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Abstract

We show how to recover 2D structureandmotion linearly
in orderto initialize SimultaneousMappingandLocalization
(SLAM) for bearings-onlymeasurementsandplanarmotion.
The methodsuppliesa goodinitial estimateof the geometry,
evenwithout odometryor in multiple robotscenarios.Hence,
it substantiallyenlargesthe scopein which non-linearbatch-
typeSLAM algorithmscanbeapplied.Themethodis applica-
blewhenatleastsevenlandmarksareseenfrom threedifferent
vantagepoints,whetherby onerobot thatmovesover time or
by multiple robotsthatobservea setof commonlandmarks.

1 Introduction

In many mobile robot applicationsit is essentialto obtain
anaccuratemetricmapof apreviouslyunknownenvironment,
andto beableto accuratelylocalizetherobot(s)within it. The
processof reconstructingsucha mapfrom odometryandsen-
sor measurementscollectedby oneor morerobotsis known
asSimultaneousLocalizationandMapping(SLAM) [1]. Sen-
sorsthat arecommonlybroughtto bearon this task include
cameras,sonarandlaserrangefinders,radar, andGPS.

In the casea single robot observes a set of landmarks,
SLAM algorithms are often basedon variable dimension
Kalmanfilters [2, 1, 3]. In theseon-lineapproaches,therobot
poseand the landmarkspositionsare recursively updatedas
eachnew measurementis obtained.Becauseof the recursive
natureof thesealgorithms,andbecauseodometrycanbeused
to predictchangesin poseandrelative landmarkpositions,a
goodinitial estimateis alwaysavailablein theKalmanupdate
step. This is essentialin practice,asthe measurementequa-
tionsinvolvedareoftennon-linearin thestate-variables.

However, if multiple robotsobserve a commonsetof land-
marks, a recursive algorithm is not applicable. While the
SLAM problemcanbeformulatedin termsof non-linearmin-
imization,animportantproblemin practiceis theexistenceof
localminimawhichcanpreventtheoptimizationprocessfrom
converging. In addition,even if they converge to the correct
solution,this is oftenslow whentheinitial estimateis far from
theglobalminimum.Thus,anessentialelementto solvingthe
SLAM problemin themultiple robotscenariois theability to
easilyobtaina goodinitial estimatefor thesolution.

We show that,with planarmotion andbearings-onlymea-
surements,an initial estimateis efficiently providedby a lin-
ear algorithm borrowed from computervision. To this end,
the bearingsareconvertedto projective coordinatesin a vir-
tual1-D camera,afterwhichalinear2D methodfor projective
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Figure1: The SLAM problemis to recover both the positionsxa of the

landmarksandtherelative motionparametersR� t andQ � s for thesecondand

third robot,respectively, from bearingmeasurements.

structurefrom motion(SFM) is usedto recoverthepositionof
the landmarksandtherobotposes.As we startfrom bearing
measurements,no calibrationis neededand a metric recon-
structionis obtainedup to a 2D similarity transform.

Whereasthe underlying mathematicshas beenpresented
beforein the computervision community, the presentpaper
providesasynthesisof resultsspreadoverseveralrelatively in-
accessiblepapers.We alsoshow how to convert thebearings-
only SLAM problemto the2D projective SFM problem,and
omit details irrelevant to the SLAM problem(suchas self-
calibration).Webelievetheresultto beof considerablepracti-
cal valueto researchersinterestedin thebearings-onlySLAM
problem. Theresultinglinearalgorithmprovidesa quick ap-
proximatesolutionto theSLAM problem,which is usefulto

1. avoid localminimaof non-linearminimization,
2. savecomputationby startingneartheglobalminimum,
3. provide a quick anddirty SLAM estimatein casenon-

linearminimizationis infeasible.
The techniqueis applicablefor a single robot or in the case
wheresomeor all of the robotsmake multiple observations
overtime. In thiscaseto it canserveto initialize anincremen-
tal estimator, e.g.a variabledimensionKalmanfilter [2, 3].

