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Abstract—In this paper, we present an information-based
approach to select a reduced number of landmarks and poses
for a robot to localize itself and simultaneously build an
accurate map. We develop an information theoretic algorithm
to efficiently reduce the number of landmarks and poses in
a SLAM estimate without compromising the accuracy of the
estimated trajectory. We also propose an incremental version of
the reduction algorithm which can be used in SLAM framework
resulting in information based reduced landmark SLAM. The
results of reduced landmark based SLAM algorithm are shown
on Victoria park dataset and a Synthetic dataset and are
compared with standard graph SLAM (SAM [6]) algorithm.
We demonstrate a reduction of 40-50% in the number of
landmarks and around 55% in the number of poses with
minimal estimation error as compared to standard SLAM
algorithm.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is one
of the basic problems in mobile robotics. SLAM allows
the robot to incrementally build a consistent map of the
environment while simultaneously using the map to localize
itself. It has a wide range of applications from service
robotics to reconnaissance operations. The complexity of
the existing SLAM approaches grow with the length of
the robot’s trajectory which challenges long term autonomy.
Some recent approaches solve this problem by compressing
the pose graph to reduce its complexity [9], [17], [14], [12],
[2], [23], [18]. These methods sparsify the pose graph to
reduce the number of poses and do not consider the size of
the generated map.

As compared to pose graph based SLAM, landmark based
SLAM explicitly maintains the landmark and robot states.
Keeping landmarks in the SLAM estimate has advantages
over marginalizing out. For example, semantic landmarks
like planes and objects can be used to perform tasks which
require higher cognition capability. Additionally, it can be
associated with the current robot pose and therefore be used
to localize the robot [24], [4]. However storing all landmarks
and poses can become expensive in the long term.

Therefore, in this paper we address this problem by de-
veloping an information-based approach to select a reduced
number of landmarks and poses for a robot to successfully
localize itself and simultaneously build an accurate map.
We present an incremental and active minimization approach
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Fig. 1: Comparison of pose trajectory and landmark loca-
tions estimated using (a) Standard Graph SLAM (SAM [6])
and (b) Reduced Landmark based SLAM on Victoria Park
dataset.

(Section 1V) for doing reduced landmark based SLAM. The
active minimization approach uses an information theoretic
algorithm (Algorithm 3) to reduce the number of landmarks
and poses. Performing the minimization in an incremental
manner (Algorithm 5) results in a reduced landmark based
SLAM algorithm. We evaluate our approach using two
datasets, Victoria Park [11] and a synthetic dataset comparing
it to standard graph SLAM (SAM [6]) and demonstrating
a reduction of 40-50% in the number of landmarks and
around 55% in the number of poses with minimal estimation
error. Figure 1 shows a comparison of robot trajectory and
landmark locations estimated using standard graph SLAM
and reduced landmark based SLAM on Victoria Park dataset.
Our contributions in this paper are as follows:

1) We develop an information theoretic algorithm to ef-
ficiently reduce the number of landmarks and poses
without compromising the accuracy of the estimated
trajectory.

2) We propose an incremental version of this algorithm
which can be used in a SLAM framework required for
online operations.

In Section II, we discuss the related work in this area.
Section III reviews landmark based SLAM and proposes a
formulation for reduced landmark based SLAM. Section IV
describes the incremental and active minimization algorithms
for doing the same. In Section V we give an extensive
evaluation of our approach on two datasets and we conclude
in Section VI.

II. RELATED WORK

SLAM is an active area of research in robotics. One of
the initial solutions to the SLAM problem was proposed by
Smith and Cheeseman who used the Extended Kalman Filter
(EKF) to jointly represent the landmark position with the



pose [21]. Durrant-Whyte and Bailey provide a survey of
the SLAM literature [8].

