unknovnsare
the3m motionparametert! andthe2n landmarkpositionsX.
The dataZ consistsof mnbearingmeasurementsThe MAP
estimates the setof parameterdM, X}* that maximizesthe
posteriomprobability P(M, X|Z) of M, X giventhedataZ:

{M,X}* :argmaXM,X P(MXlZ)
= agmax  x P(Z|M, X) P(M, X)

Theposteriorprobability P(M, X|Z) is the productof thelike-
lihood P(Z|M,X) anda prior P(M,X) on the landmarkand
motion parameters.In typical SLAM scenarioshereis no
(strong) prior information on the position of landmarks,but
odometryprovidesa prior on the motion parameter®f indi-
vidual robots.

To obtain the MAP estimate,a measuementmodel is
needed.The bearingmeasurement;; taken by the it robot
on Iandmarkx? canbe predictedby first transformingthe 2D

landmarkpositioninto thei" coordinaterameandthentaking
thearc-tangent:

ajj = atan2(Rix?+ti) + Njj

whereR; andt; arethe rotationandtranslation,respectiely,
of thereferencdramewith respecto the ith frame,and nij is
measuremenioise.

2.3 SLAM asNon-linear L east-Squares

If we assuméndependenhormally distributednoisen;j on
the bearingmeasurementshenthelikelihoodP(Z|M, X) can
befactoredasfollows:

P(ZIM,X) =] A (otij; atan2(Rx@ + 1), 0%)
]

where((z u, 0?) is the normaldensitywith meanu andvari-
anceo?. Thus,if noprior is available themaximuniikelihood
(ML) estimatecanbefoundby minimizing thefollowing non-
linearleastsquaresriterion:

{M,X}* = agmin 5 (aij — atan2(Rx +t))?
MX 6

2.4 Number of Measurements Needed

It is of interesthow mary landmarksare neededo obtain
a solutionin the generalcase.The degreesof freedomof the
systemarethe numberof measurementsiinusthe numberof
parametersplus4 becauséhe solutioncanonly berecovered
up to a similarity transformin the plane(describedby 4 pa-
rameters)Thus:

DOF = mn+4— (3m+2n)

First, notethat with only two views, the systencan not be
solved This canbe seenby settingm = 2, in which casewe
getDOF = —2. Thisis alsointuitively clear: we canplace
therobotsanywhereandalwaysgetafeasiblesolutionfor any
numberof landmarkdy intersectinghelinesof sightfor each
landmark.

With threeviews, the minimal numberof landmarksis 5.
Indeed settingm = 3 we getDOF = n—5.

2.5 TheProblem of Local Minima

The problemwith the non-linearmethodoutlinedabove is
thatis sensitve to local minima. The nonlinearleast-squares
minimizationproceedsteratively, andwe areonly guaranteed
to find the globally correctsolutionif we startfrom aninitial
estimatethatis in the basinof attraction of the global mini-
mum. If thisis notthe casetheiterative minimizationproce-
durewill getstuckin alocal minimum.

This is animportantproblemin practice,assimulationex-
perimentswith randomlygenerategroblemsshow that typi-
cally morethan50% of all runsendup in a local minimum.
Themoreviews, the moreimportantthe problembecomes.

In the caseof a singlerobot, odometrycanbe usedto pro-
videagoodinitial estimate Thisis thebasisof existing SLAM
methodghattypically usevariabledimensionKalmanfilters.
However, in themultiple robotcaseor if no odometryis avail-
ablethereis currentlyno goodsolution.

3 A Linear Solution

In this sectionwe describea linear solutionto the bearings-
only SLAM problemthat doesnot suffer from local minima,
but immediatelyfindsthe globally optimal solution. This pro-
videsabasisto solvethe SLAM problemin themultiple robot
caseor in the single robot casewhen thereis no odometry
available.

Thelinearmethodis basedn thelinearstructue frommo-
tion (SFM) algorithmsdevelopedover the last few yearsin
thecomputewision community[4], but specializedo the 2D,
bearings-onhcaseg[5]. We caneasilytransformthe bearings-
only probleminto a 2D SFM problem,by corvertingbearing
measurement® 1D image measuementsin a virtual cam-
era,andsolvingtheassociate@D SFM problemlinearly. The
resultingsolution canthenbe fine-tunedby non-linearmini-
mization,if desired.

