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Abstract— Large-scale SLAM demands for scalable tech-
niques in which the computational burden and the memory
consumption is shared among many processing units. While
recent literature offers competitive approaches for scalable
mapping, these usually involve approximations to preserve
sparsity of the resulting subproblems. We present an approach
to scalable SLAM that is exactly sparse. The main insight is that
rather than eliminating variables (which induces dense cliques),
we split the separators connecting subgraphs. Then, we enforce
consistency of the separators in different subgraphs using hard
constraints. The resulting constrained optimization problem
can be solved in a decentralized manner using the multi-
block Alternating Direction Method of Multipliers (ADMM).
Our framework is appealing since (i) it preserves the sparsity
structure of the original problem, (ii) it has a straightforward
implementation, (iii) it allows to easily trade-off between com-
putation time and accuracy. While our approach is currently
slower than competitors, it is more accurate than other memory
efficient alternatives. Moreover, we believe that the proposed
framework can be of interest on its own as it draws connections
with recent literature on decentralized optimization.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is as-
serting itself as a key technology in many fields, including
robotics, autonomous transportation, and augmented reality.
These applications demand for large-scale awareness and it
is not uncommon to have SLAM instances with millions of
variables [1] and city-scale reconstructions [2], [3].

While recent years witnessed impressive accomplishments
in SLAM, the development of scalable large-scale SLAM
approaches remains an active field of research. Modern
solvers (e.g., gtsam [4] or g2o [5]) are able to solve SLAM
problems with thousands of variables in fractions of a second.
However, these techniques are based on direct linear solvers
and they do not scale well to very large problems, since
the memory requirement of factorization methods grows
quadratically in the number of variables in the worst case.
An appealing alternative is the use of iterative linear solvers
(e.g., the conjugate gradient [2], [6], [7], [8], [9]), whose
memory consumption grows linearly in the number of vari-
ables. Despite the graceful increase in the memory demand,
also the conjugate gradient is doomed to hit the bound
of the maximum available memory and this motivated the
development of decentralized (a.k.a., submapping or out-of-
core) SLAM approaches, in which the computation and the
memory consumption are shared among different processors.

Early submapping approaches were based on filter-
ing and include the decoupled stochastic mapping of
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Fig. 1. We propose a memory efficient approach to SLAM. Related work
uses variable elimination as a tool for decentralized computation. However,
this has the drawback of creating dense cliques on the separators. The
proposed approach, instead, splits the separators, rather than eliminating
then, and preserves the sparsity pattern of the Hessian of the original
problem. We use ADMM to solve for the subgraphs in decentralized fashion.

Leonard and Feder [10], the constant-time approximation
of Leonard and Newman [11], the hierarchical approach of
Estrada et al. [12], the Atlas framework of Bosse et al. [13],
and the TreeMap algorithm of Frese [14]. More recently,
the research community focused on decentralized smoothing
formulations. Smoothing has been proven to outperform fil-
tering in terms of accuracy [15]; moreover, it enables fast so-
lutions thanks to the sparsity of the underlying optimization
problem. Frese et al. [16] propose a multi-level relaxation.
Ni et al. [17] present an exact submapping approach, and
propose to cache the factorization of the submaps to speed-up
computation. Grisetti et al. [18] investigate hierarchical map
updates: whenever an observation is acquired, the highest



level of the hierarchy is modified and only the areas which
are substantially modified are changed at lower levels. Ni
and Dellaert [19] extend their previous approach to multiple
levels and use nested dissection to minimize the dependence
between subtrees. Grisetti et al. [20] use a submap approach
to improve the convergence properties of global optimization.
Zhao et al. [21] present an approximation for large-scale
SLAM by solving a sequence of submaps and joining them
in a divide and conquer manner. Suger et al. [22] present
an approximate solution based on hierarchical decomposi-
tion to reduce memory consumption. Huang et al. [23],
Wang et al. [24], Carlevaris-Bianco et al. [25], and Mazu-
ran et al. [26] investigate graph sparsification as a tool to re-
duce the number of variables and measurements in the graph.
In the context of distributed SLAM, Cunnigham et al. [27]
propose to share “summarized” maps among neighboring
robots. Since batch summarization is not scalable to large
local maps, DDF-SAM 2.0 [28] introduce the use of anti-
factor to avoid the storage of redundant information.

A basic idea that is shared by many related work
(e.g., [17], [19], [27], [22]) is the use of variable elim-
ination (Fig. 1). The graph is partitioned in connected
non-overlapping subgraphs, such that the variables in the
interior of each subgraph can be eliminated independently
(this enables parallel computing). Then the variables that
are common to different subgraphs (the separators) are
jointly optimized. While this approach is very elegant, it has
two shortcomings. First, variable elimination induces dense
cliques on the separators, and this makes their computa-
tion expensive and memory hungry. For this reason recent
approaches propose approximations to sparsify the dense
cliques [22]. The second reason is that variable elimination
techniques used in SLAM work on a linearization of the
original nonlinear problem. Therefore, when eliminating
variables one commits to a linearization point and it may be
problematic to manage the consistency of the linearization
point across subgraphs [28].