2 Simultaneous Localization and Mapping

2.1 Problem Formulation
Assumean unknown environment is observed by one or

multiple robotswith mdifferentposesa, b, c, etc.,andn land-
marksxa areobserved(seeFig. 1). Thesuperscripta indicates



that landmarkcoordinatesare expressedwith respectto the
reference� posea. The bearings-onlySLAM problemcanbe
statedasfollows: givenmbearingmeasurementsα, β, γ,... for
eachof then landmarks,recoverthen landmarkpositionsand
themrobotposes.Notethatthesolutioncanonly berecovered
up to asimilarity transformin theplane.

2.2 Maximum a Posteriori SLAM
If measurementsarenoisy, theproblemis bestformulatedas

maximuma posteriori (MAP) estimation.The unknownsare
the3mmotionparametersM andthe2n landmarkpositionsX.
The dataZ consistsof mn bearingmeasurements.The MAP
estimateis the setof parameters� M � X �
	 thatmaximizesthe
posteriorprobabilityP � M � X � Z 
 of M � X giventhedataZ:

� M � X ��	�� argmax M � X P � M � X � Z 
� argmax M � X P � Z �M � X 
 P � M � X 

TheposteriorprobabilityP � M � X � Z 
 is theproductof the like-
lihood P � Z �M � X 
 and a prior P � M � X 
 on the landmarkand
motion parameters.In typical SLAM scenariosthere is no
(strong)prior information on the position of landmarks,but
odometryprovidesa prior on the motion parametersof indi-
vidual robots.

To obtain the MAP estimate,a measurementmodel is
needed.The bearingmeasurementαi j taken by the ith robot
on landmarkxa

j canbepredictedby first transformingthe2D

landmarkpositioninto theith coordinateframeandthentaking
thearc-tangent:

αi j � atan2� Rix
a
j � ti 
 � ni j

whereRi andti arethe rotationandtranslation,respectively,
of thereferenceframewith respectto the ith frame,andni j is
measurementnoise.

2.3 SLAM as Non-linear Least-Squares
If weassumeindependentnormallydistributednoiseni j on

thebearingmeasurements,thenthe likelihoodP � Z �M � X 
 can
befactoredasfollows:

P � Z �M � X 
�� ∏
i � j
� � αi j ;atan2� Rix

a
j � ti 
�� σ2 


where
� � z;µ� σ2 
 is thenormaldensitywith meanµ andvari-

anceσ2. Thus,if noprior is available,themaximumlikelihood
(ML) estimatecanbefoundby minimizing thefollowing non-
linearleastsquarescriterion:

� M � X � 	 � argmin
M � X ∑

i � j � αi j � atan2� Rix
a
j � ti 
�
 2

2.4 Number of Measurements Needed
It is of interesthow many landmarksareneededto obtain

a solutionin thegeneralcase.Thedegreesof freedomof the
systemarethenumberof measurementsminusthenumberof
parameters,plus4 becausethesolutioncanonly berecovered
up to a similarity transformin the plane(describedby 4 pa-
rameters).Thus:

DOF � mn � 4 � � 3m � 2n 


First, notethat with only two views, the systemcan not be
solved. This canbeseenby settingm � 2, in which casewe
get DOF � � 2. This is also intuitively clear: we canplace
therobotsanywhereandalwaysgeta feasiblesolutionfor any
numberof landmarksby intersectingthelinesof sightfor each
landmark.

With threeviews, the minimal numberof landmarksis 5.
Indeed,settingm � 3 we getDOF � n � 5.

2.5 The Problem of Local Minima
Theproblemwith the non-linearmethodoutlinedabove is

that is sensitive to local minima. Thenonlinearleast-squares
minimizationproceedsiteratively, andweareonly guaranteed
to find theglobally correctsolutionif we startfrom an initial
estimatethat is in the basinof attraction of the global mini-
mum. If this is not thecase,theiterative minimizationproce-
durewill getstuckin a localminimum.