3.1 Convertingto a Projective Formulation

Below we introducehomogeneousoordinatesasthe lin-
earmethodsarebasedn projective geometry Bearingsmea-
surementgaken by the robotswill be corvertedto measure-
mentsin a setof 1D perspectie camerasor views one for
eachrobot. The views aredenotedby W1, W, W3, etc. 1D
imagemeasuremeni@regivenby their projective coordinates
A 2 (ulu?), vB 2 (v1v2), etc...,wherethe uppercaseuper
scriptsA, B,... indicatein whichview themeasurementshere
taken. Thelandmarksaredescribedy 2D projectve coordi-

nates@ 2 (xy2)". Thesuperscript in x2 refersto the refer
enceview, which we arbitrarily take to be the first view W;.

p.2



2D plane y-axis
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Figure2: Corvertingfrom bearinggo homogeneousnagemeasurements.

With theconversionu® — (cosa sina)T avirtual cameras createdasshown,
parallelto thex-axisaty = 1.

\ ]
N
Reference Frame |,0 t
VvB\= (VIv9)T~[Rt] xa

Figure3: 2D to 1D projectionin homogeneousoordinatess a linear op-
eration. Above we projectthe 2D point x2 A (xy2)T into thereferencdrame
Y; andinto asecondview W, with motionparameterf t.

2D coordinatesn the otherviews take superscript®d, c, etc.
Homogeneousoordinatesareonly definedup to a scale,i.e.
x& =y iff x2 = Ay?. The 1D and2D projective spacewill be
referredto asP! andP?, respectiely.

We caneasilycorvertbearingmeasuremenis to 1D image
measurements® in avirtual camen asfollows:

u? — (cosa sina)’

The virtual camerais locatedat y = 1 on the y-axis, parallel
to the x-axis, asillustratedin Fig.2. The boundarycasesof
abearingmeasuremenwith a = 0 or a = 1tis handledauto-
matically, asin bothcaseghe 1D projective coordinatewill be
(10)7, i.e. the “point at infinity”. Note thatasthereis only
onevirtual camerafor y > 0, the mappingabove is a 2-to-1
mapping:bearingshatdiffer by rtareidentified.

In homogeneousoordinatesthe projectionfrom 2D to 1D
is a linear operation. This is illustratedfor one 2D landmark
andtwo views in Fig. 3. In thereferenceview W1, which we
canarbitrarily placeat the origin, we have

Ve )T = (10
andin asecondview W, we have
Vv E VWA = [Ri)E

with Randt therotationandtranslationof view W,.

3.2 Recovering Landmarks

Consideffirst the sub-problenof recoveringthelandmarks
in thecasethattherobotposesareknown. As discusse@bove,
alandmark<® givesriseto animagemeasuremerih eachview
givenby

VL VAT = R

which is equivalentto VB x [Rt]x® = 0. Written out explicitly
thisyieldsthehomogeneousquation

(V1R21 — V2R11)X+ (V1R22 — v2R12)y+ (V1t2 — Vztl)Z =0

wherewe assumed@ = (xyz)". Eachview givesonesuch
equationandhencegivenat least? views we canlinearly re-
cover (xyz)". This makesintuitive sense:the landmarkcan
berecoveredby simply intersectingheviewing rays.

In practicethis is doneusingsingularvaluedecomposition
(SVD). To thisend,we first form amx 3 datamatrix D, where
eachrow is formedby the threecoeficientsof theequationin
the correspondingriew. For example,for threeviews D is
equalto

—u? ut 0
V1R21 — V2R11 V1R22 — V2R12 vit2 — 2l

WiQ21 —wW?Q11 W!Qu—wW2Qp2 wls? —wist

whereQ ands arethe rotation andtranslationparametersf
thethird view W3, respectiely, andtheimagemeasuremerih
W3 is givenby wC 2 (wiw?)' .

Thematrix D is thendecomposedsingSVD:

Dmx3 = Umx3/A\3x3V3x3

wherethecolumnsof V3, 3 containtheeigervectorsg of D'D.
Theeigervectore* correspondingo the minimumeigervalue
A* minimizesthe sum of squaresof the residual,subjectto
|le*|| = 1. Thehomogeneousoordinateof therecoseredliand-
markis thusx® = e*.

