
1

Pose Graph Optimization in the Complex Domain:
Duality, Optimal Solutions, and Verification

Luca Carlone, Giuseppe C. Calafiore, and Frank Dellaert

Abstract—Pose Graph Optimization (PGO) is the problem of
estimating a set of poses from pairwise relative measurements.
PGO is a nonconvex problem, and currently no known technique
can guarantee the computation of a global optimal solution. In
this paper, we show that Lagrangian duality allows computing
a globally optimal solution, and enables to certify optimality of
a given estimate. Our first contribution is to frame PGO in the
complex domain. This makes analysis easier and allows drawing
connections with existing literature on unit gain graphs. The
second contribution is to formulate and analyze the properties
of the Lagrangian dual problem in the complex domain. Our
analysis shows that the duality gap is connected to the number of
eigenvalues of the penalized pose graph matrix, which arises from
the solution of the dual. We prove that if this matrix has a single
eigenvalue in zero, then (i) the duality gap is zero, (ii) the primal
PGO problem has a unique solution, and (iii) the primal solution
can be computed by scaling an eigenvector of the penalized pose
graph matrix. The third contribution is algorithmic: we leverage
duality to devise and algorithm that computes the optimal
solution when the penalized matrix has a single eigenvalue in
zero. We also propose a suboptimal variant when the eigenvalues
in zero are multiple. Finally, we show that duality provides
computational tools to verify if a given estimate (e.g., computed
using iterative solvers) is globally optimal. We conclude the paper
with an extensive numerical analysis. Empirical evidence shows
that in the vast majority of cases (100% of the tests under noise
regimes of practical robotics applications) the penalized pose
graph matrix has a single eigenvalue in zero, hence our approach
allows computing (or verifying) the optimal solution.

I. INTRODUCTION

Pose graph optimization (PGO) consists in the estimation of
a set of poses (positions and orientations) from relative pose
measurements. The problem can be formulated as a nonconvex
minimization, and can be visualized as a graph, in which a
(to-be-estimated) pose is attached to each vertex, and a given
relative pose measurement is associated to each edge.

PGO is a key problem in many application endeavours. In
robotics, it lies at the core of state-of-the-art algorithms for
localization and mapping in both single robot [44], [18], [22],
[47], [26], [9], [17], [33], [10], [11] and multi robot [36], [1],
[37], [32] systems. In the single robot case, the to-be-estimated
poses are sampled along the robot trajectory and the relative
measurements are obtained by processing raw sensor data;
examples of trajectories for robotic benchmarking datasets are
shown in Fig. 1. In computer vision and control, problems
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Figure 1. We propose to use Lagrangian duality to compute optimal solution
and to verify optimality of a given estimate in pose graph optimization. For
instance, our verification techniques allows us to certify optimal solutions
(right column) and discern them from sup-optimal ones (left column), a task
that has been traditionally entrusted to visual inspection of a human operator.

closely related to PGO need to be solved for structure from
motion [23], [45], [2], [24], [55], [28], [21], attitude syn-
chronization [58], [29], [46], camera network calibration [61],
[59], sensor network localization [49], [48], and distributed
consensus on manifolds [52], [60].

Related work in robotics. Since the seminal paper [44],
PGO attracted large attention from the robotics community.
Most state-of-the-art techniques currently rely on iterative
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nonlinear optimization, which refines a given initial guess
(usually, the odometric estimate from dead-reckoning). The
Gauss-Newton method is a popular choice [40], [35], [34],
as it converges quickly when the initialization is close to a
minimum of the cost function. Trust region methods (e.g.,
the Levenberg-Marquart method, or the Powell’s Dog-Leg
method) have also been applied successfully to PGO [51]; the
gradient method has been shown to have a large convergence
basin, while suffering from long convergence tails [47], [26]. A
large body of literature focuses on speeding up computation.
This includes exploiting sparsity [35], [20], using reduction
schemes to limit the number of poses [39], [7], faster linear
solvers [22], [16], or approximate solutions [10].

PGO is a nonconvex problem and iterative optimization
can only guarantee local convergence. State-of-the-art iterative
solvers fail to converge to a global minimum of the cost
for relatively small noise levels [11], [13]. This fact recently
triggered efforts towards the design of more robust techniques,
together with a theoretical analysis of PGO. Huang et. al
[31] discuss the number of minima in small PGO problems.
Knuth and Barooah [38] investigate the growth of the error
in absence of loop closures. Carlone [8] provides conservative
estimates of the basin of convergence for the Gauss-Newton
method. Huang et. al [30] and Wang et. al [62] discuss the
nonlinearities in PGO. In order to improve global convergence,
a successful strategy consists in solving for the rotations first,
and then using the resulting estimate to bootstrap iterative
solvers [9], [10], [11], [13]. This is convenient since the
rotation subproblem1 has a guaranteed solution in 2D [11],
and many techniques for rotation estimation also perform well
in 3D [45], [23], [21], [13]. Despite the empirical success of
state-of-the-art techniques, no approach can guarantee global
convergence. It is not even known if the global optimizer is
unique in general instances (while it is known that it is unique
with probability one in the rotation subproblem [11]). The
lack of guarantees promoted a recent interest in verification
techniques for PGO. Carlone and Dellaert [12] use duality to
evaluate the quality of a candidate solution in planar PGO.

Related work in other fields. Variations of the PGO
problem appear in different research fields. In computer vi-
sion, a somehow more difficult variant of the problem is
known as bundle adjustment [23], [45], [2], [24], [55], [28],
[21]. Contrarily to PGO, in bundle adjustment the relative
measurements between the (camera) poses are only known
up to scale. While no closed-form solution is known for
bundle adjustment, many authors focused on the solution of
the rotation subproblem [23], [45], [2], [24], [55], [21], [28].
The corresponding algorithms have excellent performance
in practice (see [13] for an empirical evaluation), but they
come with little guarantees, as they are based on relaxation.
Fredriksson and Olsson [21] use duality theory to evaluate
convergence of quaternion-based rotation estimation.

Related work in multi robot systems and sensor net-
works also includes contributions on rotation estimation (also
known as attitude synchronization [58], [29], [46], [15], [63]).

1We use the term “rotation subproblem” to denote the problem of
associating a rotation to each node in the graph, using relative rotation
measurements. This corresponds to disregarding the translations in PGO.

Borra et. al [4] propose a distributed algorithm for planar
rotation estimation. Tron and Vidal [61], [59] provide conver-
gence results for distributed attitude consensus using gradient
descent. Piovan et. al [49] provide observability conditions
and discuss iterative algorithms for PGO. Peters et. al [48]
propose an estimation algorithm, based on the limit of a set
of continuous-time differential equations.

Excellent contributions on rotation estimation have been
also proposed in the context of cryo-electron microscopy [56],
[57]. Singer and Shkolnisky [56], [57] provide two approaches
for rotation estimation, based on relaxation and semidefinite
programming (SDP). Bandeira et. al [3] provide a Cheeger-
like inequality that establishes performance bounds for the
SDP relaxation. Saunderson et. al [53] propose a tighter SDP
relaxation, based on a spectrahedral representation of the
convex hull of the rotation group.

Contribution. This paper shows that Lagrangian duality
allows computing a globally optimal solution for PGO, and
enables to verify optimality of a given estimate.

Section II recalls preliminary concepts, and discusses the
properties of a particular set of 2 × 2 matrices, which are
scalar multiples of a planar rotation matrix. These matrices
are omnipresent in planar PGO and acknowledging this fact
allows reformulating the problem over complex variables.

Section III frames PGO as a problem in complex variables.
This makes analysis easier and allows drawing connections
with the recent literature on unit gain graphs [50]. Exploiting
this connection we prove nontrival results about the spectrum
of the matrix underlying the problem (the pose graph matrix).

Section IV formulates and analyzes the Lagrangian dual
problem in the complex domain. The dual PGO problem is
a semidefinite program (SDP). We show that the duality gap
is connected to the zero eigenvalues of the penalized pose
graph matrix, which arises from the solution of the dual
problem. We prove that if this matrix has a single eigenvalue
in zero (a condition that we call the single zero eigenvalue
property, SZEP), then (i) the duality gap is zero, (ii) the primal
PGO problem has a unique solution (up to an arbitrary roto-
translation), and (iii) the primal solution can be computed by
scaling the eigenvector of the penalized pose graph matrix
corresponding to the zero eigenvalue. To the best of our
knowledge, this is the first work that discusses the uniqueness
of the PGO solution for general graphs and provides a provably
optimal solution. Section IV also presents an SDP relaxation
of PGO, interpreting the relaxation as the dual of the dual
problem. Our SDP relaxation is related to the one of [56], [21],
but we deal with 2D poses, rather than rotations; moreover,
we only use the SDP relaxation to complement our discussion
on duality and to support some of the proofs.

Section V exploits our analysis of the dual problem to
devise computational approaches for PGO. We propose an
algorithm that computes a guaranteed optimal solution when
the penalized pose graph matrix satisfies the SZEP. We also
propose a variant that deals with the case in which the SZEP is
not satisfied. This variant, while possibly suboptimal, is shown
to perform well in practice. Moreover, we show that duality
provides tools to verify if a given estimate (e.g., computed
using iterative solvers) is globally optimal.
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Section VI presents a numerical evaluation on simulated
and real datasets. In practical regimes of operation (rotation
noise < 0.3 rad), our Monte Carlo runs always produced a
penalized pose graph matrix satisfying the SZEP. Hence, in
this regime, our approach enables the computation (and the
verification) of the optimal solution. For larger noise (e.g., 1rad
standard deviation for rotations), we observed cases in which
the penalized pose graph matrix has multiple zero eigenvalues.

