
Constrained Optimal Selection for Multi-Sensor Robot Navigation
Using Plug-and-Play Factor Graphs

Han-Pang Chiu, Xun S. Zhou, Luca Carlone, Frank Dellaert, Supun Samarasekera, Rakesh Kumar

Abstract— This paper proposes a real-time navigation ap-
proach that is able to integrate many sensor types while fulfill-
ing performance needs and system constraints. Our approach
uses a plug-and-play factor graph framework, which extends
factor graph formulation to encode sensor measurements with
different frequencies, latencies, and noise distributions. It pro-
vides a flexible foundation for plug-and-play sensing, and can
incorporate new evolving sensors. A novel constrained optimal
selection mechanism is presented to identify the optimal subset
of active sensors to use, during initialization and when any
sensor condition changes. This mechanism constructs candidate
subsets of sensors based on heuristic rules and a ternary tree
expansion algorithm. It quickly decides the optimal subset
among candidates by maximizing observability coverage on
state variables, while satisfying resource constraints and ac-
curacy demands. Experimental results demonstrate that our
approach selects subsets of sensors to provide satisfactory
navigation solutions under various conditions, on large-scale
real data sets using many sensors.

I. INTRODUCTION

The goal of multi-sensor fusion for robot navigation is to
combine measurements from a set of sensors to improve the
quality of the solution. Different sensor types provide diverse
physical characteristics. Even data from the same type of
sensors could be quite varied in their error characteristics
depending on their configuration. Combining complementary
or redundant information from multiple sensors provides
more robust estimation than using a single sensor.

However, adding more sensors requires more computation
and power resources. Often due to practical considerations,
robot systems are equipped with only a few sensors, which
provide complementary information to contribute to the
navigation solution. These systems are not designed to dy-
namically incorporate different types of sensors to improve
the overall robustness and accuracy. They cannot tolerate
situations when a sensor becomes unavailable due to signal
loss or sensor fault.

In addition, incorporating measurements from multiple
sensors operating at different frequencies on a single robot
could be cumbersome for inference. Traditional inference
methods require updating the whole augmented state vec-
tor from sensor measurements at multiple rates. It causes
computational burden since the vector dimension may be
large, especially for SLAM problems. It may also have

H. Chiu, X. S. Zhou, S. Samarasekera, and R. Kumar are with
Center for Vision Technologies, SRI International, Princeton, NJ 08540,
USA {han-pang.chiu,xun.zhou,supun.samarasekera
,rakesh.kumar}@sri.com

L. Carlone and F. Dellaert are with the College of Comput-
ing, Georgia Institute of Technology, Atlanta, GA 30332, USA
{lcarlone6,dellaert}@cc.gatech.edu

Fig. 1: The plug-and-play factor graph formulation for multi-sensor naviga-
tion problem, where state variable nodes are shown as large circles (naviga-
tion state: x, landmark location: l), and factor nodes (sensor measurements)
with small solid circles. It progresses when two more sensor types are added
at different rates, which have delayed measurements. Note this formulation
covers full-SLAM problems, which keep past states for optimization.

unnecessary calculations since some state variables may
remain unchanged. Handing delayed measurements is also
non-trivial in these systems.

Our approach solves the multi-sensor navigation problem
while fulfilling performance requirements and system con-
straints, by using a plug-and-play factor graph framework
(Figure 1) coupled with a novel constrained optimal sensor
selection mechanism. A factor graph [7] is a probabilistic
graphical model of state variables and factor nodes. It
encodes the posterior probability of the states over time,
given all available sensor measurements as factors. While
calculating the full navigation solution over the entire factor
graph seems to be expensive, the recent incremental smooth-
ing technique [1] can provide the solution in real time by
dynamically optimizing only a small part of the factor graph.

Using the factor graph representation, we develop a highly
adaptable framework to incorporate numerous types of sen-
sors for plug-and-play sensing. When sensors get plugged or
come online, their sensor measurements are directly mapped
to addition of graph nodes and factors that connect these
nodes. This framework is capable of handling sensor mea-
surements arriving at different rates and latencies, providing
real-time navigation solution at all times. We have also ex-
tend factors to encode sensor measurements with linear, non-
linear and multi-modal noise characteristics. Our framework

therefore is able to easily incorporate new evolving sensors
due to rapidly advancing sensor technology.