In this paper we propose a paradigm shift. Rather than
eliminating variables, we split variables corresponding to the
separators. An intuitive example is given in Fig. 1. Each
separator {x1, x4, x7} is split into two node variables, each
one associated to one of the neighboring subgraphs. Then,
in order to force that different subgraphs converge to the
same estimate for the separators, we include constraints (one
for each separator) in the optimization problem underlying
SLAM. The main insight is that the resulting constrained
optimization problem has a separable objective and we
can be solved in a decentralized fashion using algorithms
from the optimization literature. In particular, in this paper
we propose the Alternating Direction Method of Multiplier
(ADMM) as a solver. Intuitively, ADMM alternates opti-
mization over each subgraphs (this is fast, as we can control
the size of the subgraphs) with the update over the dual
variables, which control the penalty on the violation of the
constraints. Iteration after iteration, the penalty for constraint
violation increases, forcing the separators to be consistent
across subgraphs. The proposed approach has five merits.
First, it works directly in the nonlinear domain, hence it
does not commit to a linearization point; this means that
different subgraphs do not need complex bookkeeping of the

linearization points. Second, the ADMM approach preserves
the sparsity structure of the original graph (Fig. 1), hence en-
ables exact and memory efficient solution of each subgraph.
Third, we never need to jointly optimize the separators.
In our case, the dual variables take care of correcting the
separators; the update of the dual variables is cheap (it can be
understood as a gradient descend step) and does not require
loading the complete separator subgraph into the memory.
Fourth, the approach has an intuitive interpretation in terms
of factor graphs and this allows leveraging existing graph
optimizers, making implementation straightforward. Fifth,
the approach has a just-in-time flavor: it reaches a modest
accuracy in few iterations, and, if one allocates extra time
for the optimization, our approach reaches an accuracy that
is comparable to the one of a centralized solver.

II. MEMORY EFFICIENT SLAM: PROBLEM STATEMENT
AND APPROACH OVERVIEW

In this section we provide the key idea underlying our
approach. For simplicity we tailor our presentation to pose
graph optimization, i.e., inference over a factor graph with
poses as variable nodes, while the approach can be easily
generalized to heterogeneous variables.

Pose graph optimization consists in the estimation of n
poses x

.
= {x1, . . . , xn} from m ≥ n − 1 relative pose

measurements x̄ij , between pose i and j, and p ≥ 1 priors
x̄i.1 We denote with E the set of relative pose measurements
and with P the set of poses for which a prior is available.

The maximum a-posteriori estimate for the poses is com-
puted by solving the following optimization problem:

x? = arg min
x∈SE(2)

f(x, E ,P) = (1)

arg min
x∈SE(2)

∑
(i,j)∈E

∥∥Log
(
x̄−1
ij x

−1
i xj

)∥∥2

Ωij
+
∑
i∈P

∥∥Log
(
x̄−1
i xi

)∥∥2

Φij

where SE(2) is the Special Euclidean group (the set of
planar poses), ‖y‖2Ω

.
= yTΩy, Log (·) is the logarithm map

for SE(2), which, roughly speaking, maps a pose to its
vector parametrization, and Ωij , Φij are information matrices
(inverse of measurement covariance).

Now we are interested in the case in which (1) cannot
be solved directly, e.g., the problem is to large (memory-
wise or computation-wise) for a centralized computation
unit. As done in related work, we partition the graph in N
subgraphs. Poses that are in common to multiple graphs are
called separators. Then, our idea is a very simple one: we
split the separator nodes, such that each subgraph has its own
“copy” of the separator. For instance, in Fig. 1, we duplicate
the nodes {x1, x4, x7} assigning a copy to each subgraph.
Therefore, the objective function in (1) becomes:

f(x1, . . . , xN , E ,P) =

N∑
g=1

f(xg, Eg,Pg) (2)

1m ≥ n − 1 is a necessary condition for observability (a graph with
m < n−1 edges cannot be connected), while we need at least p = 1 prior
to make the global frame observable (global poses are not observable from
relative measurements). In absence of priors, it is standard convention to
add a prior on the first pose, which becomes our global reference frame.



where xg is the set of variables in subgraph g, and Eg , Pg are
the corresponding factors. Note that E1 ∪ . . . ∪ EN = E and
P1 ∪ . . . ∪ PN = P , i.e., we only distributed measurements
and priors among the subgraphs. However, x1 ∪ . . . ∪ xN is
larger than the original set of variables since the subgraphs
contain multiple copies of the separators.