This paper extends our initial proposal [12] in many di-
rections: the formulation in the complex domain, all results
involving the SZEP, and the optimal solution are novel. While
we advertised our results in the workshop paper [42], the
verification techniques and the experimental results presented
in this paper are new and unpublished. Moreover, we provide
extra results, proofs, and a toy example in which the duality
gap is nonzero in the technical report [6].

II. NOTATION AND PRELIMINARY CONCEPTS

Section II-A introduces our notation. Section II-B recalls
standard concepts from graph theory, and can be safely skipped
by the expert reader. Section II-C, instead, discusses the
properties of the set of 2 × 2 matrices that are multiples of
a planar rotation matrix. We denote this set with the symbol
αSO(2). αSO(2) is of interest in this paper since the action
of any matrix Z ∈ αSO(2) can be conveniently represented
as a multiplication between complex numbers (Section III-C).
Table I summarizes the main symbols used in this paper.

A. Notation

The cardinality of a set V is written as |V|. The sets of real
and complex numbers are denoted with R and C, respectively.
In denotes the n×n identity matrix, 1n denotes the (column)
vector of all ones of dimension n, 0n×m denotes the n ×m
matrix of all zeros (we also use 0n

.
= 0n×1). For a matrix

M , Mij denotes the element of M in row i and column j.
For matrices with a block structure we use [M ]ij to denote
the d × d block of M at the block row i and block column
j. In this paper we only deal with matrices that have 2 × 2
blocks, i.e., d = 2, hence the notation [M ]ij is unambiguous.

B. Graph terminology

A directed graph G is a pair (V, E), where the vertices or
nodes V are a finite set of elements, and E ⊂ V ×V is the set
of edges. Each edge is an ordered pair e = (i, j). We say that e
is incident on nodes i and j, leaves node i, called tail, and is
directed towards node j, called head. The number of nodes
and edges is denoted with n .

= |V| and m .
= |E|, respectively.

The incidence matrix A of a directed graph is a m × n
matrix with elements in {−1, 0,+1} that exhaustively de-
scribes the graph topology. Each row of A corresponds to
an edge e = (i, j) and has exactly two non-zero elements, a
−1 on the i-th column and a +1 on the j-th column.

C. The set αSO(2)

The set αSO(2) is defined as

αSO(2)
.
= {αR : α ∈ R, R ∈ SO(2)},

where SO(2) is the set of 2D rotation matrices. Recall that
SO(2) can be parametrized by an angle θ ∈ (−π,+π], and
any matrix R ∈ SO(2) is in the form:

R = R(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (1)

Clearly, SO(2) ⊂ αSO(2). The set αSO(2) is closed under
standard matrix multiplication, i.e., for any Z1,Z2 ∈ αSO(2),
also the product Z1Z2 ∈ αSO(2). In full analogy with SO(2),
it is trivial to show that the multiplication is commutative,
i.e., for any Z1,Z2 ∈ αSO(2) it holds that Z1Z2 = Z2Z1.
Moreover, for Z = αR with R ∈ SO(2) it holds that Z>Z =
|α|2I2. The set αSO(2) is also closed under matrix addition:
for R1,R2 ∈ SO(2), we have that

α1R1 + α2R2 =α1

[
c1 −s1

s1 c1

]
+α2

[
c2 −s2

s2 c2

]
=

=

[
α1c1 + α2c2 −(α1s1 + α2s2)
α1s1 + α2s2 α1c1 + α2c2

]
=

[
a −b
b a

]
= α3R3,

(2)
where we used the shorthands ci and si for cos(θi) and sin(θi),
and we defined a

.
= α1c1 + α2c2 and b

.
= α1s1 + α2s2.

In (2), the scalar α3
.
= ±
√
a2 + b2 (if nonzero) normalizes[

a −b
b a

]
, such that R3

.
=
[
a/α3 −b/α3

b/α3 a/α3

]
is a rotation

matrix; if α3 = 0, then α1R1 + α2R2 = 02×2, which also
falls in our definition of αSO(2). From this reasoning, it is
clear that an alternative definition of αSO(2) is

αSO(2)
.
=

{[
a −b
b a

]
: a, b ∈ R

}
. (3)

The set αSO(2) is tightly coupled with the set of complex
numbers C. Indeed, a matrix in the form (3) is also known as
a matrix representation of a complex number [19]. We explore
the implications of this fact for PGO in Section III-C.

III. POSE GRAPH OPTIMIZATION IN THE COMPLEX DOMAIN

Sections III-A-III-B recall a standard statement of the pose
graph optimization problem. Section III-C frames the problem
in the complex domain. Section III-D discusses properties of
the matrices involved in the real and complex formulations.

A. Standard PGO

PGO estimates n poses from m relative pose measurements.
We focus on the planar case, in which the i-th pose xi is
described by the pair xi

.
= (pi,Ri), where pi ∈ R2 is a

position in the plane, and Ri∈SO(2). The pose measurement
between two nodes, say i and j, is described by the pair
(∆ij ,Rij), where ∆ij ∈R2 and Rij ∈SO(2) are the relative
position and rotation measurements, respectively.

The problem can be visualized as a directed graph G(V, E),
where an unknown pose is attached to each node in the set
V , and each edge (i, j) ∈ E corresponds to a relative pose
measurement between nodes i and j (Fig. 2).

In a noiseless case, the measurements satisfy:

∆ij = R>i (pj − pi) , Rij = R>i Rj , (4)

and we can compute the unknown rotations {R1, . . . ,Rn}
and positions {p1, . . . ,pn} by solving a set of linear equations
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Table I
SYMBOLS USED IN THIS PAPER

Graph

G = (V, E) Directed graph
m Number of edges/measurements
n Number of nodes/poses
V Vertex set; |V| = n
E Edge set; |E| = m
e = (i, j) ∈ E Edge between nodes i and j
A ∈ Rm×n Incidence matrix of G
A ∈ Rm×(n−1) Anchored incidence matrix of G
L = A>A Laplacian matrix of G
L = A>A Anchored Laplacian matrix of G

Real PGO formulation

Ā = A⊗ I2 Augmented incidence matrix
Ā = A⊗ I2 Augmented anchored incidence matrix
L̄ = L⊗ I2 Augmented Laplacian matrix
W ∈ R4n×4n Real pose graph matrix
W ∈ R(4n−2)×(4n−2) Real anchored pose graph matrix
p ∈ R2n Node positions
ρ ∈ R2(n−1) Anchored node positions
r ∈ R2n Node rotations

Complex PGO formulation

W̃ ∈ C(2n−1)×(2n−1) Complex anchored pose graph matrix
ρ̃ ∈ Cn−1 Anchored complex node positions
r̃ ∈ Cn Complex node rotations

Miscellanea

SO(2) 2D rotation matrices
αSO(2) Scalar multiple of a 2D rotation matrix
|V| Cardinality of the set V
In n× n identity matrix
0n (1n) Vector of zeros (ones) of dimension n
Tr (X) Trace of the matrix X

Figure 2. Schematic representation of Pose Graph Optimization: the objective
is to associate a pose xi to each node of a directed graph, given relative pose
measurements (∆ij ,Rij) for each edge (i, j) in the graph.

(relations (4) become linear after rearranging the rotation Ri

to the left-hand side). In absence of noise, the problem admits
a unique solution as long as one fixes the pose of a node (say
p1 = 02 and R1 = I2) and the underling graph is connected.

In this work we focus on connected graphs, as these are the
ones of practical interest in PGO (a graph with k connected
components can be split in k subproblems, which can be
solved and analyzed independently).

Assumption 1 (Connected Pose Graph): The graph G, un-
derlying pose graph optimization, is connected. �

In presence of noise, the relations (4) cannot be met exactly
and pose graph optimization looks for a set of positions
{p1, . . . ,pn} and rotations {R1, . . . ,Rn} that minimize the
mismatch with respect to the measurements. This mismatch
can be quantified by different cost functions. We adopt the
formulation proposed in [12]:

min
{pi},

{Ri∈SO(2)}

∑
(i,j)∈E

ω∆
ij‖∆ij−R>i (pj−pi)‖22+

ωRij
2
‖Rij−R>i Rj‖2F,

(5)
where ‖ ·‖2 is the standard Euclidean distance and ‖ ·‖F is the
Frobenius norm. The Frobenius norm ‖Ra−Rb‖F is a standard
measure of distance between two rotations Ra and Rb, and
it is commonly called chordal distance, see, e.g., [28]. In (5),
we used the notation {pi} (resp. {Ri}) to denote the set of
unknown positions {p1 . . . ,pn} (resp. rotations). The weights
ω∆
ij and ωRij allow accommodating measurement uncertainty;

to simplify notation, in the following we assume ω∆
ij = ωRij =

1: including these terms in the derivation is straightforward
and they are indeed taken into account in our experiments.

Rearranging the terms, problem (5) can be rewritten as:

min
{pi},

{Ri∈SO(2)}

∑
(i,j)∈E

‖(pj −pi)−Ri∆ij‖22 +
1

2
‖Rj −RiRij‖2F,

(6)
where we exploited the fact that the 2-norm is invariant to
rotation, i.e., for any vector v and any rotation matrix R it
holds ‖Rv‖2 = ‖v‖2. Eq. (6) highlights that the objective is
a quadratic function of the unknowns.

The complexity of the problem stems from the fact that the
constraint Ri ∈ SO(2) is nonconvex, see, e.g., [53]. To make
this more explicit, we follow [12], and use a more convenient
representation for nodes’ rotations. A planar rotation Ri can
be written as in (1), and is fully defined by the vector

ri =

[
cos(θi)
sin(θi)

]
. (7)

Using this parametrization and with simple matrix manipula-
tion, Eq. (6) becomes (cf. with Eq. (11) in [12]):

min
{pi},{ri}

∑
(i,j)∈E

‖(pj − pi)−Dijri‖22 + ‖rj −Rijri‖22 (8)

s.t.: ‖ri‖22 = 1, i = 1, . . . , n

where we defined:

Dij =

[
∆x
ij −∆y

ij

∆y
ij ∆x

ij

]
, (with ∆ij

.
= [∆x

ij ∆y
ij ]
>) , (9)

and where the constraints ‖ri‖22 = 1 specify that we look for
vectors ri that represent admissible rotations (i.e., such that
cos(θi)

2 + sin(θi)
2 = 1).