To achieve the desired navigation accuracy with fewest
sensors necessary on a single robot, we propose a constrained
optimal selection mechanism to guarantee performance while
minimizing computation and power usage in real-time sys-
tem by incorporating only the optimal subset of available
sensors. This mechanism is applied to choose the subset of
sensors during two situations. One is the initial period in a
given environment. The other is when sensor configuration
or system constraint changes. For example, it needs to update
the subset of sensors when a sensor goes on-line, off-line,
or the quality of its measurements dramatically changes. It
also adjusts the subset when the system has power shortage.

Unlike most navigation systems which are specifically
designed to handle only a few sensors, our mechanism fully
exploits advantages due to sensor fusion by dynamically
evaluating many possible sensor combinations. It quickly
constructs candidate subsets of sensors based on heuristic
rules and a ternary tree expansion algorithm, by representing
each possible subset as a tree node. Then it selects the
optimal subset among candidates by maximizing observabil-
ity coverage on state variables, while satisfying resource
constraints and accuracy requirements. We also develop a
maturity-based method to select visual measurements. It
further reduces cost without sacrificing navigation accuracy.

The remainder of this paper begins with a discussion
of related work in Section II. Section III introduces our
plug-and-play factor graph framework, and illustrates how
it incorporates many sensor types and handles delayed
measurements. Section IV describes our constrained opti-
mal selection mechanism in detail. Section V demonstrates
our approach on real large-scale scenarios. It automatically
selects subsets of sensors to provide navigation solutions
while satisfying different accuracy requirements and resource
constraints. Conclusions are made in Section VI.

II. RELATED WORK

Many navigation systems are capable of integrating mul-
tiple sensors. Examples include GPS-aided [5] and vision-
aided [8], [9], [14] inertial navigation systems. There are
also navigation systems using factor graphs [8], [13] to solve
the full simultaneous localization and mapping (SLAM)
problem. These systems typically rely on a few types of
sensors with complementary modality to generate solutions.

There are many existing works on greedy sensor selection
[16] in resource constrained distributed sensor networks, for
target tracking applications. A general overview can be found
in [2]. These works schedule only a subset of the sensors
from sensor network for transmission in each time slot, in
order to gain the most information in the most efficient way.

There are also works on maintaining satisfactory accu-
racy in resource-constrained navigation system by reducing
the number of processed measurements, mostly for camera
sensors. These works either only keep measurements from a
subset of distributed camera poses [17], or lower the number
of detected or processed features on each frame [4], [12].

S. Sukumar et al. [10] developed a sensor selection algo-
rithm to ignore non-functional sensors for navigation. This
algorithm is designed for a single robot equipped with at
most four types of sensors. Their system groups sensors
with consistent measurement information, and improves the
robustness of the navigation solution by detecting and remov-
ing outliers from faulty sensors. However, their method does
not exploit the complementary nature of different sensors,
and hence can not perform better than the best sensor in the
system [11].

Our work is designed to continuously identify an optimal
subset of available sensors among numerous sensor types
on a single platform for navigation application. It maintains
robustness and accuracy of the solution while minimizing
power usage and computational resources, which is a new
challenging research problem. In order to utilize many sensor
types, we extend the factor graph formulation to incorporate
sensors with different frequencies, latencies, and noise dis-
tributions. This extended framework provides an adaptable
foundation for plug-and-play sensing, and is designed to
incorporate new evolving sensors. Our selection mechanism
in resource-constrained system exploits the complementary
properties of different sensor types, and focuses on optimal
selection both at the sensor level and measurement level.

III. PLUG-AND-PLAY FACTOR GRAPHS

In this section we introduce our plug-and-play factor graph
framework, which is capable of incorporating numerous
types of sensors with different rates, latencies, and error
characteristics. This is achieved through abstraction of sen-
sor measurements into factor representations, depending on
how a measurement affects the appropriate navigation state
variables. This framework is also scalable to new evolving
sensors with updated parameters and noise models.

A. Factor Graphs

A factor graph [7] represents the navigation estimation
problem at all times as a bipartite graph model G =
(F ,Θ, E) with two node types: factor nodes fi ∈ F and
state variable nodes θj ∈ Θ. An edge eij ∈ E exists if and
only if factor fi involves state variables θj . The factor graph
G defines the factorization of a function f(Θ) as

f(Θ) =
∏
i

fi(Θi) (1)

where Θi is the set of all state variables θj involved in factor
fi, and independent relationships are encoded by edges eij .