Now if we optimize (2) w.r.t. to the subgraph variables
x1, . . . , xN , we do not get the same solution as (1) in
general. Intuitively, by adding variables, we allow extra
degrees of freedom that were not allowed in the original
problem. Therefore, to guarantee that optimizing (2) is the
same as solving the original problem (1), we have to impose
that copies of the same separator are identical in different
subgraphs. This can be done by adding constraints to the
optimization problem. Therefore, we rewrite (1) as:

arg min
x1,...,xN∈SE(2)

∑N
g=1 f(xg, Eg,Pg)

subject to xis = xjs, ∀s ∈ S (3)

where S is the set of separators and xis (resp. xjs) denote the
copy of the separator s in subgraph i (resp. j).

The equality constraints in (3) relate two quantities living
on manifold (recall that xis, x

j
s ∈ SE(2)). Since we want

to leverage existing literature on constrained optimization,
it is more convenient to express the constrains in terms of
vector-valued functions, which is the most common setup in
optimization. For this purpose, we rewrite (3) as:

arg min
x1,...,xN∈SE(2)

∑N
g=1 f(xg, Eg,Pg)

subject to Log
(
(xis)

−1xjs
)

= 0, ∀s ∈ S (4)

where now both sides of the equality are vectors.
The fact that we reformulated the original problem (1) in

terms of the constrained optimization problem (4) has a de-
sirable implication. The cost in (4) is separable, meaning that
each term f(xg, Eg,Pg) only depends on the variables in the
subgraph g, while the intertwining among the subgraphs lies
in the constraints. This property allows leveraging existing
literature on constrained optimization to obtain decentralized
solutions to (4). Towards this goal, Section III borrows
standard techniques for constrained optimization from the
numerical optimization literature. This discussion makes
easier and more intuitive the introduction of the alternating
direction method of multipliers, discussed in Section IV.

III. A SHORT REVIEW ON PENALTY AND LAGRANGIAN
METHODS FOR CONSTRAINED OPTIMIZATION

The goal of this section is to present three approaches
for constrained optimization, penalty methods, dual ascent,
and augmented Lagrangian methods, applied to (4). Our
presentation follows standard references [29], [30].

Penalty methods transform the constrained optimization
problem (4) into a sequence of unconstrained problems.
More specifically, each constraint is transformed into a
penalty term in the objective function. For instance, in
quadratic penalty methods, (4) is transformed into

arg min
x1,...,xN∈SE(2)

N∑
g=1

f(xg, Eg,Pg)+
∑
s∈S

ρ

2

∥∥Log
(
(xis)

−1xjs
)∥∥2

(5)

with ρ ≥ 0. Roughly speaking, the penalty terms added to the
objective increase the cost whenever Log

(
(xis)

−1xjs
)
6= 0,

i.e., when the constraints in (4) are violated. The amount of
penalty for constraint violation is controlled via the penalty
parameter ρ. Nicely, in our SLAM setup the penalty terms
have the same structure of the relative pose measurements in
the original problem (1) with x̄ij equal to the identity pose.
In this sense, one may think at the penalty terms as fictitious
relative measurements between the separators in the two
subgraphs. Therefore, ρ assumes the role of an information
content for these measurements (ρ enters equation (5) in the
same way in which Ωij appears in (1)).

In penalty methods, one solves problem (5) for an increas-
ing sequence of ρ. Intuitively, for ρ → +∞ every violation
of the constraints is “penalized” with an infinite cost, hence
for increasing ρ, the solution of (5) approaches the one of the
constrained problem (4). Probabilistically, if the “information
content” ρ increases, the soft constraint in (5) becomes more
and more certain, and, in the limit ρ → +∞, it becomes a
hard constraint.

The drawback of quadratic penalty methods is that (5)
only returns the solution of the original problem when ρ→
+∞; however, for very large ρ, problem (5) becomes ill-
conditioned (e.g., the Hessian matrix becomes rank deficient
when measurements have infinite information), and iterative
solvers tend to perform poorly in those cases.

Dual Ascent Methods partially overcome the drawbacks
of the quadratic penalty method. These methods, rather than
minimizing the constrained problem (4), minimize:

arg min
x1,...,xN∈SE(2)

N∑
g=1

f(xg, Eg,Pg) +
∑
s∈S

yTs Log
(
(xis)

−1xjs
)
(6)

where the vectors ys are called Lagrange Multipliers or
dual variables. The objective function of (6) is called the
Lagrangian of problem (4):

L(x1, . . . , xN , y)
.
=

N∑
g=1

f(xg, Eg,Pg)+
∑
s∈S

yTs Log
(
(xis)

−1xjs
)

(7)
where we denoted with y the vector stacking all Lagrange
multipliers. The key insight here is that for some problems
(e.g., when strong duality holds [30]), the solution of (6)
coincides with the solution of (4) for a sufficiently large but
finite value of ys, s ∈ S. Therefore, dual ascend methods
alternate two steps: the first step consists in minimizing (6)
w.r.t. x1, . . . , xN (keeping fixed ys); the second step is a
gradient (ascend) step that tries to increase the value of ys.