Problem (8) is a quadratic problem with quadratic equality
constraints. The latter are nonconvex, hence computing a
global minimum of (8) is hard in general. There are two
problem instances, however, for which it is easy to compute
a global minimizer, which attains zero cost. These two cases
are recalled in Propositions 1-2.

Proposition 1 (Zero cost in trees): An optimal solution for
a PGO problem in the form (8) whose underlying graph is a
tree attains zero cost. �

This is a well known fact in robotics. The interested
reader can find a formal proof in [6, Appendix 8.1]. Roughly
speaking, in a tree, we can build an optimal solution by con-
catenating the relative pose measurements, and this solution
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annihilates the cost function. However, also in graphs with
chords, it is possible to attain the zero cost.

Definition 1 (Balanced pose graph): A pose graph is bal-
anced if the pose measurements compose to the identity along
each cycle in the graph2,3. �

In a balanced pose graph, there exists a configuration that
explains exactly the measurements, as stated below.

Proposition 2 (Zero cost in balanced pose graphs): An
optimal solution for a balanced pose graph optimization
problem attains zero cost. �

The proof is given in [6, Appendix 8.2]. The concept of
balanced graph describes a noiseless setup, while in real
problem instances the measurements do not compose to the
identity along cycles, because of the presence of noise.

The following fact will be useful in Section III-B.
Proposition 3 (Coefficient matrices in PGO): The matrices

Dij , I2,−I2,Rij appearing in (8) belong to αSO(2). �
The proof is trivial, since Rij , I2 ∈ SO(2) ⊂ αSO(2) (the
latter also implies −I2 ∈ αSO(2)). Moreover, Dij in (9)
clearly falls in the definition of matrices in αSO(2) in (3).

B. Matrix formulation and anchoring

In this section we rewrite the cost function (8) in a more
convenient matrix form. The original cost is:

f(p, r)
.
=

∑
(i,j)∈E

‖(pj−pi)−Dijri‖22 +‖rj−Rijri‖22 (10)

where we denote with p ∈ R2n and r ∈ R2n the vectors
stacking all nodes positions and rotations, respectively. Now,
let A ∈ Rm×n denote the incidence matrix of the graph under-
lying the problem: if (i, j) is the k-th edge, then Aki = −1,
Akj = +1. Let Ā = A ⊗ I2 ∈ R2m×2n, and denote with
Āk ∈ R2×2n the k-th block row of Ā. From the structure
of Ā, it follows that Ākp = pj − pi. Also, we define
D̄ ∈ R2m×2n as a block matrix where the k-th block row
D̄k ∈ R2×2n corresponding to the k-th edge (i, j) is all zeros,
except for a 2×2 block −Dij in the i-th block column. Using
the matrices Ā and D̄, the first sum in (10) can be written as:∑
(i,j)∈E

‖(pj−pi)−Dijri‖22 =

m∑
k=1

‖Ākp+D̄kr‖22 =‖Āp+D̄r‖22

(11)
Similarly, we define Ū ∈ R2m×2n as a block matrix where the
k-th block row Ūk ∈ R2×2n corresponding to the k-th edge
(i, j) is all zeros, except for 2× 2 blocks in the i-th and j-th
block columns, which are equal to −Rij and I2, respectively.
Using Ū , the second sum in (10) becomes:∑

(i,j)∈E

‖rj −Rijri‖22 =

m∑
k=1

‖Ūkr‖22 = ‖Ūr‖22 (12)

2We use the term “composition” to denote the group operation for SE(2).
For two poses T1

.
= (p1,R1) and T2

.
= (p2,R2), the composition is T1 ·

T2 = (p1 +R1p2,R1R2) [14]. Similarly, the identity element is (02, I2).
3When composing measurements along a loop, edge direction is impor-

tant: for two consecutive edges (i, k) and (k, j) in the loop, the composition
is Tij = Tik · Tkj , while if the second edge is in the form (j, k), the
composition becomes Tij = Tik · T−1

jk .

Combining (11) and (12), and defining Q̄ .
= D̄>D̄ + Ū>Ū

and L̄ .
= Ā>Ā, the cost in (10) becomes:

f(p, r)=

∥∥∥∥[ Ā D̄
0 Ū

] [
p
r

]∥∥∥∥2

2

=

[
p
r

]>[
L̄ Ā>D̄

D̄>Ā Q̄

] [
p
r

]
.

(13)
Since Ā .

= A ⊗ I2, it follows that L̄ = L ⊗ I2, where
L .

= A>A is the Laplacian matrix of the graph underlying
the problem. A pose graph optimization instance is thus
completely defined by the matrix

W .
=

[
L̄ Ā>D̄

D̄>Ā Q̄

]
∈ R4n×4n (14)

From (13), W can be easily seen to be symmetric and positive
semidefinite. Other useful properties of W are stated below.

Proposition 4 (Properties of W): The positive semidefi-
nite matrix W in (14) (i) has at least two eigenvalues in
zero, and (ii) is composed by 2 × 2 blocks [W ]ij , where
each block is a multiple of a rotation matrix, i.e., [W ]ij ∈
αSO(2), ∀i, j = 1, . . . , 2n. Moreover, the diagonal blocks
of W are nonnegative multiples of the identity matrix, i.e.,
[W ]ii = αiiI2, αii ≥ 0. �
A formal proof of Proposition 4 is given in [6, Appendix 8.3].

An intuitive explanation of the second claim follows from
the fact that (i) W contains sums and products of the matrices
in the original formulation (8) (which are in αSO(2) according
to Lemma 3), and (ii) the set αSO(2) is closed under matrix
sum and product (Section II-C).

The presence of two eigenvalues in zero has a natural
geometric interpretation: the cost function encodes inter-nodal
measurements, hence it is invariant to global translations of
node positions, i.e., f(p, r) = f(p + pa, r), where pa

.
=

(1n ⊗ I2)a = [a> . . . a>]> (n copies of a), with a ∈ R2.
Algebraically, this translates to the fact that (1n⊗I2) ∈ R2n×2

is in the null space of the augmented incidence matrix Ā,
which also implies a two dimensional null space for W .

Position anchoring. In this paper we show that the duality
properties in pose graph optimization are tightly coupled with
the spectrum of the matrix W . We are particularly interested
in the eigenvalues at zero, and from this perspective it is
not convenient to carry on the two null eigenvalues of W
(claim (i) of Proposition 4), which are always present, and are
due to an intrinsic observability issue.

We remove the translation ambiguity by fixing the position
of an arbitrary node. Without loss of generality, we fix the
position p1 of the first node to the origin, i.e., p1 = 02. This
process is commonly called anchoring. Setting p1 = 02 is
equivalent to removing the corresponding columns and rows
from W , leading to the following “anchored” PGO problem:

f(r,ρ) =

 02

ρ
r

>W

 02

ρ
r

 =

[
ρ
r

]>
W

[
ρ
r

]
(15)

where ρ is the vector p without its first two-elements vector
p1, and W is obtained from W by removing the rows and
the columns corresponding to p1. The structure of W is:

W =

[
Ā>Ā Ā>D̄
D̄>Ā Q̄

]
.
=

[
L̄ S̄
S̄> Q̄

]
(16)
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where Ā = A ⊗ I2, and A is the anchored (or reduced)
incidence matrix, obtained by removing the first column from
A, see, e.g., [10]. On the right-hand-side of (16) we defined
S̄
.
= Ā>D̄ and L̄ .

= Ā>Ā.
We call W the real (anchored) pose graph matrix. W

is still symmetric and positive semidefinite (it is a principal
submatrix of a positive semidefinite matrix). Moreover, since
W is obtained by removing a 2× 4n block row and a 4n× 2
block column from W , it is still composed by 2× 2 matrices
in αSO(2), as specified in the following remark.

Remark 1 (Properties of W ): The positive semidefinite
matrix W in (16) is composed by 2×2 blocks [W ]ij , that are
such that [W ]ij ∈ αSO(2), ∀i, j = 1, . . . , 2n− 1. Moreover,
the diagonal blocks of W are nonnegative multiples of the
identity matrix, i.e., [W ]ii = αiiI2, α ≥ 0. �
After anchoring, our PGO problem becomes:

f? = min
ρ,r

[
ρ
r

]>
W

[
ρ
r

]
(17)

s.t.: ‖ri‖22 = 1, i = 1, . . . , n

C. To complex domain
In this section we reformulate (17), in which the decision

variables are real vectors, into a problem in complex variables.
The main motivation for this choice is that the real representa-
tion (17) is somehow redundant: as we show in Proposition 7,
each eigenvalue of W is repeated twice (multiplicity 2), while
the complex representation does not have this redundancy,
making analysis easier. In the rest of the paper, quantities
marked with a tilde (̃·) live in the complex domain C.

Any real vector v ∈ R2 can be represented by a complex
number ṽ = ηeϕ, where 2 = −1 is the imaginary unit,
η = ‖v‖2 and ϕ is the angle that v forms with the horizontal
axis. We use the operator (·)∨ to map a 2-vector to the
corresponding complex number, ṽ = v∨.