This is an importantproblemin practice,assimulationex-
perimentswith randomlygeneratedproblemsshow that typi-
cally morethan50% of all runsendup in a local minimum.
Themoreviews,themoreimportanttheproblembecomes.

In thecaseof a singlerobot,odometrycanbeusedto pro-
videagoodinitial estimate.Thisis thebasisof existingSLAM
methodsthat typically usevariabledimensionKalmanfilters.
However, in themultiple robotcaseor if noodometryis avail-
ablethereis currentlyno goodsolution.

3 A Linear Solution

In this sectionwedescribea linearsolutionto thebearings-
only SLAM problemthatdoesnot suffer from local minima,
but immediatelyfindsthegloballyoptimalsolution.Thispro-
videsabasisto solvetheSLAM problemin themultiplerobot
caseor in the single robot casewhen thereis no odometry
available.

Thelinearmethodis basedon thelinearstructure frommo-
tion (SFM) algorithmsdevelopedover the last few yearsin
thecomputervisioncommunity[4], but specializedto the2D,
bearings-onlycase[5]. We caneasilytransformthebearings-
only probleminto a 2D SFM problem,by convertingbearing
measurementsto 1D image measurementsin a virtual cam-
era,andsolvingtheassociated2D SFMproblemlinearly. The
resultingsolutioncanthenbe fine-tunedby non-linearmini-
mization,if desired.

3.1 Converting to a Projective Formulation
Below we introducehomogeneouscoordinates,asthe lin-

earmethodsarebasedon projectivegeometry. Bearingsmea-
surementstaken by the robotswill be convertedto measure-
mentsin a set of 1D perspective camerasor views, one for
eachrobot. The views aredenotedby Ψ1, Ψ2, Ψ3, etc. 1D
imagemeasurementsaregivenby their projectivecoordinates

uA ∆��� u1u2 
 , vB ∆��� v1v2 
 , etc...,wherethe uppercasesuper-
scriptsA, B,... indicatein whichview themeasurementswhere
taken. The landmarksaredescribedby 2D projective coordi-

natesxa ∆��� xyz
 T . Thesuperscripta in xa refersto therefer-
enceview, which we arbitrarily take to be the first view Ψ1.
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uA=(cos� sin� )T
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1D image

xa = (x y z)T

Figure2: Convertingfrom bearingsto homogeneousimagemeasurements.

With theconversionuA ��� cosα sinα � T avirtual camerais createdasshown,

parallelto thex-axisat y  1.

y-axis xa = (x y z)T

uA = (u1 u2)T ~ [I 0] xa

Reference Frame I,0
vB = (v1 v2)T ~ [R t] xa

R,t

t

Figure3: 2D to 1D projectionin homogeneouscoordinatesis a linearop-

eration.Above we projectthe2D point xa ∆ � xyz� T into thereferenceframe

Ψ1 andinto asecondview Ψ2 with motionparametersR� t.
2D coordinatesin the otherviews take superscriptsb, c, etc.
Homogeneouscoordinatesareonly definedup to a scale,i.e.
xa ! ya if f xa � λya. The1D and2D projectivespaceswill be
referredto as " 1 and " 2, respectively.

Wecaneasilyconvertbearingmeasurementsα to 1D image
measurementsuA in a virtual camera asfollows:

uA # � cosα sinα 
 T
The virtual camerais locatedat y � 1 on the y-axis, parallel
to the x-axis, as illustratedin Fig.2. The boundarycasesof
a bearingmeasurementwith α � 0 or α � π is handledauto-
matically, asin bothcasesthe1D projectivecoordinatewill be� 10 
 T , i.e. the “point at infinity”. Note that asthereis only
onevirtual camerafor y $ 0, the mappingabove is a 2-to-1
mapping:bearingsthatdiffer by π areidentified.