Dual ascent methods are interesting since when the cost is
separable, they enable decentralized solutions as the dual de-
composition [31]. However, the convergence of dual decom-
position is fairly delicate in practice and this motivated the
development of Augmented Lagrangian Methods, which
can be seen as a combination of the previous two techniques.
These methods minimize the augmented Lagrangian:

arg minx1,...,xN∈SE(2)

∑N
g=1 f(xg, Eg,Pg) (8)

+
∑
s∈S

[
ρ
2

∥∥Log
(
(xis)

−1xjs
)∥∥2

+ yTs Log
(
(xis)

−1xjs
)]



and a common solution method is again to alternate mini-
mization over x with maximization over y. More formally,
calling La(x1, . . . , xN , y) the objective function in (8), at
iteration t, augmented Lagrangian methods compute:

x1(t+1), . . . , xN (t+1) = arg min
x1,...,xN∈SE(2)

La(x1, . . . , xN , y(t))

y(t+1) = y(t) +∇y(t)La(x1(t+1), . . . , xN (t+1), y) (9)

where ∇y(t)La(x1(t+1), . . . , xN (t+1), y) is the gradient of
La(x1, . . . , xN , y) with respect to y, evaluated at y(t).

It is possible to prove that the iterations (9) converge to
the solution of problem (4) under more general conditions
compared to dual decomposition [30]. Moreover, this tech-
nique enables a decentralized implementation, known as the
Alternating Direction Method of Multipliers (ADMM).

IV. MULTI-BLOCK ADMM

The alternating direction method of multipliers can be
understood as a very simple variant of the augmented
Lagrangian method of eq. (9), in which the update of
x1, . . . , xN is split in N separate updates:

x1(t+1) = arg min
x1∈SE(2)

La(x1, . . . , xi(t), . . . , xN (t), y(t))

...
xi(t+1) = arg min

xi∈SE(2)

La(x1(t+1), . . . , xi, . . . , xN (t), y(t))

... (10)
xN (t+1) = arg min

xN∈SE(2)

La(x1(t+1),. . ., xi(t+1),. . ., xN, y(t))

y(t+1) = y(t) +∇y(t)La(x1(t+1), . . . , xN (t+1), y)

Let us take a closer look at the expression of the aug-
mented Lagrangian La(x1(t+1), . . . , xi, . . . , xN (t), y(t)),
to be minimized w.r.t. xi. Using the definition of the aug-
mented Lagrangian in (8):

min
xi∈SE(2)

La(x1(t+1), . . . , xi, . . . , xN (t), y(t)) =

= min
xi∈SE(2)

N∑
g=1

f(xg, Eg,Pg) (11)

+
∑
s∈S

[
ρ
2

∥∥Log
(
(xis)

−1xjs
)∥∥2

+ yTs Log
(
(xis)

−1xjs
)]

Since we optimize w.r.t. xi, keeping fixed the variables
in the other subgraphs, the contribution of all the other
subgraphs

∑N
g=1,g 6=i f(xg, Eg,Pg) is a constant, which is

inconsequential for the minimization. Similarly, the terms
in the second sum in (11) that does not include separators
of the subgraph i are constants (do not depend on xi).
Therefore, we remove those terms from the minimization
and rewrite (11) as

min
xi∈SE(2)

f(xi, E i,Pi) (12)

+
∑
s∈Si

[
ρ
2

∥∥Log
(
(xis)

−1xjs(t)
)∥∥2

+ yTs Log
(
(xis)

−1xjs(t)
)]

where Si is the set of separators in the i-th subgraph.