The action of a real 2 × 2 matrix Z on a vector v ∈ R2

cannot be represented, in general, as a scalar multiplication
between complex numbers. However, if Z ∈ αSO(2), this is
possible. To show this, assume that Z = αR(θ), where R(θ)
is a counter-clockwise rotation of angle θ. Then,

(Z v)∨ = (αR(θ)v)∨ = z̃ ṽ, where z̃ = αeθ. (18)

With slight abuse of notation we extend the operator (·)∨
to αSO(2), such that, given Z = αR(θ) ∈ αSO(2), then
Z∨=αeθ∈C. By inspection, one can verify the following re-
lations between the sum and product of two matrices Z1,Z2 ∈
αSO(2) and their complex representations Z∨1 ,Z

∨
2 ∈ C:

(Z1 Z2)∨ = Z̃∨1 Z
∨
2 , (Z1 +Z2)∨ = Z∨1 +Z∨2 . (19)

We next discuss how to apply the machinery introduced
so far to reformulate problem (17) in the complex domain.
The variables in problem (17) are the vectors ρ ∈ R2(n−1)

and r ∈ R2n that are composed by 2-vectors, i.e., ρ =
[ρ>1 , . . . ,ρ

>
n−1]> and r = [r>1 , . . . , r

>
n ]>, where ρi, ri ∈ R2.

We define the complex positions and the complex rotations:

ρ̃ = [ρ̃1, . . . , ρ̃n−1] ∈ Cn−1, where: ρ̃i = ρ∨i
r̃ = [r̃1, . . . , r̃n] ∈ Cn, where: r̃i = r∨i

(20)

Using the parametrization (20), the constraints in (17) become:

|r̃i|2 = 1, i = 1, . . . , n. (21)

Similarly, we would like to rewrite the objective as a function
of ρ̃ and r̃. This re-parametrization is formalized in the fol-
lowing proposition, whose proof is given in Appendix VIII-A.

Proposition 5 (Cost in the complex domain): For any pair
(ρ, r), the cost function in (17) is such that:

f(ρ, r) =

[
ρ
r

]>
W

[
ρ
r

]
=

[
ρ̃
r̃

]>
W̃

[
ρ̃
r̃

]
(22)

where the vectors ρ̃ and r̃ are built from ρ and r as in (20), and
the matrix W̃ ∈ C(2n−1)×(2n−1) is such that W̃ij = [W ]∨ij ,
with i, j = 1, . . . , 2n− 1. �

Remark 2 (Real diagonal entries for W̃ ): According to
Remark 1, the diagonal blocks of W are multiples of the
identity matrix, i.e., [W ]ii = αiiI2. Therefore, the diagonal
elements of W̃ are real, i.e., W̃ii = [W ]∨ii = αii ∈ R. �
Proposition 5 enables us to rewrite problem (17) as:

f? = min
ρ̃,r̃

[
ρ̃
r̃

]>
W̃

[
ρ̃
r̃

]
(23)

s.t.: |r̃i|2 = 1, i = 1, . . . , n.

We call W̃ the complex (anchored) pose graph matrix. Clearly,
the matrix W̃ preserves the same block structure ofW in (16):

W̃
.
=

[
L S̃

S̃∗ Q̃

]
(24)

where S̃∗ is the conjugate transpose of S̃, and L .
= A>A

where A is the anchored incidence matrix. In Section IV
we apply Lagrangian duality to (23). Before that, we provide
results to characterize the spectrum of W and W̃ , drawing
connections with the literature on unit gain graphs [50].

D. Spectrum of the real and complex pose graph matrices

In this section we take a closer look at the structure and the
properties of the real and the complex pose graph matrices W
and W̃ . In analogy with (13) and (16), we write W̃ as

W̃ =

[
A>A A>D̃

(A>D̃)∗ Ũ∗Ũ + D̃∗D̃

]
=

[
A D̃

0 Ũ

]∗ [
A D̃

0 Ũ

]
(25)

where Ũ ∈ Cm×n and D̃ ∈ Cm×n are the “complex versions”
of Ū and D̄ in (13), i.e., they are obtained as Ũij = [Ū ]∨ij
and D̃ij = [D̄]∨ij , ∀i, j.

The factorization (25) is interesting, as it allows identifying
two important matrices that compose W̃ : the first is A, the
anchored incidence matrix that we introduced earlier; the
second is Ũ which is a generalization of the incidence matrix,
known as the complex incidence matrix of a unit gain graph
(see, e.g., [50]). A unit gain graph is a graph in which to
each edge is associated a complex weight, having unit norm.
For space reasons, we refer the reader to [6] and [50] for an
introduction on unit gain graphs, while we provide an intuitive
example of complex incidence matrix in Fig. 3.

Using existing results on the spectrum of the complex
incidence matrix [50], we can characterize the presence of
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Incidence matrix:

A =


−1 +1 0 0

0 −1 +1 0
0 0 −1 +1

+1 0 0 −1
0 +1 0 −1


(1, 2)
(2, 3)
(3, 4)
(4, 1)
(4, 2)

Anchored Incidence matrix:

A =


+1 0 0
−1 +1 0

0 −1 +1
0 0 −1

+1 0 −1



Complex Incidence matrix:

Ũ =


−eθ12 +1 0 0

0 −eθ23 +1 0

0 0 −eθ34 +1

+1 0 0 −eθ41

0 +1 0 −eθ42


Figure 3. Example of incidence matrix, anchored incidence matrix, and
complex incidence matrix, for the toy PGO problem on the top left. If Rij =
R(θij) is the relative rotation measurement associated to edge (i, j), then
the matrix Ũ can be seen as the incidence matrix of a unit gain graph with
gain eθij associated to each edge (i, j).

eigenvalues in zero for the matrix W̃ , as specified in the
following proposition (proof in [6, Appendix 8.5]).

Proposition 6 (Zero eigenvalues in W̃ ): The complex an-
chored pose graph matrix W̃ has a single eigenvalue in zero
if and only if the pose graph is balanced or is a tree. �

Besides analyzing the spectrum of W̃ , it is of interest to
understand how the complex matrix W̃ relates to its real
counterpart W . The following proposition states that there
is a tight correspondence between the eigenvalues of W and
W̃ (proof in Appendix VIII-B).

Proposition 7 (Spectrum of complex graph matrices): The
2(2n − 1) eigenvalues of W are the 2n − 1 eigenvalues of
W̃ , repeated twice. �

The previous result is the main reason why we prefer to
work in the complex domain.

IV. LAGRANGIAN DUALITY IN PGO

In the previous section we wrote the PGO problem in
complex variables as per eq. (23). In the following, we refer
to this problem as the primal PGO problem, that, defining
x̃
.
= [ρ̃ r̃] (as a column vector), can be written succinctly as

f? = min
x̃

x̃∗W̃ x̃ (Primal problem)

s.t.: |x̃i|2 = 1, i = n, . . . , 2n− 1.
(26)

In Section IV-A we derive the Lagrangian dual of (26).
Then, in Section IV-B, we discuss an SDP relaxation of (26),
that can be interpreted as the dual of the dual problem. Finally,
in Section IV-C we analyze the properties of the dual problem,
and discuss how it relates with the primal PGO problem.

A. The dual problem

The Lagrangian of the primal problem (26) is

L(x̃,λ) = x̃∗W̃ x̃+

n∑
i=1

λi(1− |x̃n+i−1|2)

where λi ∈ R, i = 1, . . . , n, are the Lagrange multipliers (or
dual variables). Recalling the structure of W̃ from (24), the
Lagrangian becomes:

L(x̃,λ)= x̃∗
[
L S̃

S̃∗ Q̃(λ)

]
x̃+

n∑
i=1

λi = x̃∗W̃ (λ)x̃+

n∑
i=1

λi,

where for notational convenience we defined

Q̃(λ)
.
= Q̃− diag(λ1, . . . , λn), W̃ (λ)

.
=

[
L S̃

S̃∗ Q̃(λ)

]
.

(27)
The dual function d : Rn → R is the infimum of the
Lagrangian with respect to x̃:

d(λ) = inf
x̃

L(x̃,λ) = inf
x̃
x̃∗W̃ (λ)x̃+

n∑
i=1

λi. (28)

For any choice of λ the dual function provides a lower bound
on the optimal value of the primal problem [5, Section 5.1.3].
Therefore, the Lagrangian dual problem looks for a maximum
of the dual function over λ:

d?
.
= max

λ
d(λ) = max

λ
inf
x̃
x̃∗W̃ (λ)x̃+

n∑
i=1

λi. (29)

The infimum over x̃ of x̃∗W̃ (λ)x̃ drifts to −∞ unless
W̃ (λ) � 0. Therefore we can safely restrict the maximization
to vectors λ that are such that W̃ (λ) � 0; these are called
dual feasible. Moreover, at any dual-feasible λ, the x̃ mini-
mizing the Lagrangian are those that make x̃∗W̃ (λ)x̃ = 0.
Therefore, (29) reduces to the following dual problem

d? = max
λ

∑
i λi, (Dual problem)

s.t.: W̃ (λ) � 0.
(30)

The importance of the dual problem is twofold. First, it holds

d? ≤ f? (31)

This property is called weak duality, see, e.g., [5, Section
5.2.2]. For particular problems the inequality (31) becomes an
equality, and in such cases we say that strong duality holds.
Second, since d(λ) is concave (minimum of affine functions),
the dual problem (30) is always convex in λ, regardless the
convexity properties of the primal problem. The dual PGO
problem (30) is a semidefinite program (SDP).

B. SDP relaxation and the dual of the dual
We have seen that a lower bound d? on the optimal value f?

of the primal (26) can be obtained by solving the Lagrangian
dual problem (30). Here, we outline another, direct, relaxation
method to obtain such bound.