A generative model

zi = hi(Θi) + vi (2)

predicts a sensor measurement zi using a function hi(Θi)
with measurement noise vi. The difference between mea-
surement function hi(Θi) and the actual measurement z̃i is
encoded into a factor. Assuming the underlying noise process
is Gaussian with covariance Σ, the resulting factor is

fi(Θi) = ||hi(Θi)− z̃i||2Σ (3)

Fig. 2: Factor properties for 15 sensor types used in our plug-and-play framework on a single ground vehicle.

where || · ||2Σ is the Mahalanobis distance.
The factor graph representation on the full non-linear

optimization problem has led to the recent development of
an incremental solution, iSAM2 [1]. Using a Bayes tree
data structure, iSAM2 keeps all past information and only
updates variables influenced by each new measurement. It
obtains same result as a batch solution to the full non-linear
optimization, and can achieve real-time performance even
with the presence of loop closures [8], [13].

B. Factors for Plug-and-Play Sensor Measurements

Upon the factor graph representation, we develop a highly
adaptable plug-and-play framework to convert sensor mea-
surements with numerous forms into abstract factors. Adding
new sensors is directly mapped to addition of graph nodes
and measurement factors that connect these nodes.

In our system, we define the navigation state for a given
time as x = {p, v, b}. Each state x covers three kinds of
nodes: pose node p includes 3d translation t and 3d rotation r,
velocity node v represents 3d velocity, and b denotes sensor-
specific bias block which are varied for different sensors.
Pose node and velocity node are included in every navigation
state, while sensor-specific bias block are propagated through
only the navigation states which have measurements from the
correspondent sensor. To simplify the notation, we assume
all sensors have the same center, which is the origin of the
body coordinate system.

Figure 2 shows the factor properties for sensors used in
our framework. We group these factors into three different
classes: unary, binary, and extrinsic. The factor class is
defined by sensor measurement connectivity: the naviga-
tion states each measurement involves. The detail factor
formulation is based on measurement information, noise
characteristics, and the portion of navigation state variables
that a measurement affects.

Note measurements from simple sensor types can be
directly fed into factor graphs. However, complex sensor
types such as cameras require pre-processing mechanisms
to derive meaningful measurements by finding associations
between sensed data. We discuss factors for different sensor
types as follows.

1) IMU Motion Factor: A single factor typically en-
codes only one sensor measurement. However, IMU sensors
produce measurements at a much higher rate than other
sensor types. To fully utilize high-frequency IMU data while

saving the time to create factors, we design a single factor
to summarize multiple consecutive IMU measurements. A
navigation state is only created at the time when a non-IMU
measurement comes or no non-IMU measurement arrives
after a certain interval (such as one second), and the IMU
factor is built to connect two sequential navigation states by
integrating IMU measurements between them (see Figure 1).

We formulate this factor using an error-state IMU propa-
gation mechanism [9], and implement it [8] as a binary factor
between two consecutive states xi−1 and xi. It generates 6
degrees of freedom relative pose and corresponding velocity
change as the motion model. It also tracks the IMU-specific
bias as part of the state variables for estimating motion.

We use this factor instead of traditional process models
in our system. The linearization point to integrate non-IMU
measurements at xi is computed from this factor, which is
based on the linearization point for xi−1 and IMU readings
between xi−1 and xi. If there is no IMU available, we use
constant velocity assumption as the process model.

In contrast to tradition filtering techniques, the IMU mo-
tion factor is part of the full non-linear optimization process
in factor graph. The value of IMU integration changes during
re-linearization for iterative optimization.

2) Unary Factor: The unary factor only involves a state
at a single time. The model for measurement z with added
noise v arriving at time i is as follows.

z = h(xi) + v (4)

The measurement can affect different variables in navigation
state xi = {pi, vi, bi}, depending on its sensor type. For
example, GPS position measurement updates 3d translation
ti in pose node pi. Compass measurement involves the
heading (yaw) of 3d rotation ri in pose node pi.

3) Binary Factor: A binary factor involves two navigation
states at different times. The model for measurement z with
added noise v between time i− 1 and time i is as follows.

z = h(xi−1, xi) + v (5)

One example is the derived measurements from 2D Lidar
sensors. Each measurement describes the change in location
and orientation on the ground plane between two time
instances. It is realized as a relative pose between pi−1 and
pi, without contributions to altitude, roll and pitch. The IMU

motion factor can be also viewed as binary factor, although it
incorporates multiple measurements inside one single factor.