Now we note that for any vector r it holds ρ
2‖r +

y
ρ‖

2= ρ
2‖r‖

2+yTr + 1
ρ2 y

Ty, which implies ρ
2‖r‖

2+yTr =
ρ
2‖r + y

ρ‖
2− 1

ρ2 y
Ty. Using this relation, Problem (8) can be

rewritten as

min
xi∈SE(2)

f(xi, E i,Pi)+
∑
s∈Si

ρ

2

∥∥∥∥Log
(
(xis)

−1xjs(t)
)

+
ys
ρ

∥∥∥∥2

(13)

where we dropped the term 1
ρ2 y

Ty as this is again a constant
(we are optimizing over xi). As shown in (13), within the
proposed formulation the ADMM iteration for subgraph i
assumes a very simple structure. We have to optimize the
factors in the original subgraph (term f(xi, E i,Pi)) plus an
additional factor for each separator (the second summand
in (13)). Recalling that xjs(t) are constant when optimizing
over xi, we notice that problem (13) looks very similar to the
expression used in the penalty method in (5). However, rather
that adding standard priors on the separators, the ADMM
subproblem (13) includes biased priors, where ys

ρ plays the
role of a fixed bias term. Another intuitive explanation of the
role of ys comes from (12): larger values of ys tend to “am-
plify” the mismatch between separators Log

(
(xis)

−1xjs(t)
)
,

hence increasing ys forces corresponding separators in dif-
ferent subgraphs to coincide.

Eq. (13) highlights two desirable properties of the pro-
posed approach: the i-th subproblem (13) assumes the form
of a nonlinear least squares problem, hence it can be op-
timized using standard factor graph solvers. The second
property is that the subproblem (13) preserves the same
sparsity structure of the Hessian of the i-th subgraph: the
sparsity is dictated by f(xi, E i,Pi), while the biased priors
do not add extra nonzero terms.

Also the computation of y(t+1) in (10) (the dual update)
has a straightforward implementation. The gradient with
respect to y can be easily read from the last term in the aug-
mented Lagrangian (8), and the dual variable corresponding
to each separator s can be updated independently:

ys(t+1) = ys(t) +
∑

s∈xi
s,x

j
s

Log
(
(xis(t+1))−1xjs(t+1)

)
(14)

where the sum is over all subgraphs including the separator
node s (a separator may be shared by more than two graphs).
The update (14) shows that the dual variable ys keeps
changing whenever there is a mismatch between the copies
of the separators (xis, x

j
s) in the subgraphs.

The pseudocode of the proposed ADMM algorithm is
given in Algorithm (1). The algorithm updates each subgraph
as in (10). The update of each subgraph can be done by
solving (13). In Algorithm (1), the “solve” function can
be any standard factor graph solver that optimizes (13). The
dual update is the one in (14). The stopping conditions will
be discussed later in this section and are given in (16)-(17).

Convergence. ADMM has been proven to converge when
the variables are split in two subsets (two subgraphs in our
case), see, e.g., [32]. More recent results discuss convergence
of the multi-block version (N subgraphs) [33], [34]. These
convergence results deal with the case in which the original
optimization problem is convex. Examples of applications
and analysis of ADMM to particular families of nonconvex



Algorithm 1: Decentralized SLAM using ADMM

input : Factors (E1,P1), . . . , (EN ,PN ) and initial
guess x1(0), . . . , xN (0) for each subgraph,
parameter ρ, stopping conditions tolerances ε, η

output: Estimates x1,?, . . . , xN,? for all variables

% ADMM iterations
for t = 0 : maxIter do

% Primal update
for i = 1 : N (for each subgraph) do

xi(t+1) = solve( Problem (13) )

% Dual update
for s = 1 : |S| (for each separator) do

ys(t+1) = update( Problem (14) )

% Check stopping conditions
if (C1) and (C2) are satisfied then

break

return x1(t+1), . . . , xN (t+1).

problems include [32], [35], [36]. Pose graph optimization
is known to be a nonconvex problem and no proof of
convergence is currently available even for the centralized
version (1). Therefore, as already done in the centralized
case, we investigate convergence numerically, testing the
approach on standard benchmarking problems. Experimental
results in Section V confirm that the scheme converges to the
same solution of the centralized counterpart (1).

Stopping Conditions A standard way to assert conver-
gence in numerical optimization methods is to check the
Karush-Kuhn-Tucker (KKT) conditions [30]. The KKT con-
ditions, applied to problem (4), state that the following equal-
ities are necessary for the estimate x? = {x1?, . . . , xN?} to
be a (local) minimum of (4):

Log
(
(xi?s )−1xj?s

)
= 0, ∀s ∈ S (15)

∇xL(x1?, . . . , xN?, y)=0

The first condition in (15) is called primal feasibility and
essentially requires that any solution of problem (4) has
to satisfy the constraints. The second condition is called
stationarity and requires that the solution is a stationary point
(zero gradient) of the Lagrangian (7).

We use the optimality conditions (15) to check conver-
gence of our approach. In our implementation, we terminate
the ADMM iterations when both conditions are satisfied:

(C1) pres
.
=

∑
s∈S

∥∥Log
(
(xi?s )−1xj?s

)∥∥ ≤ ε (16)

(C2) dres
.
=

∥∥∇xL(x1?, . . . , xN?, y)
∥∥ ≤ η (17)

where ε and η are given tolerances. The quantities pres
and dres are sometimes called primal and dual resid-
ual, respectively [32]. Recalling the expression of the La-
grangian (7), one may notice that the gradient of the La-
grangian ∇xL(x1?, . . . , xN?, y) can be computed as a sum
of contributions of each subgraph (∇xf(xg?, Eg,Pg)) plus
the contribution of the separator constraints.