Observing that x̃∗W̃ x̃ = Tr (W̃ x̃x̃∗), we rewrite (26)
equivalently as

f? = min
X̃,x̃

Tr (W̃ X̃) (32)

s.t.: Tr (EiX̃) = 1, i = n, . . . , 2n− 1,

X̃ = x̃x̃∗.

where Ei is a matrix that is zero everywhere, except for the
i-th diagonal element, which is one. The condition X̃ = x̃x̃∗

is equivalent to (i) X̃ � 0 and (ii) X̃ has rank one. Thus, (32)
is rewritten by eliminating x̃ as

f? = min
X̃

Tr (W̃ X̃) (33)

s.t.: Tr (EiX̃) = 1, i = n, . . . , 2n− 1,

X̃ � 0

rank(X̃) = 1.
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Dropping the rank constraint, which is non-convex, we obtain
the following SDP relaxation of the primal problem:

s? = min
X̃

Tr (W̃ X̃)

s.t.: Tr (EiX̃) = 1, i = n, . . . , 2n− 1,

X̃ � 0
(34)

which we can also rewrite as

s? = min
X̃

Tr (W̃ X̃) (SDP relaxation)

s.t.: X̃ii = 1, i = n, . . . , 2n− 1,

X̃ � 0

(35)

where X̃ii denotes the i-th diagonal entry in X̃ . Obviously,
s? ≤ f?, since the feasible set of (35) contains that of (33).
One may then ask what is the relation between the Lagrangian
dual and the SDP relaxation of problem (35): the answer is
that the former is the dual of the latter hence, under constraint
qualification, it holds that s? = d?, i.e., the SDP relaxation and
the Lagrangian dual approach yield the same lower bound on
f?. This is formalized in the following proposition.

Proposition 8: The Lagrangian dual of problem (35) is
problem (30), and vice-versa. Strong duality holds between
these two problems, i.e., d? = s?. Moreover, if the optimal
solution X̃? of (35) has rank one, then d? = s? = f?.
Proof. The fact that the SDPs (35) and (30) are related by
duality can be found in standard textbooks (e.g. [5, Example
5.13]); since these are convex programs, under constraint
qualification, the duality gap is zero, i.e., d?=s?. To prove that
rank(X̃?)=1⇒ s?=d?=f?, we observe that (i) Tr W̃ X̃? .=
s? ≤ f? since (35) is a relaxation of (33). However, when
rank(X̃?) = 1, X̃? is feasible for problem (35), hence, by
optimality of f?, it holds (ii) f? ≤ f(X̃?) = Tr W̃ X̃?.
Combining (i) and (ii) we prove that, when rank(X̃?) = 1,
then f?=s?, which also implies f?=d?. �

To the best of our knowledge this is the first time in which
this SDP relaxation has been proposed to solve PGO; in the
context of SLAM, anther SDP relaxation has been proposed
by Liu et. al [43], but it does not use the chordal distance
and approximates the expression of the relative rotation mea-
surements. For the rotation subproblem, SDP relaxations have
been proposed in [57], [53], [21]. According to Proposition 8,
one advantage of the SDP relaxation approach is that we can
a-posteriori check if the duality (or, in this case, the relaxation)
gap is zero, from the optimal solution X̃?. Indeed, if we
solve (35) and find that the optimal X̃? has rank one, then
we actually solved (26), hence the relaxation gap is zero.
Moreover, in this case, from spectral decomposition of X̃?

we can get a vector x̃? such that X̃? = (x̃?)(x̃?)∗, and this
vector is an optimal solution to the primal problem.

In the following section we derive similar a-posteriori
condition for the dual problem (30). This condition enables
the computation of a primal optimal solution. Moreover, it
allows discussing the uniqueness of such solution.

C. Analysis of the dual problem

In this section we provide conditions under which the
duality gap is zero. These conditions depend on the spectrum

of W̃ (λ?), which arises from the solution of (30). We refer
to W̃ (λ?) as the penalized pose graph matrix. Moreover, we
discuss the relation between the dual and the primal problem.

A first proposition establishes that (30) attains an optimal
solution (Proof in Appendix VIII-C).

Proposition 9: The optimal value d? in (30) is attained at a
finite λ?. Moreover, the penalized pose graph matrix W̃ (λ?)
has an eigenvalue in 0. �

The previous proposition guarantees that W̃ (λ?) always has
an eigenvalue in zero. The following result states that when
this eigenvalue is unique, then the duality gap must be zero
(proof in Appendix VIII-D).

Proposition 10 (No duality gap): If the zero eigenvalue of
the penalized pose graph matrix W̃ (λ?) is simple then the
duality gap is zero, i.e., d? = f?. �

In the following we say that W̃ (λ?) satisfies the single zero
eigenvalue property (SZEP) if its zero eigenvalue is simple.

When the SZEP holds we are able to establish a precise
relation between the solution of the dual and the solution of
the primal problem (Corollary 1 below). Towards this goal we
need some more notation. For a given λ, we denote by N (λ)
the set of x̃ that attain the optimal value in problem (28):

N (λ)
.
={x̃λ∈C2n−1: L(x̃λ,λ)=min

x̃
L(x̃,λ)=min

x̃
x̃∗W̃ (λ)x̃}

Since we already observed that for any dual-feasible λ
the points x̃ that minimize the Lagrangian are such that
x̃∗W̃ (λ)x̃ = 0, it follows that for any dual-feasible λ:

N (λ) = {x̃ ∈ C2n−1 : W̃ (λ)x̃=0} = Kernel(W̃(λ)). (36)

The following result ensures that if a vector in N (λ) is
feasible for the primal problem, then it is also an optimal
solution for the PGO problem (proof in Appendix VIII-E).

Theorem 1: Given λ ∈ Rn, if an x̃λ ∈ N (λ) is primal
feasible, then x̃λ is primal optimal; moreover, λ is dual
optimal, and the duality gap is zero. �

We are now ready to characterize the relation between the
solution of the primal and the dual problem when W̃ (λ?)
satisfies the SZEP. This is one of the key results of this paper.

Corollary 1 (SZEP ⇒ x̃? ∈N (λ?)): If the zero eigen-
value of W̃ (λ?) is simple (SZEP), then the set N (λ?) con-
tains a primal optimal solution. Moreover, the primal optimal
solution is unique, up to an arbitrary rotation.
Proof. Let x̃? be a primal optimal solution, and let f? =
(x̃?)∗W̃ (x̃?) be the corresponding optimal value. From
Proposition 10 we know that the SZEP implies that the duality
gap is zero, i.e., d? = f?, hence∑n

i=1 λ
?
i = (x̃?)∗W̃ (x̃?). (37)

Since x̃? is a solution of the primal, it must be feasible,
hence |x̃?i |2 = 1, i = n, . . . , 2n− 1. Therefore, the following
equalities hold:

n∑
i=1

λ?i =

n∑
i=1

λ?i |x̃?n+i−1|2 = (x̃?)∗
[

0 0
0 diag(λ?)

]
(x̃?)

(38)



9

Plugging (38) back into (37):

(x̃?)∗
[
W̃−

[
0 0
0 diag(λ?)

]]
(x̃?) = 0⇔ (x̃?)∗W̃ (λ?)(x̃?)=0

(39)
which proves that x̃? ∈ Kernel(W̃ (λ?)), which coincides with
N (λ?) as per eq. (36), proving the first claim.

Let us prove the second claim. From the first claim we know
that SZEP ⇒ x̃? ∈ N (λ?). Moreover, when W̃ (λ?) has a
single eigenvalue in zero, then N (λ?) = Kernel(W̃(λ?)) is 1-
dimensional and can be written as N (λ?) = {γ̃ x̃? : γ̃ ∈ C},
or, using the polar form for γ̃:

N (λ?) = {ηeϕ x̃? : η, ϕ ∈ R} (40)

From (40) we see that any η 6= 1 would alter the norm of x̃?,
leading to a solution that is not primal feasible. On the other
hand any vector eϕx̃? is primal feasible (|eϕx̃?i | = |x̃?i |), and
primal optimal:

(eϕx̃?)∗W̃ (eϕx̃?) = eϕe−ϕ(x̃?)∗W̃ (x̃?) = f? (41)

We conclude the proof by noting that the multiplication by
eϕ corresponds to a global rotation of the pose estimate x̃?:

eϕx̃? = eϕ[ρ̃?1 . . . ρ̃?n−1 r̃
?
1 . . . r̃?n] (42)

and:
{

eϕρ̃?i = (R(ϕ)pi)
∨

eϕr̃?i = (R(ϕ)Ri)
∨ (43)

where in (42) we observed that x̃? only stacks position and
rotation estimates, and in (43) we used the properties (18)
and (19) introduced in Section III-C. �

Proposition 10 provides an a-posteriori condition on the
duality gap, that requires solving the dual problem; while
Sections V-VI show that this condition is very useful in
practice, it is also interesting to devise a-priori conditions, that
can be assessed from W̃ , without solving the dual problem.
A first step in this direction is the following proposition.

Proposition 11 (No gap in trees and balanced graphs):
The duality gap is zero (d? = f?) for any balanced pose
graph optimization problem, and for any pose graph whose
underlying graph is a tree.

Proof. Balanced pose graphs and trees have in common
the fact that they attain f? = 0 (Propositions 1-2). By weak
duality we know that d? ≤ 0. However, λ = 0n is feasible (as
W̃ � 0) and attains d(λ) = 0, hence λ = 0n is feasible and
dual optimal, proving d? = f?. �

V. ALGORITHMS: SOLUTIONS AND VERIFICATION

In this section we exploit the results presented so far to
devise an algorithm to solve PGO (Section V-A) and to design
verification techniques to assess optimality (Section V-B).

A. Optimal and Suboptimal Solutions
This section shows how to use the solution λ? of the

(convex) dual problem to compute the solution of the (non-
convex) primal problem. We split the presentation in two
sections: Section V-A1 discusses the case in which W̃ (λ?)
satisfies the SZEP (in this case our algorithm computes the
optimal solution), and Section V-A2 discusses the case in
which W̃ (λ?) has multiple eigenvalues in zero (in this case
our algorithm has no optimality guarantees).