4) Extrinsic Factor: Each extrinsic factor involves a nav-
igation state and an unknown extrinsic entity. The landmark
association measurement derived from cameras is the most
popular example (see Figure 1). The model for measurement
z with added noise v involves both navigation state at time
i and the state of unknown landmark position l.

z = h(xi, l) + v (6)

Using these measurements to estimate both navigation
states and landmark positions simultaneously is very popular
in SLAM problem formulation. It is also known as bundle
adjustment [3] in computer vision.

5) Tracked Visual Features: In our system, visual feature
derived from camera data is a special case, which is modeled
by two factor classes: binary and extrinsic. In this paper, we
process only continuously tracked features from cameras.
However, loop-closures can still be incorporated using a
parallel architecture, such as [8], [13]. We use the 3-stage
method [8] to represent each visual feature tracked across
multiple navigation states. This method is based on the
maturity of the estimation of the underlying 3D location of
the landmark.

The first stage avoids unstable initialization of the 3D
location of the landmark points while still incorporating the
landmark image observation into binary factor formulation
for optimization. The second stage utilizes the extrinsic factor
to estimate both navigation states and the 3D location of
the associated landmark. Once the uncertainty of the 3D
landmark state becomes small, the third stage switches back
to binary factor formulation but treats the computed 3D
location of the landmark as a fixed quantity when estimating
the navigation state, saving computation time.

6) Non-Gaussian Noise Models: To adapt to more sensor
types, we extend our framework to support non-Gaussian
noise distributions in factors. These include robust error
models based on loss functions, and multi-modal noise
models using the EM algorithm.

This extension is scalable to new evolving sensors. One
example is 3d-axis magnetometer, which relies on a pre-built
database and reports 20 possible geo-locations (at most one
is true) as signal peaks based on current robot position. Each
peak is a Gaussian prior on robot position, and the collection
of 20 peaks is treated as mixture of Gaussians for the error
model in the 3d-axis magnetometer factor.

The 3d-axis magnetometer factor may be re-evaluated
multiple times during optimization, which effectively
changes the weighting of possible positions at each iteration.
This EM procedure eventually makes the global location
estimation converge to the closest peak that is consistent with
estimation based on all other sensors.

C. Handling of Delayed Measurements

Our framework is able to naturally handle out-of-order
measurements due to high latencies. Figure 1 shows when a

Fig. 3: The procedure of our constrained optimal selection mechanism.

delayed measurement from the new added barometer arrives,
the system first locates the IMU motion factor between
x2 and x4 which covers the actual measurement time. It
then creates a new navigation state x3 for this delayed
measurement, and properly divides the located IMU motion
factor into two new IMU motion factors which connect these
three states (x2,x3,x4). Finally it adds a new unary factor for
this delayed barometer measurement to navigation state x3.

D. Periodic Updates

Our framework generates the navigation estimation at
a particular rate, which is set according to application
requirement. It collects factors during the specified time
interval, and added them into the factor graph for inference
periodically. This way avoids performing updates every time
when a new state gets created, which increases computational
overhead if there are high-frequency non-IMU sensors.

IV. CONSTRAINED OPTIMAL SELECTION

In this section we propose a new constrained optimal
selection mechanism to identify the optimal subset of ac-
tive sensors, as shown in Figure 3. We show the details
on how we select the subset among candidates as ternary
tree nodes by maximizing observability coverage on state
variables, while following system constraints and accuracy
requirements. Note this mechanism needs to be applied not
only in the initial period, but also when sensor configuration
(such as a sensor goes online, offline, or the quality of
its measurements dramatically decreases due to environ-
ment change) or system constraint changes. We also use
a maturity-based method to select visual measurements for
reducing computation without sacrificing performance.

A. Generate Candidate Subsets of Sensors

Our goal is to find a subset of sensors, which is able to
provide satisfactory navigation solution under constrained re-
source, for a given environment. Finding the optimal solution
to sensor selection is generally computationally intensive,
since this problem is essentially combinatorial in nature. To
identify the optimal subset of sensors as soon as possible,
our mechanism leverages heuristic sensor ranking rules and
the hierarchical structure in a ternary tree.

Fig. 4: Three steps (from left to right) to expand level-3 of the ternary tree:
generating, merging, and pruning. In this case, the upper limit of nodes for
each level is three.