3.3 Recoveringthe Motion

A secondsub-problenis recoveringtherelative motionpa-
rametersn the casethatthe epipolesareknown. The epipole
is simply theprojectionin oneview of the centerof projection
of a secondview. Finding the epipolesis at the core of the
linear approachandis discussedn the next section,Section
3.4.

If thesecondview W, hasrelative motionparameter® and
t, respectiely, thentheepipolein W, ist 2 (t1t2)T. Thetrans-
lation betweer¥; andW; is only definedup to a scaleandits
directionis given directly by the epipolet. The situationis
illustratedin Fig. 4. Thebearinga from W, to W; satisfies

(cosa sina) =t

Let usdenotethe epipolein thefirst view Wy ase® = (el e?)T.
Thebearingp to thesecondview W, satisfies

(cosBsinB)=e
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Figure 4: Determiningthe relative orientationof two views from the
epipolest ande. Theanglesa and arerecosereddirectly, up to Tt radians.
Therelative orientation® is thena — .

Fromthesetwo relationswe gettwo solutionsfor the relative
orientation® = a — [3:

{ 0 = atan2(t) — atan2(e)
0 = atan2(t) — atan2(e) + 1t

Below we areinterestedarticularlyin the threeview case.
For threeviews andknown epipoleswe can usethe method
above to recover the relative orientationsd andy of view W,
and W3 with respecto the referenceview W;. By fixing the
scaleof the translationof view W, i.e. choosinga specific
scalefor t, we canrecover the location of the third view by
triangulation,usingthe epipolesof view W3 in view W¥; and
Y, asimagemeasurements.

3.4 A Linear Method for Three Views

In this sectionwe describethe linear methodof recovering
2D structureand motion for threeviews. The expositionbe-
low is a synthesiof materialfoundin [5, 6, 7, 4]. For three
views andat least7 landmarksthereexistsalinearalgorithm
to recover a setof coeficientsthat completelydescribeghe
geometryof the threeviews. Fromthesecoeficientswe can
recover all 6 epipolesin the threeviews. Then,asdescribed
above, from the epipoleswe canrecover the relatve motion
andsubsequentlthe positionof thelandmarks.

3.4.1 The Trifocal Tensor: The intuition underlying
thelinearalgorithmis simple. A triple of correspondingnea-
surementsn threeviews cannotbe independentif two mea-
surementsare given, the location of the third measurement
can be predictedsimply by triangulatingthe first two mea-
surementsn W1 and W, andre-projectingin the third view
Y. It is well known thatthis three-viav relationshipcanbe
expressea@sadtrilinear constaint of theform

2 2 2 o
.;Z Z'I'ijku'vak:O 1)

J=1k=1
wheret® 2 (utu?), vB £ (v1v2), andw® £ (wiw?) arethe
imagemeasurementis the threeviews, respectiely, andthe

Tijk arethe 8 trifocal tensorcoeficients They areso called
becausehey can be arrangedin a 2 x 2 x 2 tensor the 2D

L
dL
(
Qs 5 t
v K

Figure5: IntrinsichomographieX andL, seetext.

trifocal tensor Togetherthey completelydescribeherelative
geometryof thethreel-D virtual cameraso whichthebearing
measurement@recorverted.

While thereare8 trifocal tensorcoeficients,thetrifocal ten-
soris only definedupto a scaleandassuchhasonly 7 degrees
of freedom.

3.4.2 Recovering the Trifocal Tensor: We can lin-
early recover the tensorcoeficients Tijx using SVD, in the
sameway we recoveredthe landmarkpositions.Indeed,each
constrainof theform (1) contributesonehomogeneousqua-
tion onthe coeficientsTijx. To recover 8 coeficientsupto a
scale,we needat least7 equationshencethe requiremenbf
having atleast7 landmarks.

Thealgorithmis the sameasthe onein Section3.2, except
eachrow in the D-matrix is now formedby the entriesu' viwk
from equationl.