1) Case 1: W̃ (λ?) satisfies the SZEP: According to Corol-
lary 1, if W̃ (λ?) has a single zero eigenvalue, then the
optimal solution of the primal problem x̃? is in N (λ?) =
Kernel(W̃ (λ?)). Moreover, the null space Kernel(W̃ (λ?))
is 1-dimensional, hence it can be written explicitly as:

N (λ?) = Kernel(W̃ (λ?)) = {ṽ ∈ C2n−1 : ṽ = γx̃?, γ ∈ C},
(44)

which means that any vector in the null space is a scalar
multiple of the primal optimal solution x̃?. This observation
suggests an approach to compute x̃?. We first compute an
eigenvector ṽ corresponding to the single zero eigenvalue of
W̃ (λ?) (this is a vector in the null space of W̃ (λ?)). Then,
since x̃? must be primal feasible (i.e., |x̃n| = . . . = |x̃2n−1| =
1), we compute a suitable scalar γ that makes 1

γ ṽ primal
feasible. This scalar is clearly γ = |ṽn| = . . . = |ṽ2n−1| (we
essentially need to normalize the norm of the last n entries
of ṽ). The existence of a suitable γ, and hence the fact that
|ṽn| = . . . = |ṽ2n−1| > 0, is guaranteed by Corollary 1. As a
result we get the optimal solution x̃? = 1

γ ṽ.
2) Case 2: W̃ (λ?) does not satisfy the SZEP: Currently

we are not able to compute a guaranteed optimal solution
for PGO, when W̃ (λ?) has multiple eigenvalues in zero.
Nevertheless, it is interesting to exploit the solution of the dual
problem to find a (possibly suboptimal) estimate, which can
be used, for instance, as initial guess for an iterative technique.

We propose an approach based on the insight of Theorem 1:
if there is a primal feasible x̃ ∈ N (λ?) = Kernel(W̃ (λ?)),
then x̃ must be primal optimal. Therefore we look for a vector
x̃ ∈ Kernel(W̃ (λ?)) that is “close” to the feasible set. Let
us denote with Ṽ ∈ C(2n−1)×q a basis of the null space
of W̃ (λ?), where q is the number of zero eigenvalues of
W̃ (λ?).4 Any vector x̃ in the null space of W̃ (λ?) can be
written as x̃ = Ṽ z̃, for some vector z̃ ∈ Cq . Therefore we
propose to compute a possibly suboptimal estimate x̃ = Ṽ z̃?,
where z̃? solves the following optimization problem:

max
z̃

2n−1∑
i=1

real(Ṽiz̃) + imag(Ṽiz̃) (45)

s.t.: |Ṽiz̃|2 ≤ 1, i = n, . . . , 2n− 1

where Ṽi denotes the i-th row of Ṽ , and real(·) and imag(·)
return the real and the imaginary part of a complex number,
respectively. For an intuitive explanation of problem (45), we
notice that the feasible set of the primal problem (26) is de-
scribed by |x̃i|2 = 1, for i = n,. . ., 2n−1. In problem (45) we
relax the equality constraints to convex inequality constraints
|x̃i|2 ≤ 1, for i = n, . . . , 2n − 1; these can be written as
|Ṽiz̃|2 ≤ 1, recalling that we are searching in the null space of
W̃ (λ?), which is spanned by Ṽ z̃. Then, the objective function
in (45) encourages “large” elements Ṽiz̃, hence pushing the
inequality |Ṽiz̃|2 ≤ 1 to be tight. While other metrics can
force large entries Ṽiz̃, we preferred the linear metric (45) to
preserve convexity. Note that x̃ = Ṽ z̃?, in general, is neither
optimal nor feasible for our PGO problem (26), hence we need
to normalize it to get a feasible estimate.

4Ṽ can be computed from singular value decomposition of W̃ (λ?).
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input : Complex PGO matrix W̃
output: Primal solution x̃? and optimality certificate isOpt

solve the dual problem (30) and get λ? ;
if W̃ (λ?) has a single eigenvalue µmin at zero then

compute the eigenvector ṽ of W̃ (λ?) corresponding to µmin;
compute x̃? = 1

γ
ṽ, where γ = |ṽj |, for any j ∈ {n,. . .,2n− 1} ;

set isOpt = true;
else

compute a basis Ṽ for the null space of W̃ (λ?) using SVD;
compute z̃? by solving the convex problem (45);
set x̃? = Ṽ z̃? and normalize |x̃i| to 1, for all i = n, . . . , 2n− 1;
set isOpt = unknown;

end
return (x̃?, isOpt)

Algorithm 1: Solving PGO using Lagrangian duality.

The experimental section provides empirical evidence that,
despite being heuristic in nature, this method performs well
in practice. Algorithm 1 wraps up the optimal solution of
Section V-A1 and the method proposed in this section.

B. Verification

In this section we consider the case in which we are given an
estimate for the poses in the pose graph; we call this estimate
(R◦i ,p

◦
i ), i = 1, . . . , n; for instance, this estimate is the one

returned by a state-of-the-art iterative solver, e.g., iSAM2 [34]
or g2o [40]. Then we want to answer a basic question: can we
quantify how far from optimality this estimate is, and possibly
certify that it is globally optimal?

We call this candidate solution x̃◦ ∈ C2n−1, assuming
that the poses (R◦i ,p

◦
i ), i = 1, . . . , n, have been written as

a complex vector, as in Section III-C. The following result
provides a first tool for verification.

Corollary 2 (Verification of Primal Objective): Given a
candidate solution x̃◦ for the primal problem (26), and
calling d? the optimal objective of the dual problem (30),
if f(x̃◦) = d?, then the duality gap is zero and x̃◦ is an
optimal solution of (26). Moreover, even if the duality gap is
nonzero, f(x̃◦)− f? ≤ f(x̃◦)− d?, meaning that f(x̃◦)− d?
is an upper-bound for the sub-optimality gap of x̃◦.
Proof. The first claim follows from weak duality (d? ≤ f?)
and from optimality of f? (f? ≤ f(x̃◦)). These two facts
imply that whenever d? = f(x̃◦), then d? = f? = f(x̃◦) (zero
duality gap, optimality of x̃◦). Similarly, by weak duality we
have f(x̃◦)− f? ≤ f(x̃◦)− d?, proving the second claim. �

Corollary 2 ensures that the candidate x̃◦ is optimal when
f(x̃◦) = d?. Moreover, even in the case in which we get
f(x̃◦) > d?, the quantity f(x̃◦) − d? can be used as an
indicator of how far x̃◦ is from the global optimum. This first
verification technique is summarized in Algorithm 2. Note that
whenever W̃ (λ?) satisfies the SZEP, we have d? = f?, hence
we can classify as suboptimal any candidate solution that is
such that f(x̃◦) < d?; however, when the SZEP is not satisfied
and f(x̃◦) < d?, the algorithm is inconclusive (but it can still
provide indications on the sub-optimality gap subOpt).

While SDPs are convex problems (hence can be solved in
polynomial time), current SDP solvers are fairly slow and do
not scale to large problems, as the ones usually encountered

input : Complex PGO matrix W̃ , candidate solution x̃◦
output: Optimality certificate isOpt and bound subOpt ≥ f(~x◦)− f?

solve the dual problem (30) and get λ? and d? ;
if f(x̃◦) == d? then

set isOpt = true;
else

if W̃ (λ?) has a single zero eigenvalue then
set isOpt = false;

else
set isOpt = unknown;

end
end
subOpt = f(~x◦)− d? ;
return (isOpt, subOpt)

Algorithm 2: Objective verification using duality.

in PGO. Our derivation also enables a more sophisticated
verification technique, which does not require solving an SDP:

Corollary 3 (Verification of Primal Solution): Given a can-
didate solution x̃◦ for the primal problem (26), if the following
linear system admits a solution

W̃ (λ◦)x̃◦ = 0 (to be solved w.r.t. λ◦) (46)

and such solution, called λ◦, is such that W̃ (λ◦) � 0, then
the duality gap is zero and x̃◦ is a primal optimal solution.
Proof. Assume that the linear system (46) admits a solution
λ◦, and that this solution is dual feasible (W̃ (λ◦) � 0).
Then, W̃ (λ◦)x̃◦ = 0 implies (x̃◦)∗W̃ (λ◦)(x̃◦) = 0, which,
recalling the structure of W̃ (λ◦) in (27), also implies:

(x̃◦)∗
[
W̃−

[
0 0
0 diag(λ◦)

]]
(x̃◦) = 0⇔

(x̃◦)∗W̃ (x̃◦)(x̃◦) =

n∑
i=1

|x̃◦i |2λ◦i ⇔ f(x̃◦) = d(λ◦) (47)

Since λ◦ is dual feasible, it must hold d(λ◦)≤ d? (recall
that d? is the maximum over λ). Thus, by weak duality and
optimality of f?, it holds d(λ◦) ≤ d? ≤ f? ≤ f(x̃◦). How-
ever, from eq. (47) we known that d(λ◦) = f(x̃◦), hence the
chain of inequalities becomes tight, d(λ◦)=d?=f?=f(x̃◦),
which implies that x̃◦ attains the optimal objective f? and the
duality gap is zero. �

This second verification technique is more convenient in
practice, since it does not require solving the SDP (30),
but only requires solving a sparse linear system and then
verifying that the sparse matrix W̃ (λ◦) is positive definite.
The following remark clarifies the structure of the linear
system W̃ (λ◦)x̃◦ = 0 (recall that x̃◦ is a given vector and
the system is solved with respect to λ◦).