1) Heuristic Sensor Ranking Rules: We first sort all avail-
able sensors based on coverage and amount of information on
state variables they measured, leading to heuristic rules for
sensor ranking. For example, IMU is always first selected
because it provides our motion model. Powerful absolute
sensor types such as GPS are selected with high priority
if their signals are available. Camera ranks higher than
compass, because it covers 5 degrees of freedom of relative
pose while compass only measures the heading direction.

2) Ternary Tree Expansion of Subsets: We use a ternary
tree expansion algorithm to construct candidate subsets of
sensors in a greedy manner. In the ternary tree, each node
corresponds to a possible subset of sensors. Nodes at the
same level of the tree have same number of sensors in the
subset. The root (level-1) of the tree includes only 1 sensor
with highest ranking (typically IMU).

Figure 4 shows three steps to expand child nodes at next
level: generating, merging, and pruning. In the first step, each
node at current level generates at most three child nodes
by adding one more sensor into its subset of sensors. For
example, each level-2 node includes the inherited level-1
sensor and one new sensor. Sensors with higher ranking will
be selected with higher priority.

The second step merges nodes with the same subset of
sensors at the new level to avoid repeated sensor combina-
tions. For example, two different parent nodes with subset
(A,B) and (B,C) respectively may both generate a node with
same subset (A,B,C). These two nodes need to be merged
into one node. The third step prunes the nodes at the new
level according to an upper-bound threshold, which is set
based on system resource. Only nodes with higher overall
sensor ranking of its subset are kept, and will be used to
generate child nodes for the next level.

After iterating the tree expansion algorithm for each level,
it generates only one node at the last level, which represents
all available sensors.

B. Select Optimal Sensor Subset

Upon the completely built ternary tree, our mechanism lo-
cates only a portion of tree nodes based on available resource
and desired accuracy in real-time system. The optimal subset
of sensors is then identified based on observability index
evaluation from these selected tree nodes as candidates.

1) Available Resource: The required computation and
power resource is calculated for each node, and only nodes
within power and resource budgets are considered. Currently
we assume each sensor occupies one resource unit (same
fixed amount of computational cost and power usage), and
only consider nodes with subset size less than the maximum

Fig. 5: Position error (blue) and 3 sigma bound (red) along east, north, and
up direction respectively for a 200-second scenario. The predicted drift rate
(green) is generated using linear regression on samples of 3 sigma bound
during the first 20 second (inside the blue box). Note the actual error is
within the estimated 3 sigma bounds.

number of units the system can afford. For example, if the
system only allows three sensors to be used for navigation,
our mechanism only locates tree nodes at level-3.

2) Navigation Accuracy: For each selected node, we build
and update a factor graph over a very short period of time
(such as 20 seconds) using the sensor subset chosen by the
node. The size of factor graph is small for such a short
period, and the number of selected nodes at each level is
limited by a threshold. This way allows the system to operate
selected nodes at different parallel threads.

We then use linear regression to fit a predictive error model
to 3 sigma bound samples from the posterior covariance
in each factor graph. 99.7% of error estimates should be
within 3 sigma bound based on the empirical rule. The fitted
model is an indication of upper limit of 3D position error
in the future, as shown in Figure 5. Note, sensor subsets
which include any absolute sensors such as GPS often have
lower predicted drift rates due to smaller state uncertainty.
Hence, they have a bigger chance of being selected within
the computation and power budgets in real-time system.

This fitted model can be interpreted as the predicted drift
rate, which represents the upper bound of the predicted 3D
position error after a period of time. It is used to select
nodes which would maintain the desired navigation accuracy
in the future. For example, if our system aims to maintain
3D location error less than 10 meters after 10 minutes,
we only consider nodes with predicted drift rate less than
0.0167 meter per second for final evaluation. Note if there are
no nodes satisfying the desired accuracy, the system would
choose the most optimal subset of sensors which can be
operated within the power and computation resource budgets.

3) Observability Index Computation: We find the most
optimal subset of sensors by comparing observability index
on factor graphs from selected nodes. Different observability
indexes [6] have been used to choose a set of pose mea-
surements that can optimally calibrate robots. We apply the
same idea to this new problem: select a subset of sensors
that optimizes the navigation estimation.

We use the minimum singular value of the information
matrix as observability index. This observability index rep-
resents the worst observability of the state variable error
as the criterion, and is best to minimize uncertainty of
the estimation. Since the information matrix I is the basic
structure [1] to store the entire factor graph for inference,
we directly retrieve I from the factor graph for each located
node. And we perform singular value decomposition on I .