Parameter Choice A practical issue that one faces when
implementing our approach is how to set the parameter ρ

in (13). As already observed for the penalty methods (5),
this term plays the role on an information content, hence
the contribution of the biased priors in (5) will be stronger
for large ρ. One option is to set ρ to a constant value. This
may work well, but usually leads to slow convergence. In
this section we propose an adaptive policy for ρ that follows
closely the approach proposed in [32]. The basic idea is that
if at iteration t the primal residual (16) is large (there is a
large violation of the constraints) then we try to use a larger
ρ at the next iteration, as this implies a stronger bounds
between the separators (see, e.g., (12)). On the other hand,
when the dual residual (17) are large, we try to reduce ρ,
such that the augmented Lagrangian (8) becomes closer to
the Lagrangian (7) (recall that the dual residual checks if we
reached a stationary point of the Lagrangian). Therefore, we
adopt the same policy of [32] (Section 3.4.1):

ρ(t+ 1) =

 2ρ(t) if pres > 10dres
1
2ρ(t) if dres > 10pres
ρ(t) otherwise

(18)

which adapts ρ so to balance the primal and dual residuals.
Section V shows that this policy is effective in speeding-
up convergence. The inclusion of this adaptive policy in
Algorithm 1 is straightforward and consists in adding the
update rule (18) for ρ after checking the stopping conditions.

V. EXPERIMENTS

In this section, we characterize the performance of the pro-
posed approach with respect to different properties of interest
like convergence, timing, and parameter choice. We also
compare our approach against state-of-the-art approaches.

Algorithms. We consider two variants of the proposed
approach. The first is the one of Algorithm 1, that we refer
as ADMM. This uses a fixed ρ = 0.1. The second variant uses
the adaptive policy for ρ, described in (18). We refer to this
second variant as ADMM-adapt. We also discuss performance
of these variants for different stopping conditions, dictated
by the constant ε, η in (16). In all these variants we use
the Gauss-Newton (GN) method, available in gtsam [37],
to optimize each subgraph as per eq. (13), while the dual
update is done in closed form, using (14). In Section V-B,
we compare our approach against the following state-of-the-
art algorithms: SMF [22], HogMan [18], TSAM2 [19], and T2-
NOREL (variant of TSAM2 discussed in [22]).

Datasets. We use six publicly available datasets to evalu-
ate the performance of our algorithm: AIS2Klinik, ETHCampus,
INTEL, M3500, CSAIL and FR079 [22], [38]. These bench-
marking datasets contain a good mix of indoor and outdoor,
simulated and real environments. Number of poses (n) and
number of relative measurements (m) for each dataset are
given in Table I. The datasets do not include any prior, so we
set a prior on the first pose, that becomes our reference frame.
We use the METIS algorithm [39] to partition the graph into
multiple subgraphs. Note that while related approaches re-
quire specific partitioning criteria (e.g., minimize matrix fill-
in), our approach is flexible enough to handle any partition as
this would not alter the sparsity pattern in the optimization.
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Fig. 2. (a) χ2 error comparing two variants of the proposed approach
(ADMM and ADMM-adapt) against the final error of a centralized solver.
(b,c,d) ADMM-adapt estimate at different iterations (M3500 dataset). Each
subgraph is shown in a different color. (e) Centralized estimate. (f) Time
taken for each iteration in the ADMM approach.

A. ADMM Performance Characteristics
Here we discuss different ADMM performance character-

istics using the M3500 dataset. We partitioned the original
graph in 10 subgraphs for these experiments.

Convergence. Fig. 2(a) shows the χ2 error versus the
number of ADMM iterations, comparing the evolution of
the error for ADMM and ADMM-adapt, against the final error
of a centralized optimizer (constant, in green). Both variants
converge to the same error of the centralized solution. ADMM-
adapt, which uses the adaptive penalty scheme, has a faster
convergence and has a comparable error as the centralized
solution after only 10 iterations. Snapshots of the estimated
subgraphs at different ADMM iterations, compared against
the centralized solution, are shown in Fig.2(b,c,d,e). This
confirms that the ADMM-adapt estimate reaches a good accu-
racy after only 10 iterations.

