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Abstract—We address the problem of multi-robot dis- localization of multiple AUVs performing mobile trilat-
Efsi%t/le)d SLAM Vl\1/itth an iXtend?dDSmOCt’thlihg ;rg ?/Ia'p:)pir_lg eration. They instantiate up t&" filters for each ofn
approach to implement Decentralized Data Fusion ; o
(D), VF\)/Fé bresent DFDF-SAM, el method for o vehicles to keep track of the sources of vehicle infor-
ciently and robustly distributing map information across ma_t'on' Ne“‘!rkar' eF alj [3] presented a d'_smbmed MAP
a team of robots, to achieve scalability in computational €stimator using a distributed data-allocation scheme en-
cost and in communication bandwidth and robustness to abling robots to simultaneously process and update local
node failure and to changes in network topology. DDF- data when equipped with bidirectional sensing of other
SAM consists of three modules: (1) a local optimization ,yhots. Roumeliotis and Bekey [4] presented “collective

module to execute single-robot SAM and condense the | lization” inale distributed Kal filt hich
local graph; (2) a communication module to collect and ocalization’, a single distribute alman niter whic

propagate condensed local graphs to other robots, and €stimates a pose from all members in a team using
(3) a neighborhood graph optimizer module to combine available positioning information.

local graphs into maps describing the neighborhood of a : . . .
robot. We demonstrate scalability and robustness through a The idea of using multiple local maps has received a

simulated example, in which inference is consistently fast 10t Of traction in a single-robot context [5], [6], [7], [8],
than a comparable naive approach. as it leads to computationally more efficient algorithms.

In addition, as mentioned by Tardés et al. [6], local
maps lend themselves naturally to multi-robot mapping,

|. INTRODUCTION as strategies for map-merging can just as well serve to
Robot mapping applications, particularly those inmerge maps built by different robots.

hagsh ((ajnvironrﬂen_ts, bene(fjit f:prgll_the uge of teams fOf Several authors have exploited this idea and proposed
rodotsd ue to the w;crg%ge | re Ial llity and coverage o gue multi-map, multi-robot algorithms that have sev-
redundant system. In difficult exploration scenarios, sucl, | appealing properties [9], [10], [11], [12]. Because

as search and rescue or surveillance and reconnaissar}ﬁ%imizing the communication load between robots is

the primary goal is to provide an accurate map 0Tmportant so as to avoid the performance bottleneck

the em_nronmept the robots opergte. n. The;e and Otth data transfer and to avoid redundant communication,
scenarios motivate the use of distributed Slmultaneoqﬁere has been work done to reduce data transfer [13] by
Locallollzanon and Mapp(ljr:jg _(SL,lAM). WTIIehCﬁordlnatl?g choosing the most informative features to transmit. One
a robot team poses additional control challenges, rOg\gnificant challenge faced by these and other filtering

a mapping perspective, _there are distinct advantagq chniques [14] is the bookkeeping necessary to prevent
Multi-robot systems have inherently parallel sensory an ouble counting information

computational facilities, which allow for faster explo- _
ration than a single robot in the same scenario. In this paper, we propose D_DF'SAM’ a novel ap-
The primary requirements for such a Decentralize§r0ach that augments a Smoothing and Mapping (SAM)

Data Fusion (DDF) system, are as follows [1]: graphical model approach [15] by introducing tGen-

. . strained Factor Graph (CFG) as an extended graphical
1) Scalable in computational cost k . .
, o : model. The resulting system is an asynchronous dis-
2) Scalable in communication bandwidth as the num-. -~ . .
. tributed system resilient to robot failure and changing
ber of robots increases

3) Robust to node failure network topology scalable to large networks of robots.