I = UΣV ∗ (7)

Note this observability index σmin is the minimum di-
agonal value of Σ decomposed from I . We then select the
optimal subset of sensors as the node n, which has the factor
graph with maximum observability index.

node n = argmax
node n

(σmin) (8)

Our mechanism hence selects the optimal subset among
candidates by maximizing observability coverage on state
variables, while satisfying resource constraints and accuracy
requirements. The final decision is based on the information
matrix which is the inverse of posterior state covariance of
the factor graph. It therefore utilizes state observability, sen-
sor complementarity, static sensor properties, and dynamic
performance properties from fusion of sensor measurements.
The system then only uses the selected optimal subset of
sensors with the correspondent factor graph to compute
navigation estimation.

C. Maturity-Based Measurement Selection

Since we treat each tracked visual feature as a single
measurement, camera sensor is the only sensor type that
generates multiple measurements at the same time. To further
reduce computation while still maintaining accuracy, we
develop a maturity-based method to select feature measure-
ments within the 3-stage representation (Section III-B.5).

This method is triggered by two conditions. The first
condition occurs when there are enough state-2 and stage-3
features at the same navigation state. We then only use later
stage features for estimation, since optimized 3D features are
more valuable.

The second condition happens when there are too many
stage-1 features, typically during slow motion. These features
have poor 3d information due to short moving distance.
However, the track length (the number of tracked frames) can
be long for these features. Therefore, when the number of
stage-1 features exceeds a threshold, we analyze track length
distribution among these features. Then we select longer
tracks based on a length threshold dynamically decided by
the number of features we want. This way keeps features
which are relatively more valuable and saves computation.

V. EXPERIMENTAL RESULTS

This section demonstrates that our approach provides real-
time navigation solutions with desired accuracy under vari-
ous resource constraints, by selecting subsets of sensors on
two large-scale real scenarios. These two scenarios provide

Fig. 6: The expanded ternary tree of 7 available sensors on our ground
vehicle for Scenario 1. The upper limit of the number of nodes for each
level is 3. For each node, the first row represents the candidate subset of
sensors. The second row shows (from left to right) observability index and
predicted drift rate (meter/second) computed from initial 20 seconds for our
selection. The node with maximum observability index is highlighted for
each level. To verify our selection, the third row shows (from left to right)
final 3D position RMS error (meter), median error (meter), and 90th % error
(meter) over entire 420-second scenario (2.58 kilometers).

different aspects to show the strength of our approach. Both
data sets are collected using a car that drives inside a city. The
car stops many times during navigation due to traffic signs.
The initial global position and orientation of the vehicle is
assumed known. Ground Truth is obtained by using the RTK
differential GPS technique [15].

A. Scenario 1: Initial Constrained Optimal Selection

The first data set has 7 sensors (from 5 sensor types)
available for the entire scenario, including one 100-hz IMU,
three 4-hz monocular cameras, one 1-hz 2d lidar scanner,
one 1-hz compass, and one 10-hz 3d-axis magnetometer.
Three cameras are placed at front side, left side, and right
side of the car respectively. The total travel distance is 2.58
kilometers, and the travel time is 420 seconds.

1) Sensor Selection: Figure 6 shows the expanded ternary
tree of 7 available sensors. Since the active sensor configura-
tion never changes, we only apply the selection mechanism
during the initial period. We set the upper limit of the number
of nodes as 3 for each tree level, after 3-step expansion.
The underlying heuristic sensor ranking for these 7 sensors
(from high to low) is Camera Front (Cam.F), 2d lidar scanner
(Lidar2D), Camera Left (Cam.L), Camera Right (Cam.R),
compass, and 3d-axis magnetometer (Mag.).

For sensor ranking, the value of information from cameras
depends on the quality of tracked features. Due to its place-
ment, front camera typically perceives more longer tracked
features than side cameras. Compared to side cameras, 2d

Fig. 7: Ground truth (blue), and navigation trajectories estimated using 3
sensors (red, 3D RMS error is 23.18 meters), 5 sensors (pink, 3D RMS
error is 14.01 meters), and 7 sensors (green, 3D RMS error is 3.62 meters)
selected from the ternary tree in Figure 6.

lidar usually provides more stable information while only
updating relative 2d location and orientation in the ground
plane. The global 3d location measurements from magne-
tometer are opportunistic depending on the vehicle’s position,
so it has lowest ranking.