In homogeneouscoordinates,theprojectionfrom 2D to 1D
is a linear operation.This is illustratedfor one2D landmark
andtwo views in Fig. 3. In thereferenceview Ψ1, which we
canarbitrarily placeat theorigin, wehave

uA ∆�%� u1u2 
 T !'& I 0( xa

andin a secondview Ψ2 we have

vB ∆�%� v1v2 
 T !'& Rt ( xa

with Randt therotationandtranslationof view Ψ2.

3.2 Recovering Landmarks
Considerfirst thesub-problemof recoveringthelandmarks

in thecasethattherobotposesareknown. As discussedabove,
alandmarkxa givesrisetoanimagemeasurementin eachview
givenby

vB ∆�)� v1 v2 
 T !'&Rt ( xa

which is equivalentto vB *+& Rt ( xa � 0. Written out explicitly
thisyieldsthehomogeneousequation

� v1R21 � v2R11 
 x � � v1R22 � v2R12 
 y � � v1t2 � v2t1 
 z � 0

wherewe assumedxa ��� xyz
 T . Eachview givesonesuch
equation,andhencegivenat least2 views we canlinearly re-
cover � xyz
 T . This makesintuitive sense:the landmarkcan
berecoveredby simply intersectingtheviewing rays.

In practicethis is doneusingsingularvaluedecomposition
(SVD).To thisend,wefirst form am * 3 datamatrixD, where
eachrow is formedby thethreecoefficientsof theequationin
the correspondingview. For example, for threeviews D is
equalto

� u2 u1 0
v1R21 � v2R11 v1R22 � v2R12 v1t2 � v2t1

w1Q21 � w2Q11 w1Q22 � w2Q12 w1s2 � w2s1

whereQ ands arethe rotationandtranslationparametersof
thethird view Ψ3, respectively, andtheimagemeasurementin

Ψ3 is givenby wC ∆�%� w1 w2, T .
ThematrixD is thendecomposedusingSVD:

Dm- 3 � Um- 3 Λ3 - 3V3 - 3

wherethecolumnsof V3 - 3 containtheeigenvectorsei of DTD.
Theeigenvectore	 correspondingto theminimumeigenvalue
λ 	 minimizesthe sum of squaresof the residual,subjectto�.� e	/�0�1� 1. Thehomogeneouscoordinateof therecoveredland-
markis thusxa ! e	 .
3.3 Recovering the Motion

A secondsub-problemis recoveringtherelativemotionpa-
rametersin thecasethat theepipolesareknown. Theepipole
is simply theprojectionin oneview of thecenterof projection
of a secondview. Finding the epipolesis at the coreof the
linear approachandis discussedin the next section,Section
3.4.

If thesecondview Ψ2 hasrelativemotionparametersRand

t, respectively, thentheepipolein Ψ2 is t
∆�2� t1t2 
 T 3 Thetrans-

lationbetweenΨ1 andΨ2 is only definedup to a scaleandits
direction is given directly by the epipolet. The situationis
illustratedin Fig. 4. Thebearingα from Ψ2 to Ψ1 satisfies

� cosα sinα 
 ! t

Let usdenotetheepipolein thefirst view Ψ1 aseA �4� e1e2 
 T .
Thebearingβ to thesecondview Ψ2 satisfies

� cosβ sinβ 
 ! e

p. 3
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Figure 4: Determining the relative orientationof two views from the

epipolest ande. Theanglesα andβ arerecovereddirectly, up to π radians.

Therelative orientationθ is thenα 8 β.

Fromthesetwo relations,we gettwo solutionsfor therelative
orientationθ � α � β:

θ � atan2� t 
 � atan2� e

θ � atan2� t 
 � atan2� e
 � π

Below we areinterestedparticularlyin thethreeview case.
For threeviews andknown epipoleswe canusethe method
above to recover the relative orientationsθ andγ of view Ψ2

andΨ3 with respectto the referenceview Ψ1. By fixing the
scaleof the translationof view Ψ2, i.e. choosinga specific
scalefor t, we canrecover the locationof the third view by
triangulation,usingthe epipolesof view Ψ3 in view Ψ1 and
Ψ2 asimagemeasurements.