4) Robust to changes in network topology This paper only covers the back-end inference sys-
Many of the multiple-robot data fusion techniques fo-tem n or_der to focus on the o!|str|buted inference _and
cus on the pure localization problem. Bahr, et al. [2 pt!mlzat|on necessary for mulﬂ-agent SVSteT"S.- While a
introduced a technique for the consistent cooperati ¥p|cal S.LAM SyStem contgms a data "’.ISSOC'&.‘UO” frolnt-
end, which matches incoming observations with existing
The authors are with the Georgia Institute of Technology; At map data, and an inference back-end, we will focus on
lanta, GA al exgc, bpaluri,dellaert @atech. edu. the pack-end system by using known data associations.
This work was funded through the Micro Autonomous Systentd an .
As such, we assume all landmarks have globally unique

Technology (MAST) Alliance, with sponsorship from Army Resch -
Labs (ARL). identifiers.
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Fig. 1: Representing a multi-robot SLAM scenario with threbots observing common landmarks (left) in the form
using factor graphs, both to represent the map of a singlet r@enter), and to form the naive multi-robot graph.

Il. NAIVE MULTI-ROBOT SAM be accurate as it incorporates all measurements taken by

In our approach, we formulate the general saMgll robots so that no information lost or double-counted,
problem with a robot trajectory and a set of environmen@nd (c) it is robust to robot failure(s) because every robot
tal landmarks and represent the system mathematicalls all collected map data from every other robot.
using afactor graph G, a bipartite undirected graph
consisting of variable nodes and factor nodes that encode I1l. DDF-SAM
probabilistic relationships. This graph defines a nonlinea
optimization problem, detailed in Section IlI-A, and the
solution of a given graply is the mapM that minimizes
the error between the measuremefiand the generative o
measurement model. Figure 1 illustrates a multiple robot 1) A local optimization module to execute standard
scenario converted into factor graphs. In the local factor ~ Single-robot SAM to generate a local map and a
graph shown for a single robot, colored circles represent  condensed form of the local graph.
robot posesz;, white circles represent landmarks, 2) A communication m_odule to cache and propagate
and small filled circles on edges represéattors f. condensed graph with other robots. .
These factors can represent the measurement informatior3) A neighborhood optimizer module to combine
between the variables, such as an observation of a condensed graphinto a graph describing the neigh-
landmark, odometry between poses, or prior information ~ Porhood of a robot.
on a pose. Algebraically, we concatenate theand/; =~ We formalize the general structure of the problem as
variables from a robot into a single state variallle follows: there is a set of robots in an environment, with

We can consider a naive approach to implementingach robotr attempting to build aneighborhood map
SAM across multiple robots that, while able to create @1y, ;) and from aneighborhood graph G, (;), where
map across multiple robots, is too expensive for practicéhe neighborhood,.(¢) is the time-varying set of robots
applications. In the naive approach, every robot sends communication with a given robet In the case where
every sensor measurement to every other robot, therethe neighborhood of a robot is the set of all robots, then
allowing each robot to construct a complete map witiwe can consideiy, ;) to be aglobal map. Each robot
full trajectories for all robots. Figure 1 illustrates thisr in the set of robotd? has exactly the same machinery:
naive approach, showing the a single graph built directlg local optimizer module to solve for the local mapg/,
combining the local maps from three robots. and to condense its local gragh. to form acondensed

However, this naive approach is impractical for severagraph G, a communication module that populates a
reasons. There is a large volume of communication traket of slots S to cache the time-stamped condensed
fic between robots. Each robot must optimize a complegraphs from local robots (including its own), and a
graph, hence it is computationally expensive and muctheighborhood optimizer module that optimizes for the
of the computation is redundant. While this approach iseighborhood map\/, (). We denote the condensed
not useful in practical situations, it has advantages wortform of a graph or map using a “hat” decoration. Figure
reproducing: (a) it is a true smoothing and mapping illustrates the data stored by each robot, with a full
approach and hence the graph remains sparse, (b) it witical graphG,., the slots containing condensed graphs

To construct a system satisfying the DDF requirements
while keeping the advantages of the naive approach, we
divide our approach into three main components:



meighborhood ) To perform this optimization, we use a trust-region based
Slots strategy of performing damped searches from an initial
o0——0 estimate by linearizing the system to create a linear
t=1 least-squares subproblem. Each linearized subproblem
o0——o0 represents a purely Gaussian factor graph (Equation 2),

Local = expressgble asa canonical linear least square error_prob-
M O—°—t(33 lem, as in Equation 3. We can then solve for an optimal

descent directiom* through QR factorization, which

\_ ) we perform through successive Householder reflections.