Timing. Fig. 2(f) shows the time taken by each iteration
versus the iteration number. The time plot refers to ADMM;
the trend for ADMM-adapt is similar. The time is larger at
the beginning and quickly reduces after the first iterations.
This is because at the beginning the current estimate is
quite noisy, and the optimization of each subgraph takes
more GN iterations. After the first iterations, each subgraph
becomes more “rigid”, and usually one GN iteration is
sufficient to minimize (13). One advantage of our approach
is that it works directly in the nonlinear domain (i.e., each
subproblem (13) is nonlinear), and this implies that each
subgraph is free to use a different number of GN iterations,
depending on how far it is from the minimum of (13). This
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Fig. 3. Primal and dual residuals when using (a) the basic algorithm
ADMM, with fixed ρ, and (b) and the variant ADMM-adapt, which uses
an adaptive penalty scheme. ADMM-adapt tries to reduce the gap between
primal and dual residuals by dynamically changing ρ.

also enables an easy implementation of heuristics to speed
up computation, e.g., updating only the subgraphs in a region
of interest, as suggested by Suger et al. [22]; we leave these
considerations for future work.

Primal and Dual Residual. Fig. 3 shows the evolution
of primal and dual residual values (used for the stopping
conditions (16)) versus the number of iterations. Left plot
shows the residual values using fixed penalty and the right
plot shows the residual values using adaptive penalty. Using
adaptive penalty effectively forces the primal and dual resid-
ual values to be closer to each other by dynamically changing
the ρ value (information content of the biased priors).

Stopping conditions and just-in-time SLAM. Table I
compares ADMM performance for different datasets and
parameter configurations. We used χ2 error and total CPU
time as performance metrics. The column “centralized”
shows the statistics when using a centralized GN solver for
optimization. For both variants, ADMM and ADMM-adapt, we
consider different stopping conditions, ordered from strict
to loose. As strict stopping conditions (column “Strict” in
Table I) we use primal and dual residual error thresholds ε =
η = 0.01, and maximum number of iterations maxIter =
1000. These are of scarce practical interest (our approach
becomes impractically slow), but show that we can reach
practically the same error as the centralized solution if we
allow extra iterations. More realistic stopping conditions are
ε = η = 0.1, and maxIter = 200 (column “Regular” in
Table I) . For both variants, the error is still very close to
the centralized one, and the time starts to be reasonable. If
we further relax the stopping conditions (column “Loose” in
Table I) the error starts increasing and the approach starts to
lose accuracy, in the interest of time. From Table I, we can
also notice that ADMM-adapt attains similar results as ADMM
but it is not necessarily faster, suggesting that the advantage
of the adaptive policy can be dataset dependent (ADMM-adapt
is faster than ADMM in the ETHCampus and FR079, but it
is slightly slower in AIS2Klinik and M3500). In summary, the
proposed approach has a “just-in-time” flavour: it can quickly
reach a reasonable error, and if one allocates additional CPU
time the approach converges to the same accuracy as the
centralized solution.

B. Comparison Against the State of the Art

In this section we compare the algorithm ADMM-adapt
(ε = η = 0.1, maxIter=200) against the state of the art.
For the approaches SMF, HogMan, TSAM2, and T2-NOREL, the



Dataset Centralized ADMM (10 Subgraphs)
Fixed Penalty (ρ = 0.1) Adaptive Penalty

Strict Regular Loose Strict Regular Loose
η, ε = 0.01 η, ε = 0.1 η, ε = 0.1 η, ε = 0.01 η, ε = 0.1 η, ε = 0.1

maxIter=1000 maxIter=200 maxIter=20 maxIter=1000 maxIter=200 maxIter=20
AIS2Klinik 2 Cost 193.34 194.77 199.82 448.06 194.28 194.93 636.87

n=15115, m=16727 Time 1.28 336.17 80.09 11.49 346.25 84.70 11.74

ETHCampus Cost 27.00 27.89 28.29 65.80 28.00 28.64 197.81
n=7065, m=7427 Time 0.10 105.95 39.11 5.68 81.98 24.64 5.70

INTEL Cost 54.31 56.00 60.21 65.89 54.31 54.58 58.91
n=1728, m=2512 Time 0.08 39.14 8.17 0.97 39.76 8.38 1.19

M3500 Cost 146.09 146.66 158.53 231.69 147.06 148.61 159.60
n=3500, m=5598 Time 0.27 89.61 20.47 2.92 91.59 23.33 2.97

CSAIL Cost 0.11 0.11 0.11 0.13 0.14 0.64 0.64
n=1045, m=1172 Time 0.04 2.14 0.85 0.58 2.51 0.27 0.27

FR079 Cost 0.07 0.07 0.07 0.07 0.08 0.08 0.08
n=989, m=1217 Time 0.03 1.49 0.50 0.45 0.28 0.16 0.15

TABLE I
ADMM PERFORMANCE COMPARISON FOR DIFFERENT DATASET AND PARAMETER CONFIGURATIONS.