Dissanayake et al. [7] showed that it is possible to remove
a large percentage of the landmarks from the map without
making the map building process statistically inconsistent.
Folkesson and Christensen introduced the GraphSLAM sys-
tem which finds the best robot trajectory using a non linear
optimization technique [10]. Dellaert and Kaess exploited
the inherent sparsity of the SLAM problem to make the
process more efficient [6]. These approaches solve a batch
least squares optimization which become computationally
expensive for large-scale problems.

Various other methods have been developed to reduce the
computational time. Sibley et al. used sliding window filter
whereas Ni et al. divided the whole graph into multiple local
sub-graphs [19], [20]. Incremental smoothing and mapping
algorithm updates the square root information matrix with
the new measurements [16]. In this approach, the length of
the trajectory depends on the exploration time rather than the
explored area which becomes computationally expensive for
long term SLAM.

Kretzschmar and Stachniss proposed an information the-
oretic approach to compress the pose graph by selecting
the most informative laser scans with respect to the map
[17]. Tla et al. [13] proposed to add only non-redundant
and informative links to the graph. Eade et al. [9] reduced
the complexity of the graph by marginalizing out past robot
poses that are not useful in subsequent operations. Vial et al.
[25] presented a conservative sparsification technique that
minimizes the KL divergence of the information matrix for
sparsely approximating multi-dimensional Gaussian distribu-
tions. Huang et al. [12] propose a consistent graph sparsi-
fication scheme to marginalize out old nodes. Wang et al.
[26] performs pose graph reduction using a greedy pruning
based on KL Divergence measure between the reduced graph
and full graph. Johannsson et al. [14] used a reduced pose
graph representation to bound the size of the pose graph
with respect to the explored area. Carlevaris-Bianco et al.
[2] proposed a generic node removal technique to produce
a new set of linearized factors over the elimination cliques
that represents either the true or a sparse approximation
of the true marginalization. Mazuran et al. [18] formulated
sparsification as a convex minimization problem. All of these
compress the pose graph by reducing views or poses to
reduce the complexity of graph optimization where as our
approach reduces the number of landmarks and poses in a
landmark based SLAM framework.

Suger et al. [23] present an approximate SLAM based on
hierarchical decomposition to reduce the memory consump-
tion. Cao and Snavely [1] proposed a probabilistic K-cover
algorithm to reduce the size of 3D reconstructions. Chli et
al. used mutual information between the measurements to
guide the search during feature matching step of a visual
SLAM system [3]. Kaess and Dellaert ignore the feature
measurements whose information gain falls below a specified
threshold [15]. In contrast we estimate the information
provided by a landmark rather than a measurement.

III. APPROACH

We develop an incremental and active minimization ap-
proach (Section IV) for doing reduced landmark-based
SLAM. While the robot is navigating, reduced landmark
based SLAM selects a reduced number of landmarks and
poses from the environment for a robot to localize itself
and simultaneously build an accurate map. The active min-
imization approach uses an information theoretic algorithm
(Algorithm 3) to reduce the number of landmarks and poses.
Incremental minimization performs the same in an iterative
manner (Algorithm 5).

In the following sections we review the standard graph
SLAM formulation (using all landmarks and poses) and
propose a formulation for reduced landmark-based SLAM.

A. Landmark-based SLAM

In landmark-based SLAM a robot while navigating tries
to localize itself and at the same time build a map of the
environment (represented using landmarks). Assuming the
pose of the robot at i*" time step is x; with i € 0... M, a
landmark is /; with j € 1... N and a measurement is zy,

with k € 1... K, the joint probability model is given as,
M K

P(X,L,Z) = P (z,) [[ P (wilwi-1, wi) H (z|2ik, k)
i=1 k=1

where P(x,) is a prior on the initial state, P (z;|z;—1,u;)
is the motion model, parameterized by a control input or
odometry measurement u; and P (2|2, ;) is the landmark
measurement model where x;; (i'" pose) and L (j
landmark) correspond to the z; measurement. X is the set of
poses, L is the set of landmarks and Z is the set of measure-
ments. Assuming the motion and measurement models are
Gaussian, P(z;|z;_1,u;) o exp s filwic, us) — @]},
and P(Zk|l‘ik,ljk) X exp — Hhk( Tik Jk) — ZkH%k where
f() is the robot motion equatlon and h() is a landmark
measurement equation with A; and Yj as the respective
covariances.