Fia. 2 Th db h rob .. Because of the sparseness of the linear problem, we can
Ig. 2: The structures managed by each robot, COma'n"ﬁég(ploit sparse matrix solvers to increase performance. A

its. local .graph, a cache of gondensed graphs fro%y observation of this algorithm is that during variable
neighboring robots, and the neighborhood graph. elimination, after removing a variable from the graph

the remaining factors and those added during elimination

) ) constitute the joint distribution on the variables still in
from multiple robots, and a neighborhood gral, )  the graph.

constructed from the condensed graphs. 1

For this paper, we make the following assumptions §* = argmins= [|M(X) + H(X)s — Z||%  (2)
regarding the robots and the intended scenario: Each 2
robot has a sufficient sensor suite to perform SLAM
on its own, each can detect landmarks in the environ-
ment using a sensing modality that is common acros8fe exploit variable elimination as a means of condens-
all robots or can at least be correlated to each otheng a map by allowing for the possibility of partially
Robots in such a scenario must be equipped with @liminating a Gaussian factor graph to include only the
communication system to send messages to other roboaiables that should be shared. This partial elimination
in the team. However, we do not require that all roboteperation, yieldingcondensed graph G, corresponds to
are continually connected to all other robots. We assuntgarginalizing out variables from a probabilistic model
we do not have measurements of positions -either relatiad is the joint distribution over the shared variables.
or absolute- of other robots in the team, though we coul@enerating the compact representation requires that we
incorporate such measurements if available. eliminate all poses from the local graph of each robot.

One of the aspects of our approach is that the neigffo do this, we re-linearize the graph around the best
borhood map is only a map over landmarks, whiclgurrent estimate for the state*, and eliminate the
means robots only need to send landmark informatiooses. Note that this operation does not remove any
We will show that this choice of shared variables ignformation relating the landmarks while remaining a
particularly well suited for scalability as robots continu condensed version of the full graph.
to operate over a long period of time.

1
= argmin(;i [|AS — b||22 3)

B. Communication Module

A. Local Optimizer Module In ordfar to crgate a neighborhood gra@hy, ;) from
a set ofGG,. contributed by other robots, each robot must
The underlying SLAM technique used in this papekimultaneously update and disseminate its cached con-
is a direct extension of the SAM approach used in oufiensed maps from its set of slots S. Each robot maintains
previous work; a detailed explanation of the approach |ocal cache of condensed graphs for each robot in its
can be found in [15]. Because each robot performgeighborhood. For every known robiih the team, there
SLAM in its local environment, we present a briefyijll be a correspondings;. Communication between
introduction to SAM as a single-robot SLAM techniquerobots consists of two-robot interactions where robots
and highlight key concepts necessary for the multi-robadhare condensed graphs. As is standard in distributed
version of the system. We approach SAM as a uncorsystems [16], a robot maintains communication with
strained nonlinear least-squares optimization problem ihe subset of all robots called its locatighborhood,
Equation 1 where the error is the difference betweegenotedN, (t). The set of local robots is time-varying
a generative measurement modglX) for the current due to the possibility of dropping or gaining connections
stateX and the actual measuremefit weighted by the \ith robots as they drive in and out of radio range.
measurement covariance matbix From N,(t), the robot can choos& other robots
. 1 ) to communicate with. In this case, we can bound the
X" = argminx 5 |MX) = Z]|y (1)  size of S to K, thereby bounding the complexity of



neighborhood optimization t@(1) in the number of transforms between local and neighborhood frames of
robots. In this sense, the neighborhood mafy, r reference. Figure 3a illustrates the constrained version
maintained by robot covers an area larger thdd,. by  of the naive distributed system from Figure 1. In this
using information fromi neighbors. For smaller teams, case, we keep a single copy of the landmark in the
one could letK = |R|, such thatM is a global map. neighborhood frame, and associate it with the corre-