3.4.3 Recovering Epipoles: To recover the epipoles
from the trifocal tensor we usea techniquedue to Shashua
for the 3D case[7]. This necessitatea geometricinterpre-
tation of the trifocal constraintin termsof homographies A
homaraphyis a mappingbetweenprojective coordinateson
two lines,inducedby athird line. For example,if we take the
line of sightthroughanimagecoordinatas® in view W1, aho-
mographyH§ betweertheimagecoordinatesn view W, and
W; is induced:

WE = HSV

whereH§ is 2 x 2. ThesubscriptB andsuperscripC indicate
thatH$ goesfrom view W; to view Ws.

Two specialhomographiesthe intrinsic homaraphiesK
andL, areinducedby taking u” to be (10)" and (01)", re-
spectvely. As shawn in Fig. 5, the intrinsic homographyK
is inducedby the line throughthe optical centerof view W1
andparallelto its imageplane.Theintrinsic homography is
inducedby theline perpendiculato that,throughu® = (01)T.
The coeficientsof K andL canbedirectly obtainedfrom the
trifocal tensor as eachhomographyis simply the two-view
constrainobtainedrom (1) by filling in u?:

2 2
Tijkviwk =0
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Figure 6: A specialhomographyrom the secondview W; to itself is de-
fined by first mappingthroughK, andthenbackthroughL, i.e. M = L~1K.
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from which getthe homographymatriceg(from W, to W3):

KS = { —Ti2 —Ti22 }
T Tz

k=1

LC— { —T212 —T222 }
Toir T

Differentarrangementsf the trifocal coeficientsgive intrin-
sichomographiebetweerall orderedpairsof thethreeviews.

The epipolesare now found asfollows. We candefinea
homographyM from view W to itself, by mappinga point
VB to W3 throughK, andthenbackto W, by meansof L1,
asillustratedin Fig. 6. The 2 x 2 homographymatrix is then
M = LK. The only pointsthat are mappedto themseles
underthis mappingM arethe epipoles,i.e. the epipolesare
theeigervectos of M. Thus,by performinganeigervaluede-
compositionof M (which canbedonein closedform for 2 x 2
matrices)we obtainthe two epipolese? and €5 in view W,.
The superscripB refersto thefactthatthey areimagepoints
in view W, while the subscriptl or 3 refersto the optical
centerit is theimageof (that of view W; or view W3). The
correspondingpipolesn view ¥; andWs; canbeobtainedoy
pushingtheepipoless? andeg througheitherK or L (usingKg
for view W, anng for W3), asepipolesarealwaysmappedo
eachother(by any homography).

3.5 Summary

Thelinearalgorithmto recover structureandmotionfor the
threeview caseis now summarized:

Step 1. Recwer the trifocal tensorcoeficients Tjjk form
atleast? three-viav correspondencassingthe'7-point algo-
rithm’ from Section3.4.2.

Step 2. Recwvertheepipolesn view W, astheeigervectors
of M = LK, andthecorrespondingpipolesn views W; and
W3 by applyingthe homographie&4 andK§ (Section3.4.3).

Step 3. Fromthe epipolesrecover the relative motion pa-
rameterk,t andQ, s (Section3.3).

Step 4. Triangulatethe positionof the landmarksthrough
SVD (Section3.2).

View 3 .
View 1

View 1 .
View 3

Figure 7: Thetwo recoreredepipolese andt in view W5, obtainedasthe
eigewvectorsof M, canbeassignedn two waysto theview W1 andW3. Both
possibilitiesleadto self-consistenstructureandmotionsolutionsin thethree-
view caseregardlesof thenumberof landmarksnvolved.

3.6 Multiplicity of Solution

Thereare, however, two waysin which we canassignthe
eigervectorsof M to the epipolesin step2. Thisis illustrated
in Fig. 7. Both choicesleadto a differentsetof 6 epipoles.
Remarkablyboth choicesleadto a completelyself-consistent
solutionfor structue and motion This is a fundamentatim-
biguity of the threeview case,andis true for any numberof
landmarkscounterintuitive thoughit seems.Thus,the algo-
rithm will alwaysoutputtwo valid reconstructiongonsistent
with theimagemeasurements thethreeviews.