Dataset Method χ2 error time [s]

AIS2Klinik

ADMM-adapt 194.9 84.70
SMF 471.0 0.86

T2-NOREL 108977.8 1.00
HogMan 647.0 15.53
TSAM2 172.8 2.85

ETHCampus

ADMM-adapt 28.6 24.64
SMF 38.9 0.36

T2-NOREL 22457.2 0.50
HogMan 79.3 2.55
TSAM2 25.0 1.15

INTEL

ADMM-adapt 54.6 8.38
SMF 53.3 0.11

T2-NOREL 69.0 0.08
HogMan 134.7 0.78
TSAM2 45.0 0.18

M3500

ADMM-adapt 148.6 23.33
SMF 287.1 0.35

T2-NOREL 733.8 0.21
HogMan 521.9 3.25
TSAM2 146.1 0.54

TABLE II
COMPARISON OF ADMM-adapt AGAINST THE STATE OF THE ART.

results in Table II are the same as Table I in [22] and are
kindly provided by the authors. Slight mismatch w.r.t. some
of the entries in Table I may be due to the use of different
stopping conditions (Table I uses default parameters for
gtsam). TSAM2 produces the most accurate results, however it
is memory intensive [22], as it does not sparsify the separator
cliques. T2-NOREL, HogMan, and SMF imply approximations
(e.g., sparsification or selective optimization) hence they are
more memory efficient but less accurate. ADMM is declaredly
slower that the competitors: the dual update is essentially a
gradient method and this is known to have long convergence
tails. Moreover, in our current implementation we perform
the update (10) sequentially on the same processor. However,
our approach compares favourably to the state-of-the-art in
terms of accuracy. In the table we show in boldface the
two most accurate approaches, for each test. As we said,
TSAM2 attains the best cost, but is memory hungry [22]. The
ADMM-adapt approach is more accurate than the approximated
approaches T2-NOREL, HogMan, and SMF, while preserving
memory efficiency (we only optimize each subgraph and we
have freedom to control the size of each subgraph).

To further demonstrate that the proposed approach is
memory efficient and can operate on small memory systems,
we perform the following test. We consider the M3500 dataset
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Fig. 4. (Left) Average memory consumption of each subgraph derived
analytically given the number of nodes and edges in each subgraph. (Right)
Total time to compute the ADMM solution versus the number of subgraphs.

and we apply the ADMM algorithm for increasing number of
subgraphs. Increasing the number of subgraphs means that
the size of each subgraph becomes smaller, making the opti-
mization of each subgraph cheap in terms of memory. Figure
4 shows the memory consumption and the total ADMM time
for increasing number of subgraphs for the M3500 dataset.
In order to make the comparison fair, we terminate the
execution of the algorithm when the ADMM solution reaches a
cost that is 10% of the optimal cost of the centralized solver.
This ensures that timing and memory are shown for the same
level of accuracy. The memory consumption plot shows that
we can easily accomodate system with small memory by
simply allowing extra subgraphs. The time plot shows that
the computation cost increases gracefully when increasing
the number of subgraphs. Indeed, we observed that the time
per iteration remains practically constant, independently on
the number of subgraphs, while the iterations taken tend
to increase when using more subgraphs (intuitively, it takes
more iterations to propagate corrections across subgraphs).

In summary, this exploratory study shows that ADMM can
be an interesting alternative for memory efficient SLAM:
(i) it is sparse, as it never requires optimizing over the
separators, (ii) it is accurate, as it does not imply approxima-
tions (e.g., sparsification), and (iii) is has a straightforward
implementation, as it does not require hierarchical schemes
or linearization point bookkeeping.

VI. CONCLUSIONS AND FUTURE WORK

We presented a memory efficient SLAM approach using
the Alternating Direction Method of Multipliers. We showed
that our approach preserves the sparsity structure of the



original problem, has a straightforward implementation, and
has a just-in-time flavour. Experimental results showed that
our approach produces acceptable estimates in few iterations,
and if one allows for extra iterations, it reaches comparable
accuracy w.r.t. a centralized solver. We characterized the
performance of our algorithm in terms of convergence and
timing, and compared it against the state of the art. This
exploratory study opens many research avenues. First, we
plan to investigate computational aspects (e.g., parallelization
of the ADMM iterations), which would result in faster
solutions. Second, we plan to test the ADMM approach on
more general factor graphs. Third, we will explore appli-
cations of ADMM in a multi robot setup. Our approach
requires minimal information exchange among the subgraphs
(each subgraph would correspond to a robot in a multi
robot scenario). Indeed, rather than communicating dense
marginals [28], our ADMM approach only needs to exchange
the biased priors, and this may reduce the communication
burden and avoid bookkeeping of the linearization points.
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