Fig. 2: Factor Graph corresponding to the Landmark based
SLAM problem. The pose of the robot at it time step is
2; with ¢ € 0... M and a landmark is /; with j € 1... N.
Measurements z; with k € 1... K are shown by small filled
circles corresponding to a factor node.

We use a factor graph to represent the joint probability
model P(X, L, Z) where each factor represents either P (x,)



or P(z;|zi—1,u;) or P (zp|zik,l;;). Therefore the joint
probability model can be written as
Hgl i) )

P(X,L,2)
where O is the set of variables §; adjacent to the factor g;.
Figure 2 shows the corresponding factor graph. Given all the
measurements, we obtain the maximum a posteriori (MAP)
estimate ©* by maximizing the joint probability P(X, L, Z).

0 = log 4(©))(2)

which leads to the following non-linear least squares prob-
lem:

arg max P(X,L|Z) = arg m@in (-

M
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The non-linear least squares problem in Equation 3 is solved
using non-linear optimization method such as Levenberg-
Marquardt algorithm which solves a succession of linear
approximations to approach the minimum.

In each iteration of the non-linear least squares problem,
we linearize around a linearization point © to obtain a linear
least squares problem of the form ¢* = arg ming || A5 — b||3
where A represents the Jacobian matrix, b is the set of
measurements (odometry or landmark) and ¢ represents the
change around the current estimate of X and L. For a full
rank matrix A, the least squares solution can be found by
solving the normal equations AT A* = ATb. Cholesky
factorization yields ATA = RTR where R is an upper-
triangular matrix. A forward substitution on RTy = ATb
followed by backward substitution R6* = b gives the update
0*. We use the Georgia Tech Smoothing and Mapping
(GTSAM) library to jointly optimize the robot poses and
landmarks [5].

B. Reduced Landmark-based SLAM

The goal of reduced landmark-based SLAM is to navigate
in an unknown environment using the reduced amount of
landmarks and poses. It can be formulated as incrementally
finding a reduced subset of landmarks and robot poses
(Ls,X ) such that the difference between trajectory estimated
using a reduced subset of landmarks and robot poses and the
trajectory estimated using all landmarks and robot poses is
minimal.

However, there is a trade-off between the memory require-
ment and the estimation error because reducing the number
of landmarks (memory requirement), increases the error in
the estimated trajectory. To represent the trade-off between
the memory requirements and the estimation accuracy, we
formulate the problem as finding the subset of landmarks
Ly € L and robot poses X; € X which minimizes the
objective function given as,

p(LsaXs) = (1 - )‘)d (6):) =+ /\m(L87Xs) 4

— zl%,

where d() is the distance function representing the ac-
curacy of the trajectory estimated (©}) using the subset of
landmarks L, and poses X, m() is the amount of memory
required to store the same and A is the weight parameter.
The objective function represents the trade-off using A as
the weight parameter. Higher A will force the optimization
to remove as many landmarks and poses as possible whereas
lower A will be more conservative by retaining more land-
marks and poses. d() and m() are normalized to have values
between 0 and 1. Equation 4 is discussed in Section IV-B.

The reduced set of landmarks and poses is estimated by
minimizing Equation 5.

{L*, X*} = arg mm p(LS,X) (5)

Directly minimizing the above objective function is infea-
sible since we have to iterate over all combinations of
landmarks and poses which is of the order 2V where N is
total number of poses and landmarks. Below we describe an
incremental and active minimization approach for the same.