Our selection mechanism locates tree nodes based on the
number of allowed sensors (tree levels) and the predicted
drift rate, computed from the initial 20 seconds. It selects the
optimal subset of sensors from located nodes with maximum
observability index, which is also measured from the same
initial period. For example, if the system allows at most 5
sensors with predicted drift rate less than 0.075 (meter/sec),
there are two candidates (See Figure 6). One is IMU, 3
cameras, and Lidar2D. The other is IMU, 2 Cameras (F,L),
Lidar2D, and compass. The system will select the second
candidate due to its bigger observability index. This selected
set eventually generates navigation solution with 3D RMS
error in 14.01 meters, best among all level-5 tree nodes. Note
the overall 3D RMS error of the trajectory is less than the
predicted error (our upper-limit predicted drift rate multiplied
by navigation time) computed at the start.

We highlight the node with maximum observability index
for each level in Figure 6. The highlighted node generates
lowest final 3D position error among choices with same
number of allowed sensors. Combining information from
more sensors improves performance. The 3D RMS error is
reduced from 126.52 meters (2 sensors) to 3.82 meters (7
sensors). Figure 7 shows the estimated trajectory is closer to
Ground Truth by adding more sensors. The ternary tree also
exhibits the effectiveness of different sensor combinations.
For example, the mixture of front camera and 2d lidar is
more valuable than any two cameras.

2) Visual Measurement Selection: Note we set the update
rate (inference frequency) as 1-Hz to generate navigation
solutions (see Section III-D) for all experiments. As shown
in Figure 8, the number of tracked features from a camera

Fig. 8: (Top) The number of available measurements and selected measure-
ments from the front camera. (Bottom) The inference time without (3D
RMS error: 3.59 meters) and with measurement selection (3D RMS error:
3.62 meters) from 3 cameras, using all 7 sensors in our system.

Fig. 9: The active period for each sensor in Scenario 2 (426 seconds, 1.61
kilometers). Sensor ID (y-axis) - 1: IMU, 2: pesudo-range. 3: camera A, 4:
magnetometer, 5: compass, 6: ranging device, 7: barometer, 8: odometer,
9: camera B, 10: delta-range, 11: camera C. There are at most 9 sensors
available at a given time (x-axis).

dramatically increases (more than 200 features) when the car
stops. Since we treat each tracked feature as an individual
measurement, the inference time grows as the number of
measurement increasing.

Using our maturity-based measurement selection method
described in Section IV-C, the number of selected features
from each camera can be roughly controlled under a thresh-
old, which is set as 100 features based on our system
resource. Our incremental optimization hence takes less than
1 second on each update for this 7-sensor scenario to achieve
real-time navigation without sacrificing accuracy (3D RMS
error increases only 3 centimeters with visual measurement
selection). These timing results were conducted using a
single core of an Intel i7 CPU running at 2.70 GHz.

B. Scenario 2: Plug-and-Play Navigation

The total travel distance for the second scenario is 1.61
kilometers, and the travel time is 426 seconds. This data set
has 11 sensors (from 9 sensor types), including one 100-hz
IMU, three 4-hz monocular cameras, one 1-hz compass, one
10-hz 3d-axis magnetometer, one 1-hz ranging device, one
25-hz barometer, one 1-hz odometer, one 1-hz perudo-range,
and one 1-hz delta-range. Both pseudo-range and delta-range

Fig. 10: Ground truth (blue), and navigation trajectories estimated using at
most 8 sensors (red: 3D RMS error is 6.73 meters), and at most 9 sensors
(green: 3D RMS error is 5.42 meters), selected from our mechanism for
Scenario 2. The yellow enlarged portion shows that incorporating one more
sensor (compass) improves the overall solution.

measurements are generated by signals from only 1 satellite.
However, not all sensors are available all the time. A

few sensors get plugged-in or become unavailable during
navigation. There are at most 9 sensors available at a given
time. Figure 9 shows the active period for each sensor. When
a sensor gets online or offline, our mechanism re-evaluates
the addition or removal of a sensor in the selected subset.

We use this data set to show our framework allows
plug-and-play sensing during navigation. We apply our con-
strained optimal selection mechanism to decide the subset
of active sensors, during initial period and when sensor
configuration changes. Figure 10 shows the accuracy can
be improved if the system affords to fuse measurements
from more sensors. The 3D RMS error is reduced from 6.73
meters (at most 8 sensors) to 5.42 meters (at most 9 sensors).
Based on our mechanism, the last sensor that gets used is
compass sensor. In addition, even using all possible sensors
in this scenario, our incremental optimization still achieves
real-time performance at 1-hz update rate.