3.4 A Linear Method for Three Views
In this sectionwe describethe linearmethodof recovering

2D structureandmotion for threeviews. The expositionbe-
low is a synthesisof materialfound in [5, 6, 7, 4]. For three
views andat least7 landmarks,thereexistsa linearalgorithm
to recover a setof coefficients that completelydescribesthe
geometryof the threeviews. Fromthesecoefficientswe can
recover all 6 epipolesin the threeviews. Then,asdescribed
above, from the epipoleswe canrecover the relative motion
andsubsequentlythepositionof thelandmarks.

3.4.1 The Trifocal Tensor: The intuition underlying
thelinearalgorithmis simple.A triple of correspondingmea-
surementsin threeviews cannotbe independent:if two mea-
surementsare given, the location of the third measurement
can be predictedsimply by triangulatingthe first two mea-
surementsin Ψ1 andΨ2 and re-projectingin the third view
Ψ3. It is well known that this three-view relationshipcanbe
expressedasa trilinear constraint of theform

2

∑
i 9 1

2

∑
j 9 1

2

∑
k9 1

Ti jk uiv jwk � 0 (1)

whereuA ∆�:� u1u2 
 , vB ∆�;� v1v2 
 , and wC ∆�;� w1w2 
 are the
imagemeasurementsin the threeviews, respectively, andthe
Ti jk are the 8 trifocal tensorcoefficients. They areso called
becausethey can be arrangedin a 2 * 2 * 2 tensor, the 2D

uA R,tt

vB

sQ,s

dL

wC

L

K

Figure5: IntrinsichomographiesK andL, seetext.

trifocal tensor. Together, they completelydescribetherelative
geometryof thethree1-D virtual camerasto whichthebearing
measurementsareconverted.

While thereare8 trifocal tensorcoefficients,thetrifocal ten-
soris only definedupto ascaleandassuchhasonly 7 degrees
of freedom.

3.4.2 Recovering the Trifocal Tensor: We can lin-
early recover the tensorcoefficients Ti jk using SVD, in the
sameway we recoveredthelandmarkpositions.Indeed,each
constraintof theform (1) contributesonehomogeneousequa-
tion on thecoefficientsTi jk. To recover 8 coefficientsup to a
scale,we needat least7 equations,hencethe requirementof
having at least7 landmarks.

Thealgorithmis thesameastheonein Section3.2,except
eachrow in theD-matrix is now formedby theentriesuiv jwk

from equation1.

3.4.3 Recovering Epipoles: To recover the epipoles
from the trifocal tensor, we usea techniquedue to Shashua
for the 3D case[7]. This necessitatesa geometricinterpre-
tation of the trifocal constraintin termsof homographies.A
homographyis a mappingbetweenprojective coordinateson
two lines,inducedby a third line. For example,if we take the
line of sightthroughanimagecoordinateuA in view Ψ1, aho-
mographyHC

B betweentheimagecoordinatesin view Ψ2 and
Ψ3 is induced:

wC ! HC
BvB

whereHC
B is 2 * 2. ThesubscriptB andsuperscriptC indicate

thatHC
B goesfrom view Ψ2 to view Ψ3.

Two specialhomographies,the intrinsic homographiesK
andL, are inducedby taking uA to be � 10 
 T and � 01 
 T , re-
spectively. As shown in Fig. 5, the intrinsic homographyK
is inducedby the line throughthe optical centerof view Ψ1

andparallelto its imageplane.Theintrinsic homographyL is
inducedby theline perpendicularto that,throughuA �2� 01 
 T .
Thecoefficientsof K andL canbedirectly obtainedfrom the
trifocal tensor, as eachhomographyis simply the two-view
constraintobtainedfrom (1) by filling in uA:

2

∑
j 9 1

2

∑
k9 1

T1 jk v jwk � 0
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uA R,tt
vB

sQ,s

L

K

Figure6: A specialhomographyfrom the secondview Ψ2 to itself is de-

finedby first mappingthroughK, andthenbackthroughL, i.e. M < L= 1K.