When in communication with another robot, we usesponding landmark in its\/,.. We denote a landmark
a two-step process, consisting of announcing availableith unique global identifiej in the neighborhood frame
condensed graphs and then transferring the latest avaik /;, and landmarks in the frame of robet as /7.
able graphs. First, the communication module sends Ehe constraint factors introducelmase frame of refer-
message announcing the contentsSofwhich includes ence variableT " (illustrated with colored squares), which
the robot identifier and the timestamp. Upon receipt oéxpresses the neighborhood origin in the coordinate
this message from the other robot, the communicatiosystem of robot.. Theframe of reference constraints c7,
module prepares a larger message containing any lodtlistrated in Figure 3 with crosses to distinguish them
maps with a later timestamp. The receiving robot cachdsom probabilistic factors, express the direct assignment
these graphs in slots for neighborhood graph optimizasf a neighborhood to a local versions of a landmark
tion. This communication system is robust to changeg as in Equation 4. The problem necessitates using
in network topology by (a) caching previous graph datéhese hard constraints that express a strict, deternainisti
from other robots and (b) indirectly propagating locarelationship between variables because data association
M, data through the network. Even if a robotnd a is an assignment problem rather than a measurement,
robotj never directly communicate, it is still possible toand there must exist exactly one transform between a
exchange condensed graphs indirectly through a rbbotlocal and neighborhood frame.
that at some point in time connects with robotand j . .
and stores?; andG,;. T"el;=1j (4)

This cached propagation of information_ Fhrough th%ith each constraint’;, we can now perform nonlinear
network affords several advantages in resiliency to ne J

K ool h ) th | . ¢ Eonstrained optimization to find a/y, (). With the
work topology changes: (a) the only requiremen %%rame of reference constraints managing the coordinate

?hEt}[’V(t)r:k cor)nectl;/lty :0 cLeate ah ne|ghbotrhood m?pb'ﬁames of the robots, as in Figure 3a, it is possible to use
at the u.nlon OF network graphs over time mus E(‘)nlythe condensed graphs. The condensed graph appears

connected; (b) in the event of node failure, the last in Figure 3b as a new factor on the local copies of

. h data i t lost d bot fRndmarks (highlighted by color). We can then assemble

so previous graph data is not lost, and (c) robots cay neighborhood graph based on these smaller factors as

update their neighborhood maps at any point in thﬁ] Figure 3c. With this smaller graph, each robot can

Erocefs usT% mformz;:tlon_ co(;\talned j:‘han:cj will noltt_ | erform constrained nonlinear optimization to created a
ave to wait for synchronized messages from multip §1erged neighborhood map.

robots. Given the set of local map information containe
in S, the neighborhood optimization module can create
a neighborhood map over landmarks at any point. D. Constrained Factor Graphs

We present CFGs as a novel extension of a factor

C. Neighborhood Optimizer Module graph as it augments a probabilistic graphical model

The neighborhood optimization module merges thaith deterministic relationships. The hard constraints,
condensed graph§; cached in a robot's slots into a motivated by frame of reference constraints (Equation 4),
single G, ;). One challenge in the creation of theallow for operations such as assignment to be expressed
neighborhood map is that the condensed Gaussian faciora graphical manner, as the constraints maintain the
graphG; remains in the local reference frame of robot separability requirements for graphical models.
If one were to attempt to construct a naive neighborhood The implementation of hard constraints in the un-
graph by simply transforming eact; € S into a derlying nonlinear least squares optimization problem
neighborhood reference frame, the resulting graph wouidvolves only the application of existing techniques [17]
not be valid because condensed graphs are linearizi incorporating equality constraints into a least sqaare
in their own reference frame. We avoid this problenoptimization problems. We extend the nonlinear least
by leaving eachG; in its original frame of reference, squares problem of Equation 1 to incorporate a set
and using constrained optimization to relate the locadf p equality constraintg;(X) to form a constrained
landmarks to neighborhood landmarks. nonlinear least squares problem (Equation 5). These