When starting from bearing measurementswe can fre-
guentlypick the correctsolutionfrom the two possiblestruc-
ture from motion solutions. Recallthat, in orderto obtaina
linear algorithm, we corvert the bearingmeasurementa to
imagemeasurements® by

u — (cosa sina)’

but we lose someinformationin the process. In particular

we losethe distinction betweenbearingsa anda + 1. After

we have recoveredthe structureandmotion, however, we can
re-calculatehe actualbearingsandcheckwhetherthey agree
with the measuredearings.Frequently oneof the two solu-

tionswill containlandmarksthat areinconsisten{i.e. differ

by 1) with the measuredearingswhile the othersolutionis

consistent.Thus,by checkingthis, we canfrequentlychoose
correctlybetweerthetwo solutions.

Unfortunately evenwith bearingmeasurements is possi-
ble to obtaintwo consistentolutions. In this case,the only
way to disambiguatdetweenthe two three-viev solutionsis
by addingafourthview. To dothis, we simply addtheview to
both solutions(seebelon) andlook atthe SVD residual. The
solutionwith the lowestresidualis thenchoserasthe correct
one.Adding viewsis describedn the next section.

3.7 MoreThan Three Views

A linear methodthattreatsall views simultaneouslyis not
available,but givenaninitial three-viav geometryandits re-
coveredstructurewe caneasilyrecover therelative motion of
additionalviews. This canbedonesimilarly to recoveringthe
positionof thelandmarksasdescribedn Section3.2.

For example whenaddingafourth view W,4, eachmeasure-
mentuP in W, yields a homogeneousquationin the motion
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Figure 8: Experimentaketupwith Minnow robotsandcolorediandmarks.
The picture correspondgo the arrangemenbf Fig. 9 belov (althoughone
landmarkis missingin the picture).

parameter®f W4. As before,let us denotetheseparameters
by Randt, wheret 2 (t1t2)T and

S
s ¢
with ¢ = cosB and s=sin® for someb. Now, ary landmark
x@ £ (xy2)T is projectednto W4 accordingo

WP = [Rt]x@

Written out as a crossproduct, this yields the homogeneous
equatiorbelow in themotionparameters?, t2, ¢, ands:

(yut — xtP)c+ (xut + yP)s+ (—zA)tt + (zu)t2 =0

Using the by now familiar methodof SVD, we canrecover
the motion parametersip to a scalegiven at leastthreecom-
mon measurementwith the recoveredstructuresofar. After
performingSVD andtaking the eigervectorcorrespondindgo
the smallesteigervalue,the correctscalecanbe recoreredby
imposingthe constraintc? + s? = 1.

4 Results

4.1 Experimental Results

In termsof experimentalvalidation,we performedtwo ex-
perimentswith a teamof mobile robots. The experimental
setupis illustratedin Fig. 8. As hardware platform we used
ateamof 4 “Minnow” robots,a classof small mobile robots
developedatCMU andbasedntheCyerobot,aninexpensie
andcommerciallyavailable platform. As landmarkswe used
cardboardoxes(about16” wide, 10” deep,20” tall) covered
with coloredconstructionpaper The experimentalareawas
about5x7 meters enclosedy white posterboardwalls.

A commercialUSB cameraprovides sensoryinput in the
form of imagesataresolutionof 360x 240pixels. Landmarks
were detectedusing blob detectionand identified through
color analysis. The cameraswere calibratedso that yaw an-
gle is easilycalculatedrom the positionof the color blob in

Q,
i
o )
* 5] 5l =
i
O 5 B
® gl

Figure9: Multiple robotsetup:first experiment.

Figure10: Multiple robotsetup:secondxperiment.

theimage.Becausehecameratave alimited field of view, 4
imagesaretaken by eachrobotin eachdirection, providing a
360dggreefield of view of theervironment.

The first experimentcorrespondsto the arrangementn
Fig. 8, andis illustratedin Fig. 9. The groundtruth locations
aredepictedascirclesfor therobotsandsquaregor theland-
marks. The standarddeviation of the error on the bearings
obtainedby thevision systemwas2.23degrees.

Theresultof applyingthe linear methodis shovn in Fig. 9
asasteriskswhich representherecoveredpositionof boththe
robotsandthelandmarks Becauseheseareonly recoveredup
to a 2D similarity transform they werefirst optimally aligned
with the groundtruth to make comparisorpossible.Note that
thealignmentprocessimply recoversthe4 unknovn ambigu-
ities anddoesnotimprove or degradethe resultsof the linear
step.As canbe seenfrom thefigure,therecoveredpositionof
two of the robotsandsomeof the landmarkshasappreciable
error. However, the reconstructionis good enoughto ensure
fastconvergenceof a subsequenhon-linearrefinementstep,
theresultof whichis shovn usingthe’+ symbols.