VI. CONCLUSIONS

In this paper, we present a robotic solution to address a
new challenging problem for real-time navigation: identify
and incorporate an optimal subset of sensors among many
online sensors to achieve desired accuracy under system
constraints. We described a framework which expands factor
graph formulation to encode sensor measurements with dif-
ferent rates, latencies, and noise distributions. It allows plug-
and-play sensing, and incorporates new evolving sensors.

We introduced a novel constrained optimal selection mech-
anism to gain the biggest improvements from sensor com-
binations in the most efficient way. This mechanism uses
a ternary tree expansion algorithm to construct candidate
subsets of sensors as tree nodes based on heuristic sensor
ranking rules. It identifies the optimal subset among candi-
dates by maximizing observability coverage, while satisfying
both available resource (the upper limit of allowed sensors)
and navigation accuracy (predicted drift rate), at a very short
period of time. Experiments demonstrate our approach pro-
vides best solutions among choices of sensor combinations

on large-scale scenarios, based on various system needs.
Future work is to ensure our approach operates under

any kind of system conditions. We plan to estimate detailed
power and computation necessary for different sensors, in-
stead of assuming all sensors take same amount of resource.
This way can further optimize navigation performance under
limited system resource.

ACKNOWLEDGMENTS

This material is based upon work supported by the DARPA
All Source Positioning and Navigation (ASPN) Program
under USAF/ AFMC AFRL Contract FA8650-13-C-7322.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the US government/
Department of Defense.

REFERENCES

[1] M.Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F.
Dellaert, “iSAM2: Incremental smoothing and mapping using the
Bayes tree,” Intl. J. of Robotics Research, vol. 31, pp.217-236, Feb
2012.

[2] D. Smith and S. Singh, “Approaches to multisensor data fusion in
target tracking: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 12, p. 1696, Dec. 2006.

[3] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustment - a modern synthesis,” Lecture Notes in Computer
Science, vol. 1883, pp. 298-375, Jan 2000.

[4] H. Strasdat, C. Stachniss, and W. Burgard, “Which landmark is useful?
Learning selection policies for navigation in unknown environments,”
in Proc. IEEE Intl Conf. on Robotics and Automation (ICRA), 2009.

[5] J. Farrell, “Aided navigation: GPS with high rate sensors,” McGraw-
Hill, 2008.

[6] Y. Sun and J. Hollerbach, “Observability index selection for robot
calibration,” in Proc. IEEE Intl. Conf. on Robotics and Automation
(ICRA), 2008.

[7] F. Kschischang, B. Fey, and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2, Feb
2001.

[8] H. Chiu, S. Williams, F. Dellaert, S. Samarasekera, and R. Kumar,
“Robust vision-aided navigation using sliding-window factor graphs,”
in Proc. IEEE Intl. Conf. on Robotics and Automation (ICRA), 2013.

[9] A. Mourikis and S. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in Proc. IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2007.

[10] S. Sukumar, H. Bozdogan, D. Page, A. Koschan, and M. Abidi,
“Sensor selection using information complexity for multi-sensor mo-
bile robot localization,” in Proc. IEEE Intl. Conf. on Robotics and
Automation (ICRA), 2007.

[11] N. Rao, “On fusers that perform better than best sensor,” in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 23,
no. 8, Aug. 2001.

[12] M. Li and A. Mourikis, “Vision-aided inertial navigation for resource-
constrained systems,” in Proc. IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), 2012.

[13] M. Kaess, S. Williams, V. Indelman, R. Roberts, J. Leonard, and
F. Dellaert, “Concurrent filtering and smoothing,” in Intl. Conf. on
Information Fusion (FUSION), 2012.

[14] T. Oskiper, H. Chiu, Z. Zhu, S. Samarasekera, and R. Kumar, “Stable
vision-aided navigation for large-area augmented reality,” in IEEE Intl.
Conf. on Virtual Reality (VR), 2011.

[15] J. Sinko, “RTK performance in highway and racetrack experiments,”
Navigation, Vol. 50, No. 4, pp 265–275, 2003.

[16] M. Shamaiah, S. Banerjee, and H. Vikalo, “Greedy sensor selection:
Leveraging submodularity,” in Proc. IEEE Intl. Conf. on Decision and
Control (CDC), 2010.

[17] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment
to real-time visual mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, Oct. 2008.