IV. REDUCED LANDMARK BASED SLAM VIA
INCREMENTAL AND ACTIVE MINIMIZATION

We estimate the subset of landmarks and poses by ac-
tively removing the least informative landmark until the
objective function (Equation 4) has its minimum value.
The corresponding poses that do not see any landmark are
marginalized out. Below we describe information gain and
the objective function used followed by the description of
active and incremental minimization algorithms.

A. Information Gain

Mutual information I (v, 3) is the measure of the expected
information gain in « on measuring the exact value of
or vice versa. The mutual information of two continuous
multivariate PDFs p(«) and p(3) is

I(e; f) = H(e) —

H(o|B) =E {mg2 p;?if)}

In the case of multivariate Gaussian describing a state vector
x by mean vector 11 and covariance matrix X such that

Ty Ha Yoo Eaﬁ:|
X = = , 0=
(xﬁ) a (Mf) [Eﬁa

Xpp
where x, and zg are the two disjoint partitions of the state
vector z. The mutual information between the two partitions
2o and zg is given by

1 aal
Zaysl

where Y5 is the covariance matrix corresponding to p(c|3)
and ¥, is the covariance matrix corresponding to p(«).
The computation of log covariance determinant log, |3
can be expensive for a large state space x. Since SAM
[6] maintains the square root information matrix R we

I(a; 8) =

(6)

702



Objective Function

) o0 0
#Landmarks Removed

Fig. 3: Objective function for Victoria park dataset using
A = 0.5 having 6536 poses and 149 landmarks.

can compute the log of covariance determinant using the
determinant of R matrix as shown below.

log, 3] = logy [ATA|™! = logy [RTR|™" = —2log, |R|
(7
R is an upper triangular matrix and therefore, the determinant
of R is the product of its diagonal terms. When R matrix is
not available we have to re-linearize the factor graph g(©)
to get A followed by QR factorization to get R. Algorithm
1 shows the overall process.

Algorithm 1 LogDet (X, g(0), 0*)
1: Linearize g(©) around ©* to get A
2: Eliminate X from A to get R (QR factorization)
3: logDet = —2 x Y. (logy Ri;) > Equation 7
4: return logDet

Algorithm 2 InfoGain (X, L, g(©), ©*)

1. X, « {X/L}

2: logDetg < LogDet(X,., g(©),©*) > logy [Xx 1|
3: g,(©) < Remove factors having L from ¢(©)

5 07 « {07/07)

5: logDetg, < LogDet(X,, g,(0), ©}) > logy [Xxx]|
6: return % x (logDetg, — logDetg) > 1 log, \EZ:;‘I

B. Objective Function

We now discuss in detail the components of the objective
function p(Ls, X;).

Distance Function d(©%): The distance function rep-
resents the accuracy of the trajectory ©F estimated using a
reduced set of poses X, and landmarks L. For a consistent
estimator, the accuracy of the estimated trajectory is pro-
portional to the uncertainty in ©F. As shown in Equation
6, information gain represents the expected reduction in
uncertainty on measuring a landmark and analogously it
represents the expected increase in uncertainty on removing
a landmark.

Therefore we use information gain of the least informative
landmark as the distance function corresponding to uncer-
tainty in the estimated trajectory. Information gain of the
least informative landmark provides a lower bound on the
information gain estimated using any of the remaining land-
marks. It also represents the minimum increase in uncertainty

on removing a landmark. This distance function works good
in practice, although better distance function is an interesting
area for future work.

Memory Consumption m(Lg, Xs): As we remove the
least informative landmark during each iteration and estimate
the value of the objective function, we use the number of
landmarks remaining as the value of m(Ls, X;). Figure 3
shows the normalized objective function for Victoria park
dataset using A = 0.5 having 6536 poses and 149 landmarks.