2

∑
j 9 1

2

∑
k9 1

T2 jk v jwk � 0

from whichgetthehomographymatrices(from Ψ2 to Ψ3):

KC
B � � T112 � T122

T111 T121

LC
B � � T212 � T222

T211 T221

Differentarrangementsof thetrifocal coefficientsgive intrin-
sichomographiesbetweenall orderedpairsof thethreeviews.

The epipolesare now found as follows. We can definea
homographyM from view Ψ2 to itself, by mappinga point
vB to Ψ3 throughK, andthenback to Ψ2 by meansof L > 1,
asillustratedin Fig. 6. The2 * 2 homographymatrix is then
M ! L > 1K. The only points that aremappedto themselves
underthis mappingM arethe epipoles,i.e. the epipolesare
theeigenvectorsof M. Thus,by performinganeigenvaluede-
compositionof M (whichcanbedonein closedform for 2 * 2
matrices)we obtain the two epipoleseB

1 andeB
3 in view Ψ2.

ThesuperscriptB refersto thefact that they areimagepoints
in view Ψ2, while the subscript1 or 3 refersto the optical
centerit is the imageof (that of view Ψ1 or view Ψ3). The
correspondingepipolesin view Ψ1 andΨ3 canbeobtainedby
pushingtheepipoleseB

1 andeB
3 througheitherK or L (usingKA

B
for view Ψ1 andKC

B for Ψ3), asepipolesarealwaysmappedto
eachother(by any homography!).

3.5 Summary
Thelinearalgorithmto recoverstructureandmotionfor the

threeview caseis now summarized:
Step 1. Recover the trifocal tensorcoefficients Ti jk form

at least7 three-view correspondencesusingthe’7-point algo-
rithm’ from Section3.4.2.

Step 2. Recovertheepipolesin view Ψ2 astheeigenvectors
of M ! L > 1K, andthecorrespondingepipolesin viewsΨ1 and
Ψ3 by applyingthehomographiesKA

B andKC
B (Section3.4.3).

Step 3. Fromthe epipoles,recover the relative motionpa-
rametersR� t andQ� s (Section3.3).

Step 4. Triangulatethe positionof the landmarksthrough
SVD (Section3.2).

t

e3 t
e3

View 3

View 1

View 1

View 3

Figure7: The two recoveredepipolese andt in view Ψ2, obtainedasthe

eigenvectorsof M, canbeassignedin two waysto theview Ψ1 andΨ3. Both

possibilitiesleadto self-consistentstructureandmotionsolutionsin thethree-

view case,regardlessof thenumberof landmarksinvolved.

3.6 Multiplicity of Solution
Thereare,however, two waysin which we canassignthe

eigenvectorsof M to theepipolesin step2. This is illustrated
in Fig. 7. Both choicesleadto a differentsetof 6 epipoles.
Remarkably, bothchoicesleadto a completelyself-consistent
solutionfor structure andmotion. This is a fundamentalam-
biguity of the threeview case,andis true for any numberof
landmarks,counter-intuitive thoughit seems.Thus,thealgo-
rithm will alwaysoutputtwo valid reconstructionsconsistent
with theimagemeasurementsin thethreeviews.

When starting from bearing measurements,we can fre-
quentlypick thecorrectsolutionfrom thetwo possiblestruc-
ture from motion solutions. Recall that, in order to obtaina
linear algorithm,we convert the bearingmeasurementsα to
imagemeasurementsuA by

uA # � cosα sinα 
 T
but we lose someinformation in the process. In particular,
we losethe distinctionbetweenbearingsα andα � π. After
we have recoveredthestructureandmotion,however, we can
re-calculatetheactualbearingsandcheckwhetherthey agree
with themeasuredbearings.Frequently, oneof the two solu-
tions will containlandmarksthat are inconsistent(i.e. differ
by π) with themeasuredbearings,while the othersolutionis
consistent.Thus,by checkingthis, we canfrequentlychoose
correctlybetweenthetwo solutions.