Remark 3 (Feasibility and uniqueness of W̃ (λ◦)x̃◦ = 0):
Recalling the structure of W̃ (λ◦) from (27), we rewrite

W̃ (λ◦)x̃◦ = 0⇔
[
W̃−

[
0 0
0 diag(λ◦)

]]
x̃◦ = 0

⇔
[

0 0
0 diag(x̃◦n, . . . , x̃

◦
2n−1)

] [
0n−1

λ◦

]
= W̃ x̃◦ (48)

Defining the matrix H .
= diag(x̃◦n, . . . , x̃

◦
2n−1), and splitting

W̃ x̃◦ into two vectors ep ∈ Cn−1 and er ∈ Cn, such that
W̃ x̃◦=[ep er], the linear system (48) is equivalent to:

ep = 0n−1 Hλ◦ = er (49)
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Since H is diagonal and its entries are different from zero
(x̃◦ is primal feasible, hence it satisfies |x̃◦i | = 1, i =
n, . . . , 2n−1), the system Hλ◦ = er always admits a unique
solution. Therefore, the linear system (46) is feasible and
admits a unique solution if and only if ep = 0n−1. �

The second verification technique of Corollary 3 is summa-
rized in Algorithm 3. Note that in the algorithm we wrote the
conditions ep = 0n−1 as ‖ep‖/n ≤ τe, where τe is a small
(positive) threshold (10−3 in our experiments); this allows
accommodating the presence of numerical errors. Similarly,
the condition W̃ (λ◦) � 0 is rewritten as µmin(W̃ (λ◦)) ≥ τµ,
where µmin(W̃ (λ◦)) is the smallest eigenvalue of W̃ (λ◦) and
τµ is a small (negative) threshold (−10−3 in our experiments).

input : Complex PGO matrix W̃ , candidate solution x̃◦
output: Optimality certificate isOpt

solve the linear system (46) and get λ◦ ;
if ‖ep‖/n ≤ τe and µmin(W̃ (λ◦)) ≥ τµ then

set isOpt = true;
else

if W̃ (λ◦) has a single zero eigenvalue then
set isOpt = false;

else
set isOpt = unknown;

end
end
return (isOpt)

Algorithm 3: Solution verification using duality.

VI. NUMERICAL ANALYSIS AND DISCUSSION

This section shows that the SZEP is satisfied in the vast
majority of PGO instances. Moreover, it demonstrates the ef-
fectiveness of Algorithm 1 to solve PGO, and the effectiveness
of Algorithms 2-3 to check optimality of a given solution.
Section VI-A presents a Monte Carlo analysis on simulated
datasets, while Section VI-B reports results on real datasets.

A. Monte Carlo Analysis

Simulation setup. We consider two different simulated
scenarios, called random and grid. To create a random pose graph
we draw the position of n poses from a uniform distribution
in a 10m×10m square. Similarly, ground truth node rotations
are randomly selected in (−π,+π]. Then we create a set of
edges defining a spanning path of the graph (the odometric
edges); moreover, we add further edges to the edge set, by
connecting random pairs of nodes with probability Pc = 0.1
(the loop closures). From the randomly selected true poses,
and for each edge (i, j) in the edge set, we generate the relative
pose measurement using the following model:

∆ij = R>i (pj − pi) + ε∆, ε∆ ∼ N(02, σ
2
∆I2)

Rij = R>i Rj R(εR), εR ∼ N(0, σ2
R)

(50)
where ε∆∈R2 and εR∈R are zero-mean Normally distributed
random variables, with standard deviation σ∆ and σR, respec-
tively, and R(εR) is a random planar rotation of an angle εR.

In the grid scenario, the trajectory is simulated as the robot
is traversing the rows of a regular grid (cf. Fig. 3 in [12]),

and loop closures are added with probability Pc = 0.1 only
between nearby nodes. Measurements are generated as in (50).

Statistics are computed over 50 runs for the random dataset
and over 20 runs over the larger grid dataset. We use CVX [25]
as parser/solver to compute the solution of the SDP in eq. (30).

Duality gap is zero in most cases. This paragraph shows
that for the levels of measurement noise of practical interest,
the matrix W̃ (λ?) satisfies the Single Zero Eigenvalue Prop-
erty (SZEP), hence the duality gap is zero (Proposition 10).
In both the random and grid scenario we choose the weights in
the cost function (5) as ω∆

ij = 1/σ2
∆ and ωRij = 1/σ2

R.
Fig. 4(a1) shows, for the random scenario, the percentage of

the tests in which the matrix W̃ (λ?) has a single zero eigen-
value, for different values of rotation noise σR, and keeping
fixed the translation noise to σ∆ = 0.1m. For σR ≤ 0.5rad,
W̃ (λ?) satisfies the SZEP in all tests. This means that, in this
range of operation, Algorithm 1 is guaranteed to compute a
globally optimal solution for PGO, and Algorithms 2-3 discern
exactly optimal from suboptimal solutions. For σR = 1rad,
the percentage of successful tests drops, while still remaining
larger than 90%. Note that σR = 1rad is a very large rotation
noise and is not far from the case in which rotation measure-
ments are uninformative (uniformly distributed in (−π,+π]).
Fig. 4(a2) reports the same statistics for the grid dataset,
confirming that the SZEP is satisfied for reasonable noise.

Fig. 4(b1) shows, for the random scenario, the percentage of
tests in which W̃ (λ?) satisfied the SZEP, for different values
of translation noise σ∆, and keeping fixed the rotation noise
to σR = 0.1rad. In this case, the SZEP is satisfied, regardless
the level of translation noise. Similar results can be observed
in Fig. 4(b2) for the grid scenario.

We also tested the percentage of experiments satisfying
the SZEP for different levels of connectivity of the graph,
controlled by the parameter Pc. For the random scenario we
observed 100% successful experiments, independently on the
choice of Pc, for σR = σ∆ = 0.1 and σR = σ∆ = 0.5. A
more interesting case if shown in Fig. 4(c1) and corresponds
to the case σR = σ∆ = 1. The SZEP is always satisfied for
Pc = 0: this is natural as Pc = 0 always produces trees, for
which we are guaranteed to satisfy the SZEP (Proposition 11).
For Pc = 0.1 the SZEP fails in few runs. Finally, increasing
the connectivity beyond Pc = 0.3 re-establishes 100% of
successful tests. This would suggest that the connectivity level
of the graph influences the duality gap, and better connected
graphs have more changes to satisfy the SZEP. The same trend
can be observed for the grid scenario, see Fig. 4(c2).

Finally, we tested the percentage of tests satisfying the SZEP
for different number of nodes n. For the random scenario,
considering σR = σ∆ = 0.1 and σR = σ∆ = 0.5, the SZEP
was satisfied in 100% of the tests, and we omit the results for
brevity. The more challenging case σR = σ∆ = 1 is shown
in Fig. 4(d1). Fig. 4(d2) reports the percentage of tests with
SZEP for the grid dataset, choosing σR = σ∆ = 0.5. Note that
we are already considering noise levels that are above the ones
encountered in practical applications (usually, σR � 0.3rad).

We remark that current SDP solvers do not scale well to
large problems, hence a Monte Carlo analysis over larger
problems becomes prohibitive. The CPU time required to solve
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Figure 4. Percentage of tests in which W̃ (λ?) satisfied the SZEP property,
for different (a) rotation measurement noise σR, (b) translation measurement
noises σ∆, (c) loop closure probability Pc, (d) number of nodes n. Bars
attaining 100% are shown in green ( ); bars in the range [80%, 100%) are
shown in yellow ( ); bars lower than 80% are shown in red ( ).

the SDP in eq. (30) is shown in Fig. 5.
Performance of Algorithm 1. This paragraph shows that

Algorithm 1 provides an effective solution for PGO. When
W̃ (λ?) satisfies the SZEP, the algorithm is provably optimal,
and it enables to solve problems that are already challenging
for iterative solvers. When the W̃ (λ?) does not satisfy the
SZEP, we show that the proposed approach, while not provid-
ing performance guarantees, largely outperforms competitors.

We compare Algorithm 1 (label: A1) against three tech-
niques: (i) a Gauss-Newton method initialized at the odometric
guess (label: GNO), (ii) a Gauss-Newton method initialized at
the rotation estimate of [10] (label: Lago), (iii) a Gauss-Newton
method initialized at the rotation estimate produced by the
eigenvector method of Singer [56] (label: EigR).

Case 1: W̃ (λ?) satisfies the SZEP. Fig. 6 compares the cost
attained by each technique for increasing levels of rotation
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Figure 5. CPU time (in seconds) required to solve the dual problem in
eq. (30) for increasing number of nodes. The transparent band around the
solid line corresponds to 1 sigma standard deviation.
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Figure 6. Primal cost (in log scale) attained by the proposed approach A1
and by the competitors Lago, EigR, and GNO, for increasing level of rotation
noise in (a) the random scenario, and (b) the grid scenario. The figure only
considers problem instances in which the SZEP is satisfied. The dual optimal
value d? = f? is shown for comparison.

noise (this is the most challenging test case). When W̃ (λ?)
satisfies the SZEP, A1 attains f?, hence the cyan and greed bars
in Fig. 6 have the same height (up to numerical errors). The
techniques Lago, EigR, and GNO attain suboptimal solutions
when the noise is large. The same considerations hold for
both the random (Fig. 6(a)) and the grid dataset (Fig. 6(b)). Our
algorithm provides a guaranteed optimal solution in a regime
that is already challenging, and in which iterative approaches
fail to converge even from a good initialization.