C. Active Minimization

Using the above formulations, we propose an active, batch
minimization algorithm as summarized in Algorithm 3. The
input to the algorithm is the current state of SLAM described
by the set of landmarks L, robot poses X, measurements Z,
the optimal landmark location and trajectory estimate ©*
obtained by maximizing the probability P(X, L, Z) x ¢g(©)
and the weight vector A. The value of A is set according
to how conservative the minimization has to be. By default,
we use A = 0.5 to get a good balance between the memory
function value and the distance function value.

Algorithm 3 Active Minimization (X, L, ©*, g(©), \)

1: Initialize Ly - L, X, < X, ©% < ©

2: Initialize p(Lg, Xs) + Am(Ls, Xs) = A|Ls|

3: repeat

4: (Lo, IG) < LandmarkSelection (X, L, g(©), ©*)

5 X, + X, L.+ {Ls/L,} > Remove L, from L,

6: O; «{0;/07 } > Remove O©F from O
7: d(©F) « IG, m(Ly, X,) < |L.|
g:
9

p(Ly, X,) < (1= N)d(0F) + Aam(L,, X,) > Eq: 4

: if p(L,, X)) > p(Ls, X;) then
10: break
11: end if
12: Ly« L, X+ X,, 0%+ 0O
13: p(LS7Xs) A p(LruXr)
14: until it breaks out of the loop
15: X, < Poses not seeing any landmark [ € L,
16: X5 + {Xs/X,} > Marginalize out X,
17: return {X,, Ls}

> Minimum value

Algorithm 4 LandmarkSelection (X, L, g(©), ©%)
1: minlG < oo
2: selectedLandmark < ()
3: for all landmarks L; in L do
4 IG(X; L;) + InfoGain(X, L;, g(©), ©%)
5 if IG(X;L;) <minIG then
6: minlG < IG(X; L;)
7
8
9

selectedLandmark < L;
end if
: end for
0: return (selectedLandmark, minlIQ)

During each iteration of the active minimization algorithm
the least informative landmark is removed until Equation 4



has reached its minimum value. A landmark is removed by
deleting the landmark and the corresponding factors from
the graph. The least informative landmark is selected using
Algorithm 4. It evaluates the mutual information between
each landmark and rest of the states by computing the differ-
ence between log of covariance determinants before and after
removing the landmark (Algorithm 2). Additional results
comparing various landmark selection algorithms can be
found at http://www.cc.gatech.edu/~choudhar/
icral5/supplementary.pdf.

When Equation 4 has reached its minimum value, robot
poses that do not see those landmarks are marginalized out.
The optimal trajectory and landmark location is re-estimated
using the reduced set of landmarks and poses. This is a batch
algorithm.

Landmarks that are currently being measured have low
information gain and can be removed by the active minimiza-
tion algorithm. However these landmarks can become impor-
tant in the future. To avoid throwing away the landmarks that
are being measured right now, we do not consider landmarks
seen by the last P poses during the active minimization
process. We use P = 5 during the experiments to ensure
a reasonable pose lag.

The current algorithm requires all the landmarks and
poses to be available before running the minimization as a
batch process. Below we give an incremental version of this
algorithm.

D. Incremental Minimization

To be used in a SLAM framework, landmark and pose
minimization has to be done in an incremental manner.
We propose an incremental minimization algorithm where
active minimization (Algorithm 3) is performed after every
¥ poses of running SLAM. The reduced set of poses and
landmarks are used from that point forward instead of
using all landmarks and poses. The incremental minimization
algorithm is shown in Algorithm 5.

Algorithm 5 Incremental Minimization(¥, \)
1: Initialize L <+ 0, X < 0, ©* + 0, g(©) + 0
2: repeat
3: Add a new pose to X and new landmarks to L.