Unfortunately, evenwith bearingmeasurementsit is possi-
ble to obtain two consistentsolutions. In this case,the only
way to disambiguatebetweenthe two three-view solutionsis
by addingafourthview. To dothis,wesimplyaddtheview to
bothsolutions(seebelow) andlook at theSVD residual.The
solutionwith thelowestresidualis thenchosenasthecorrect
one.Addingviews is describedin thenext section.

3.7 More Than Three Views
A linear methodthat treatsall views simultaneouslyis not

available,but givenan initial three-view geometryandits re-
coveredstructurewe caneasilyrecover therelative motionof
additionalviews. This canbedonesimilarly to recoveringthe
positionof thelandmarksasdescribedin Section3.2.

For example,whenaddingafourthview Ψ4, eachmeasure-
mentuD in Ψ4 yieldsa homogeneousequationin themotion

p. 5



Figure8: Experimentalsetupwith Minnow robotsandcoloredlandmarks.

The picture correspondsto the arrangementof Fig. 9 below (althoughone

landmarkis missingin thepicture).

parametersof Ψ4. As before,let us denotetheseparameters

by R andt, wheret
∆�%� t1 t2 
 T and

R
∆� c � s

s c

with c � cosθ ands=sinθ for someθ. Now, any landmark

xa ∆�)� xyz
 T is projectedinto Ψ4 accordingto

uD !'&Rt ( xa

Written out asa crossproduct,this yields the homogeneous
equationbelow in themotionparameterst1, t2, c, ands:

� yu1 � xu2 
 c � � xu1 � yu2 
 s � � � zu2 
 t1 � � zu1 
 t2 � 0

Using the by now familiar methodof SVD, we can recover
the motionparametersup to a scalegivenat leastthreecom-
monmeasurementswith the recoveredstructureso far. After
performingSVD andtakingtheeigenvectorcorrespondingto
thesmallesteigenvalue,thecorrectscalecanberecoveredby
imposingtheconstraintc2 � s2 � 1.

4 Results

4.1 Experimental Results
In termsof experimentalvalidation,we performedtwo ex-

perimentswith a teamof mobile robots. The experimental
setupis illustratedin Fig. 8. As hardwareplatform we used
a teamof 4 “Minnow” robots,a classof smallmobile robots
developedatCMU andbasedontheCyerobot,aninexpensive
andcommerciallyavailableplatform. As landmarkswe used
cardboardboxes(about16” wide,10” deep,20” tall) covered
with coloredconstructionpaper. The experimentalareawas
about5x7meters,enclosedby whiteposter-boardwalls.

A commercialUSB cameraprovidessensoryinput in the
form of imagesataresolutionof 360 * 240pixels.Landmarks
were detectedusing blob detectionand identified through
color analysis.The cameraswerecalibratedso that yaw an-
gle is easilycalculatedfrom the positionof the color blob in

1 2 3 4 5 6

1

2

3

4

Figure9: Multiple robotsetup:first experiment.

1 2 3 4 5 6

1

2

3

4

Figure10: Multiple robotsetup:secondexperiment.

theimage.Becausethecamerashavea limited field of view, 4
imagesaretakenby eachrobot in eachdirection,providing a
360degreefield of view of theenvironment.

The first experiment correspondsto the arrangementin
Fig. 8, andis illustratedin Fig. 9. Thegroundtruth locations
aredepictedascirclesfor therobotsandsquaresfor theland-
marks. The standarddeviation of the error on the bearings
obtainedby thevision systemwas2.23degrees.

Theresultof applyingthelinearmethodis shown in Fig. 9
asasterisks,whichrepresenttherecoveredpositionof boththe
robotsandthelandmarks.Becausetheseareonly recoveredup
to a 2D similarity transform,they werefirst optimally aligned
with thegroundtruth to make comparisonpossible.Notethat
thealignmentprocesssimplyrecoversthe4 unknownambigu-
ities anddoesnot improveor degradetheresultsof the linear
step.As canbeseenfrom thefigure,therecoveredpositionof
two of the robotsandsomeof the landmarkshasappreciable
error. However, the reconstructionis goodenoughto ensure
fastconvergenceof a subsequentnon-linearrefinementstep,
theresultof which is shown usingthe’+’ symbols.