In a secondexperiment, illustrated in Fig. 10, we cre-
ateda setupwherethe robot-teamis surroundedy theland-
marks. Sucha situationwould occurwhen usinglandmarks
on the horizon (mountaintops, large buildings), or whenall
the robotsarewithin the sameopenspaceandlandmarksare
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(a) Mixedconfig.:0.1,0.5,and1 degreestdde.

a a a
6 6 6
8 8 8
10 10 10
12 12 12
7 9 11 13 15 7 9 11 13 15 7 9 11 13 15
a
6 6 6
8 8 8
10 10 10
12 12 12
7 9 11 13 15 7 9 11 13 15 7 9 11 13 15

(b) Enclosectonfig.:0.1,0.5,and1 degreestdde.

Figure 11: Convemgenceresultsfor syntheticdatafor (a) mixed, and (b)
enclosedconfiguration. In eachcase,50 syntheticdatasetsvere generated
for 25 differentcombinationsof m andn, i.e. 1250 datasets,andthis with
threedifferentnoiselevels,for atotal of 3750datasets. Theimagesshav the
percentagef casesn which SLAM failedto converge without (top rows) and
with linearinitialization (bottomrows). White=0%,black=100%failures.

available only on the perimeterof the space. The standard
deviation of the bearingerror in this casewas 1.53 degrees.
Thelinearandsubsequenton-linearreconstructiorareagain
shavn asasteriskandplusesn Fig. 10.

In both experiments,the linear reconstructiorprovided a
goodinitial estimatefor the solution obtainedby subsequent
non-linearminimization. Of course,both are expectedto be
differentfrom the groundtruth becausef measuremersrror.
As expected,this differenceis more pronouncedn the first
experimentdueto thelargerbearingserrors.

4.2 Qualitative Analysis

In orderto characterizeéhe behaior of the linear method
underdifferentcircumstancesye ranit on alarge numberof
syntheticdata-setsWe randomlygeneratedwo typesof con-
figurations: (a) mixed,i.e. landmarkssharethe sameareaas
therobots,asin Fig. 8 and9, and(b) enclosedi.e. landmarks
enclosethe robotteam,asin Fig. 10. For eachtype,we gen-
eratedb0 syntheticdata-set$or eachof 25 differentcombina-
tions of m (#robotsrangingfrom 4 to 12) andn (#¥landmarks
rangingfrom 7 to 15). Measurementsvere obtainedby tak-
ing thegroundtruth bearingsandaddingGaussiamoisewith
standarddeviations0.1,0.5,and1 degrees.

The resultsare bestappreciatedgraphically as shavn in
Fig. 11. In this figure we graphicallyshov in what percent-
ageof the caseghe non-linearminimization procesails to
cornverge(i) usingarandominitialization (top threeimagesin
Fig. 11aand11b),and(ii) usingthelinear methodto obtain
aninitial estimateg(bottomthreeimagesin Fig. 11aand11b).

The resultsshow that the linear method substantiallyin-
creaseghe numberof casesin which SLAM cornvergesto
the globalminimum. However, it is sensitve to measurement
noise,particularlyin nearminimal configurations.The sensi-
tivity to noiseis mostnoticeablen the “enclosed’configura-
tions. The noise-sensitity decreasefor bothtypesasmore
landmarksand/orrobotsare added. For errorsin the range
0-0.3dgyrees the linear methodalmostalwaysleadsto con-
vergence,with rare exceptionsin the minimal configuration
cases.We conjecturehatthosecasesarethe resultof having
randomlygeneratecheardegeneratalata-setqi.e. the land-
marksor robotsarenotin generakonfiguration).

5 Conclusion

Linearmethoddor projectie structurerecovery canbesuc-
cessfullyappliedto the bearings-onlySLAM problemunder
theassumptiorof planarmotion. Thisis animportantcasein
practice,andwe hopethatthis new tool will easetheapplica-
tion of batch-typeSLAM methodgo multiple robotscenarios.
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