4 Add the corresponding new factors to g(©)

5 ©* + argming (—log g(O)) > Eq: 2
6: if poses added since last minimization > ¥ then

7 {X, L} = Active Minimization (X, L, Z, ©* g, \)
8 end if

9: until the robot is navigating

Incremental minimization iteratively throws away less
informative landmarks while using the remaining landmarks
to navigate through the environment. It is less optimal and
is greedy as compared to active minimization since active
minimization considers all the landmarks and poses present
till that moment to make the decisions where as incremental
minimization keeps throwing away landmarks and does not

(a) Victoria Park dataset

(b) Synthetic dataset

Fig. 4: Datasets used in the experiment

[ [ L [ P [ Z T Area Covered |
Victoria Park dataset | 151 | 6969 | 10608 | 200x250 sq. m
Synthetic dataset 23 96 422 50%50 sq. m

TABLE I: Statistics of the datasets used. L is #landmarks,
P is #poses and Z is #measurements.

have access to all the landmarks available at a particular
time. For example, incremental minimization algorithm can
throw away landmark which was uninformative at time
T but which might result in a loop closure constraint at
T + t and hence become very informative in the future. A
possible solution to solve the optimality issue is to maintain
a uniform distribution of landmarks over the explored region
regardless of their information gain. Higher value of W
(calling active minimization less frequently) will result in the
estimation given by incremental minimization to approach
the estimation given by active minimization.

V. EXPERIMENTAL RESULTS

In this section, we describe the datasets and evalua-
tion metrics used in the experiments and compare reduced
landmark-based SLAM algorithm with the standard graph
SLAM (SAM [6]) algorithm (using all landmarks and poses).

A. Datasets

We tested the reduced landmark-based SLAM algorithm
on two datasets: Victoria Park dataset [11] and Synthetic
dataset. Table I summarizes the datasets used and Figure
4 show the datasets. Both the datasets are planar where
each pose is represented by its translation (z,y) and heading
direction 6.

B. Evaluation Metrics

1) Absolute trajectory error (ATE (m)) : As proposed
by Sturm et al. [22], absolute trajectory error compares the
absolute distance between the trajectories estimated using
standard graph SLAM and reduced landmark-based SLAM.
ATE evaluates the RMSE (root mean squared error) over the
difference of pose translation (for the reduced set of poses)
estimated using all landmarks and poses and reduced set of
landmarks and poses. Formally ATE is defined as follows,

ATE = <i ; [trans (X' — X7 ||2>

where X is the i*" pose estimated using all landmarks and
poses and X! is the i*" pose estimated using reduced set of
landmarks and poses.

2
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2) Absolute landmark error (ALE (m)): Similar to ATE,
absolute landmark error computes the RMSE over the re-
duced set of landmarks.

Lo R
ALE = | = LP— Li)?
(ngll ol ) ©)

3) Average rotation error (ARE (deg)): Average rotation
error is evaluated by averaging the angular difference in the
pose heading directions over the reduced set of poses.

RS i i
ARE_”IZ;WM(X X (10)

4) FEigen Envelope (EIG): As proposed by Carlevaris-
Bianco et al. [2], we compute the range of eigen values of the
difference between the marginal covariances of the reduced
set of poses and landmarks when using all landmarks and
poses as compared to using reduced number of landmarks
and poses.

(1)

5) Percentage increase in covariance determinant of the
latest pose (UD): Uncertainty of the latest pose is computed
by marginalizing out the latest pose and evaluating its
covariance determinant. We compute the percentage increase
in uncertainty of the latest pose when using all landmarks and
poses as compared to using reduced number of landmarks
and poses.

EIG = range (eig (X1rUE — XREDUCED))

oD - IZEEpucenl = IZ5Rusll | 100

IXF el

12)

C. Results

We compare the two components of the reduced landmark-
based SLAM algorithm, active minimization and incremental
minimization with standard graph SLAM algorithm. The
minimization algorithms are analyzed by comparing the pose
trajectory and landmark location estimated by the reduced
set of landmarks and poses as compared to the estimation by
standard SLAM using all landmarks and poses. The accuracy
of the solution is analyzed using the evaluation metrics given
in Section V-B. In the following experiments we use A = 0.4
as the weight factor to conserve more landmarks and P = 5
as the pose lag.