In a secondexperiment, illustrated in Fig. 10, we cre-
ateda setupwherethe robot-teamis surroundedby the land-
marks. Sucha situationwould occurwhenusing landmarks
on the horizon(mountaintops, large buildings), or whenall
the robotsarewithin thesameopenspaceandlandmarksare
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(a)Mixedconfig.:0.1,0.5,and1 degreestddev.
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(b) Enclosedconfig.:0.1,0.5,and1 degreestddev.

Figure11: Convergenceresultsfor syntheticdatafor (a) mixed, and(b)

enclosedconfiguration. In eachcase,50 syntheticdatasetsweregenerated

for 25 differentcombinationsof m andn, i.e. 1250datasets,andthis with

threedifferentnoiselevels,for a totalof 3750datasets.Theimagesshow the

percentageof casesin whichSLAM failedto convergewithout (toprows)and

with linearinitialization (bottomrows). White=0%,black=100%failures.

available only on the perimeterof the space. The standard
deviation of the bearingerror in this casewas1.53 degrees.
Thelinearandsubsequentnon-linearreconstructionareagain
shown asasterisksandplusesin Fig. 10.

In both experiments,the linear reconstructionprovided a
goodinitial estimatefor the solutionobtainedby subsequent
non-linearminimization. Of course,both areexpectedto be
differentfrom thegroundtruthbecauseof measurementerror.
As expected,this differenceis more pronouncedin the first
experimentdueto thelargerbearingserrors.

4.2 Qualitative Analysis
In order to characterizethe behavior of the linear method

underdifferentcircumstances,we ranit on a largenumberof
syntheticdata-sets.We randomlygeneratedtwo typesof con-
figurations:(a) mixed, i.e. landmarkssharethe sameareaas
therobots,asin Fig. 8 and9, and(b) enclosed,i.e. landmarks
enclosetherobot team,asin Fig. 10. For eachtype,we gen-
erated50syntheticdata-setsfor eachof 25differentcombina-
tions of m (#robotsrangingfrom 4 to 12) andn (#landmarks
rangingfrom 7 to 15). Measurementswereobtainedby tak-
ing thegroundtruth bearingsandaddingGaussiannoisewith
standarddeviations0.1,0.5,and1 degrees.

The resultsare bestappreciatedgraphically, as shown in
Fig. 11. In this figure we graphicallyshow in what percent-
ageof the casesthe non-linearminimizationprocessfails to
converge(i) usinga randominitialization (top threeimagesin
Fig. 11aand11b),and(ii) usingthe linearmethodto obtain
aninitial estimate(bottomthreeimagesin Fig. 11aand11b).

The resultsshow that the linear methodsubstantiallyin-
creasesthe numberof casesin which SLAM convergesto
theglobalminimum. However, it is sensitive to measurement
noise,particularlyin near-minimal configurations.Thesensi-
tivity to noiseis mostnoticeablein the“enclosed”configura-
tions. The noise-sensitivity decreasesfor both typesasmore
landmarksand/orrobotsare added. For errorsin the range
0-0.3degrees,the linear methodalmostalwaysleadsto con-
vergence,with rare exceptionsin the minimal configuration
cases.We conjecturethat thosecasesaretheresultof having
randomlygeneratednear-degeneratedata-sets(i.e. the land-
marksor robotsarenot in generalconfiguration).

5 Conclusion

Linearmethodsfor projectivestructurerecoverycanbesuc-
cessfullyappliedto the bearings-onlySLAM problemunder
theassumptionof planarmotion. This is animportantcasein
practice,andwe hopethat this new tool will easetheapplica-
tion of batch-typeSLAM methodsto multiplerobotscenarios.
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