To build a neighborhood graph, we introduce theonstraint functions are exactly the frame of reference
Congtrained Factor Graph (CFG) so as to represent the constraints of Equation 4. For convenience, we combine



(a) Naive Neighborhood CFG (b) Partial Elimination (c) Constrained Neighborhood Graph

Fig. 3: Progression from naive neighborhood CFG with baaé variables and full local graphs (a), equivalent
CFG highlighting partially eliminated local graphs (b)datihe neighborhood CFG with condensed local graphs as
maintained by each robot (c). Landmarks with light colorarg the local copies of a global landmark.

the constraint functions into a single constraint functior  * ’ " ¥ = w
9(X) = [er(X), ., ep(X)]T
1 2 [ ] w l. . u -
X :argminxi |h(X) = Z||5, (5)
subject tocj—(X)zOVie[l...p] *ow .' o v . n o

This optimization procedure has been shown [17] t
be equivalent to optimizing a quadratic merit function
p(X) = LIAX) ~ Z|% + pd ()| with a suffi-

ciently high 1, parameter. At each linearization stage
we approximate the system using a first order Taylc
expansion as in the unconstrained case (Equation !

. . . - ] -
where C is the Jacobian of(X) evaluated atX. We " " .
solve the linearized system with direct elimination of . . - -
the constrained variables. . u . -
* . 1 2
5 = argming [|Ad — bl (6) . . = - . - .

subject to Céd+g(X) =0
) ~ Fig. 4: Simulated five robot scenario with ground truth
To solve the linear subproblems, we use a hybrid elimirgpot trajectories (colored arrows), ground truth land-

nation procedure where we eliminate variables with only,arks (small black squares), and landmarks optimized
probabilistic factors using the Householder refle<:tion§sing DDF-SAM (large black squares).

exactly as in the probabilistic case, and use Gram-
Schmidt orthogonalization to eliminate variables with

hard constraints. as well as odometry, using Gaussian noise profiles. We

initialized the frames of reference used with perturbed

IV. SIMULATION RESULTS versions of the ground truth frames of reference. We

We implemented this algorithm using the Georgiacompare the naive implementation of multi-robot SAM

Tech Smoothing And Mapping (GTSAM) toolbox for the with DDF-SAM.

underlying factor graph implementation, and extended Figure 5 shows the optimizations timing vs. the num-

the toolbox for CFG optimization. The library and ex-ber of poses per robot. To illustrate timing for distributed
perimental code is written in C++, and we ran tests ooptimization, we separate the average time necessary

a 2.20 GHz dual core Linux machine. To validate thdor each robot to perform local SAM and condense
system, we created a simulated scenario with a set @é map, and the time necessary for the neighborhood
robots in planar field of landmarks driving in a circularoptimizer module to merge the condensed maps into
trajectory, as shown in Figure 4. For each robot, wa neighborhood map. Note that the optimization time
simulate range and bearing measurements on landmarksgcessary for merging a neighborhood map is not only
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Fig. 5: Comparison in timing between naive approach4]
and DDF-SAM. The average local time is the average
optimization time to perform local optimization, while 5
DDF optimize is the time to merge condensed maps into
a neighborhood map. 6]
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Fig. 6: Comparison in landmark estimation error between
naive approach and DDF-SAM. [12]

trivial in comparison to the local map, it also remains
the same as the local maps increase in poses. (13]

We also performed an analysis of the error in landmark
estimates, plotted in Figure 6, comparing the ground
truth with the results of the optimization using averagél"']
distance over all landmarks between each optimized
landmark and the corresponding truth value. Note that
the error of the DDF-SAM optimized map stays compal®!
rable to the error of the naive approach.

[16]

V. DiscussION ANDFUTURE WORK [17]

In this paper we presented a novel approach for
distributed SAM satisfying the primary requirements for
a DDF system.

Our future work will focus on the addition of multi-
robot data association in order to create a fully dis-

tributed SLAM system, as well as deploying the system
in larger scenarios with real-world data and in situations
with limited computational capability and varying net-
work topology.
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