1) Victoria park dataset: For Victoria Park dataset, we use
¥ = 500 as a pose interval at which active minimization is
called in an incremental manner. Figure 5 plots the estimated
pose trajectories and landmark location for Victoria Park
dataset using standard graph SLAM and reduced landmark-
based SLAM (active minimization and incremental mini-
mization) at three different time intervals. Table II compares
active minimization and incremental minimization algorithm
w.r.t standard graph SLAM using the evaluation metrics for
the trajectories shown in Figure 5. Figure 6 compares active
minimization and incremental minimization algorithm using
the evaluation metrics at every 500" pose.

We can see from Figure 5 and Table II that the trajectory
and landmark location estimated using standard graph SLAM

is similar to the estimation given by reduced landmark-
based SLAM. The final absolute trajectory error between
the estimation given by reduced landmark-based SLAM
(incremental minimization) as compared to standard graph
SLAM is 2.3 m with a 50% reduction in the number of
landmarks and 54% reduction in the number of poses. The
absolute landmark error is 2.05 m as well. The average
error in heading direction is 0.0205 degrees. As compared
to incremental minimization, active minimization uses all the
landmarks and poses and therefore has better accuracy of the
estimated trajectory (Table II and Figure 6). This also shows
the sub-optimal nature of the incremental minimization as
compared to active minimization. Another reason of high
errors in case of incremental minimization as compared to
active minimization is because minor trajectory errors added
initially in time propagate through out rest of the estimation
as it progresses. The number of landmarks and poses selected
by active minimization is more than the number of landmarks
and poses selected by incremental minimization. Positive
values of eigen envelope (EIG) show that the estimates are
conservative. Percentage increase in uncertainty of the latest
pose (UD) is reasonable for both active minimization and
incremental minimization algorithms.

2) Synthetic dataset: For this dataset, we use ¥ = 30
as a pose interval at which active minimization is called
in an incremental manner. Figure 7 plots the estimated
pose trajectories and landmark location for Synthetic dataset
using standard graph SLAM and reduced landmark-based
SLAM (active minimization and incremental minimization)
at two different time intervals. Table III compares active
minimization and incremental minimization algorithm w.r.t
standard graph SLAM using the evaluation metrics.

We can see in Table III that the ATE and ALE of the
estimation given using reduced landmark-based SLAM as
compared to using standard graph SLAM is 0.2231 m and
0.3365 m with a 39% reduction in the number of landmarks.
Since after removing uninformative landmarks there is no
pose that doesn’t see any landmark, we do not marginalize
out any pose and therefore there is no reduction in the
number of poses. The average error in the heading direction
is 0.0158 degrees. For the synthetic dataset the trajectory
estimated using active minimization is the same as the
trajectory and landmark location estimated using incremental
minimization since there are no loop closures. In the presence
of loop closures, landmarks which are less informative at
certain point of time can become informative in the future.
Percentage increase in the uncertainty of latest pose (UD) is
low for active minimization algorithm (0.08%), where as it
is high for incremental minimization algorithm (16.9%) as
compared to full SLAM. This is due to sub-optimal removal
of landmarks in the case of incremental minimization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we developed an information theoretic
algorithm to efficiently reduce the number of landmarks and
poses without compromising the estimation accuracy. We
proposed an incremental version of the algorithm resulting in
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Fig. 5: Estimated pose trajectory and landmark location for Victoria Park dataset using standard graph SLAM and reduced
landmark-based SLAM at four different time intervals. P is #Poses. The algorithms compared here are standard graph
SLAM (using all landmarks and poses), Active minimization (Alg: 3) and Incremental minimization (Alg: 5).

Ll p Active Minimization Incremental Minimizaton

L[%] [ P[%] [ATE (m)[ALE (m) [ARE (deg)[ UD (%) [ EIG L[%] [ P[%] [ATE (m)[ALE (m) [ARE (deg)[ UD (%)
29 | 532 (25 [13%]| 308 [42%] | 0.0038 | 0.0073 |8.7185e-05[2.37¢-03% |2.4e+07|25 [13%]| 308 [42%] | 0.0038 | 0.0073 8.7e-05 [2.3e-03%
68 [2532(58 [14%]|1345 [47%]| 0.0000 0 0.0000 1.37% |4.5e+09 |58 [14%]|1345 [47%]| 0.1027 | 0.1461 0.0052 3.42%
82 [4532(63 [23%] (2359 [48%]| 0.0207 | 0.0082 |3.1115e-04|4.46e-02% - 64 [22%] 2363 [48%]| 0.2262 | 0.4196 0.0086 2.85%
139[6532|74 [46%]|2971 [54%]| 0.0040 | 0.0044 [8.3788e-05|2.07e-02% - 70 [49%]|2958 [54%]| 2.3487 | 2.0539 0.0205 4.14%

TABLE II: Statistics of Minimization algorithms as compared to Standard Graph SLAM for Victoria Park dataset. L is
#landmarks. P is #poses. ATE is absolute trajectory error, ALE is Absolute landmark error, ARE is average rotation error,
UD is percentage increase in covariance determinant of last pose and EIG is eigen envelope. [%] is percentage change.
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Fig. 6: Comparison minimization algorithms w.r.t varying number of poses for Victoria Park dataset. The algorithms are
compared on the basis of number of landmarks and poses remaining after minimization, absolute trajectory error (Section
V-B.1) and absolute landmark error (Section V-B.2).

Llp Active Minimization Incremental Minimizaton

L[%] | P[%] [ATE(m) [ ALE (m) [ ARE(deg) [ UD (%) [ EIG L [%] | P[%] [ATE(m) [ ALE(m) [ ARE(deg) | UD (%)
6 |32 5[16%] | 32 [0%] | 0.0815 0.0741 0.0072 40.8% | 232.0 | 5[25%] | 32 [0%] | 0.0815 0.0741 0.0072 40.8%
15162 | 15[0%] | 62 [0%] 0.00 0.00 0.00 0.00% | 2865.0 | 14 [12%] | 62 [0%] | 0.1108 0.1463 0.0064 0.320%
23196 | 18 [22%] | 96 [0%] | 0.0329 0.0304 0.0035 0.08% | 10018 | 14 [39%] | 96 [0%] | 0.2231 0.3365 0.0158 16.9%

TABLE III: Statistics of Minimization algorithms as compared to Standard Graph SLAM for Synthetic dataset. L is
#landmarks. P is #poses. ATE is absolute trajectory error, ALE is absolute landmark error, ARE is average rotation error,
UD is percentage increase in covariance determinant of last pose and EIG is eigen envelope. [%] is percentage change.
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Fig. 7: Estimated pose trajectory and landmark location for Synthetic dataset using Standard Graph SLAM and reduced
landmark-based SLAM for different trajectories. P is #Poses. The algorithms compared here are Standard Graph SLAM
(using all landmarks and poses), Active minimization (Algorithm 3) and Incremental minimization (Algorithm 5). Green
ellipses represent pose covariances. Blue ellipses represent landmark covariances.

reduced landmark-based SLAM algorithm. We showed the
results on Victoria park dataset and Synthetic dataset and
compared trajectory and landmark locations estimated using
standard graph SLAM (SAM [6]) and reduced landmark-
based SLAM algorithm showing a reduction of 40-50%
landmarks and around 55% poses with minimal estimation
error as compared to standard SLAM algorithms.

As a future work, we are working on a parallel minimiza-
tion and mapping algorithm where active minimization can
be run in parallel to the standard graph SLAM algorithm.
Another possible future direction is to improve the active
minimization algorithm (Algorithm 3) by considering a clus-

ter of landmarks instead of one landmark at a time [15].
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