Case 2: W̃ (λ?) does not satisfy the SZEP. In this case,
Algorithm 1 computes an estimate, according to the approach
of Section V-A2; results are then topped-off using Gauss-
Newton. To evaluate the proposed approach, we considered
50 instances in which the SZEP was not satisfied and we
compared our approach against the competitors mentioned
above. We also report the dual optimal value d? for comparison
(by weak duality d? ≤ f?). For the random scenario we
considered the challenging case of σR = σ∆ = 1 and
we plot the corresponding results in Fig. 7(a1). Besides the
techniques Lago, EigR, and GNO, we included in the comparison
the SDP relaxation of the primal given in eq. (35) (label: SDPr).
Since all techniques are suboptimal, they are topped-off with
Gauss-Newton. The proposed approach A1 provides the small-
est average cost (green bar). A1 also outperforms competitors
in the grid scenario shown in Fig. 7(a2). It is also interesting
to look at the performance of these approaches without the
Gauss-Newton refinement. We show this comparison in the
box plot of Fig. 7(b1) (random) and Fig. 7(b2) (grid). Note that
we excluded the techniques Lago and EigR, which, without
the Gauss-Newton refinement, do not provide an estimate for
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Figure 7. Statistics on tests where the SZEP is not satisfied: (a1)-(a2):
Average cost for each technique, after a Gauss-Newton refinement. (b1)-(b2):
Box plot of the cost attained by a subset of the techniques, with no refinement.
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Figure 8. Percentage of estimates classified as optimal by Algorithm 3,
for different techniques and for increasing levels of rotation noise in (a) the
random and (b) the grid dataset.

the positions. The proposed approach provides the best initial
guess, which attains a cost close to the lower bound d?.

Verification: Algorithm 2. Given a candidate estimate x̃◦,
Algorithm 2 looks at the mismatch between f(x̃◦) and d? to
evaluate the sub-optimality of x̃◦, or certify optimality when
f(x̃◦) = d?. We implicitly used Algorithm 2 when comparing
the techniques in Fig. 6 and Fig. 7, where we used d? as a
benchmark to evaluate the performance of each technique.

Verification: Algorithm 3. Algorithm 3 allows us to clas-
sify a given estimate as optimal or suboptimal. To exemplify
the use of this algorithm, we use Algorithm 3 to compute the
percentage of tests in which the techniques A1, Lago, EigR,
and GNO converge to the optimal solution. These results are
shown in Fig. 8. Algorithm 3 correctly classifies as optimal all
solutions produced by A1 (A1 is guaranteed to attain f? when
the SZEP holds). Moreover, we can see that the percentage of
converging tests is in agreement with the performance of the
techniques in Fig. 6: for instance, for the random scenario and
σR = 0.1, Fig. 6 shows a larger average cost of EigR is larger,
and, consistently, the percentage of converging tests in Fig. 7
drops. More details on the performance of Algorithm 3 in real

d? f? f(x̃◦) Time

INTEL 7.89 · 10−1 7.89 · 10−1 7.89 · 10−1 3573.3

INTEL-a 3.92 · 10+2 3.92 · 10+2 5.96 · 10+2 3321.9

FR079 7.19 · 10−2 7.19 · 10−2 7.19 · 10−2 3121.5

FR079-a 2.93 · 10+2 2.93 · 10+2 3.26 · 10+3 1663.6

CSAIL 1.07 · 10−1 1.07 · 10−1 1.07 · 10−1 2297.8

CSAIL-a 1.51 · 10+2 1.51 · 10+2 1.51 · 10+2 2389.9

Table II
DUAL OPTIMAL VALUE (d?), PRIMAL OPTIMAL COST (f?), AND COST

OBTAINED BY g2o (f(x̃◦)), IN DIFFERENT BENCHMARKING DATASETS.
LAST COLUMN REPORTS CPU TIME IN SECONDS.

benchmarking datasets is discussed in the following.

B. Tests on benchmarking datasets

In this section we test the verification techniques of Algo-
rithms 2-3 in practical problem instances. Besides considering
standard benchmarking datasets, we introduce new challenging
datasets to test the limits of applicability of our techniques.

We consider the following datasets:
• INTEL: Intel Research Lab [41] (n = 1228, m = 1505);
• FR079: University of Freiburg, building 079 [41] (n =

989, m = 1217);
• CSAIL: MIT, CSAIL building [41] (n=1045, m = 1172);
• M3500: Manhattan world [47] (n=3500, m = 5453);
• INTEL-a, FR079-a, CSAIL-a: variants of the INTEL, FR079,

and CSAIL datasets with extra additive noise on rotation
measurements (std: 0.1 rad);

• M3500-a, M3500-b, M3500-c: variants of the M3500 dataset
with extra additive noise on rotation measurements (std:
0.1, 0.2, and 0.3 rad, respectively) [11].

CVX was not able to solve the large SDPs arising from these
datasets and it run out of memory in all tests. Therefore, for
the tests in this section we used NEOS [27], an online service
designed to solve large optimization problems. We chose sdpt3
as SDP solver in NEOS.

Table II reports the dual optimal value computed by sdpt3
and two primal costs, f? and f(x̃◦). f? is obtained by
bootstrapping a Gauss-Newton method with the algorithm
presented in [11]. While this technique is not guaranteed to
converge to the global minimum, we can verify optimality
a posteriori, observing from the table that d? = f? in
all problem instances. The equality d? = f? also shows
that the duality gap is zero in practical problems instances,
confirming the results of our Monte Carlo analysis. The cost
f(x̃◦) is the one produced by g2o [40], a state-of-the-art
iterative solver which refines the odometric guess. In the easy
scenarios (INTEL, FR079, CSAIL) g2o converged to the correct
solution and using d? we can correctly certify optimality of the
resulting estimates. In some of the noisier scenarios (INTEL-
a, FR079-a) g2o converges to a wrong estimate (Fig. 1(a1)-
(a2)); consistently, Table II reveals a large mismatch between
d? and f(x̃◦). Also sdpt3 run into memory issues for larger
PGO instances, hence we were not able to solve the SDP
for the M3500 scenarios. The last column in Table II reports
the time required to solve the dual problem. The time is
prohibitive and currently limits the use of Algorithms 1-2 in
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µmin ‖ep‖/n Time

INTEL-a
f? = 3.92 · 10+2 4.9 · 10−8 6.7 · 10−7

9.7
f(x̃◦) = 5.96 · 10+2 −7.1 · 100 1.3 · 10−3

FR079-a
f? = 2.93 · 10+2 6.3 · 10−7 5.8 · 10−6

5.4
f(x̃◦) = 3.26 · 10+3 −4.7 · 10+1 6.5 · 10−1

CSAIL-a
f? = 1.51 · 10+2 1.3 · 10−6 5.5 · 10−5

4.6
f(x̃◦) = 1.51 · 10+2 −7.7 · 10−8 2.3 · 10−4

M3500-a
f? = 9.12 · 10+2 6.1 · 10−7 2.8 · 10−5

190
f(x̃◦) = 1.13 · 10+6 −6.8 · 10+2 3.6 · 100

M3500-b
f? = 2.05 · 10+3 2.6 · 10−7 3.2 · 10−4

187
f(x̃◦) = 1.50 · 10+6 −1.1 · 10+3 4.5 · 100

M3500-c
f? = 2.55 · 10+3 1.3 · 10−6 2.7 · 10−4

187
f(x̃◦) = 1.08 · 10+9 −3.0 · 10+4 1.1 · 10+2

Table III
PERFORMANCE OF ALGORITHM 3 ON BENCHMARKING DATASETS. µmin

IS THE SMALLEST EIGENVALUE OF W̃ (λ◦). ep IS THE RESIDUAL ERROR
DISCUSSED IN REMARK 3. TIME IS EXPRESSED IN SECONDS.

large problems; fortunately, as shown below, we can perform
optimality verification in large scenarios using Algorithm 3.

Table III discusses the performance of Algorithm 3. For
space reasons, we only focus on the most challenging sce-
narios (the ones in which we inflated extra noise). Each
row of the table corresponds to a candidate solution that
we want to verify. The rows starting with f? correspond
to “good” estimates (computed as in [11]): these estimates
are visually correct, and for some of them (INTEL, FR079,
CSAIL, CSAIL-a) we already have a certificate of optimality
from Table II. On the other hand, the rows starting with f(x̃◦)
contain the estimate returned by g2o. We already know from
Table II and from previous work [11], [12] that g2o is not
able to converge to the global optimum when the noise in the
odometric estimate is large. Indeed, we see that in most of
the rows starting with f(x̃◦), g2o attains a suboptimal cost,
shown in red (only in CSAIL-a, g2o attains f?). The columns
labelled with µmin and ‖ep‖/n report the two quantities used
to verify optimality in Algorithm 3; µmin

.
= µmin(W̃ (λ◦))

is the smallest eigenvalue of W̃ (λ◦); ep is the residual error
discussed in Remark 3. Our algorithm certifies a solution as
optimal if ‖ep‖/n ≤ τe and µmin ≥ τµ; in our tests we set
τe = 10−3 and τµ = −10−3. For each row in Table III,
we show in green the entries that are within these bounds:
these are certified as optimal by Algorithm 3. The entries
in red are the ones that exceed the thresholds: Algorithm 3
correctly identifies as suboptimal those estimates. Fig. 1 shows
the trajectory estimates corresponding to the “good” and the
“bad” rows of Table III. Table III suggests that the value of
µmin is very discriminative in distinguishing optimal from
suboptimal solutions. Moreover, Algorithm 3 is effective in
identifying sub-optimal solutions even when these only imply
small artifacts, e.g., the small incorrect loop on the bottom
right of Fig. 1(a1). The last column of Table III reports the
CPU time required by Algorithm 3; this is essentially the time
to compute the smallest eigenvalue of W̃ (λ◦). For the results
in this paper we used the Matlab command “eig”, and we
leave computational aspects (e.g., use algorithms that leverage
sparsity) for future work.

VII. CONCLUSION

Lagrangian duality offers an appealing approach to compute
a globally optimal solution for PGO and to verify optimality
of the estimates returned by iterative solvers. We propose
three contributions. First, we rephrase PGO as a problem in
complex variables. This allows drawing connection with the
recent literature on unit gain graphs, and enables results on the
spectrum of the pose graph matrix. Second, we formulate the
Lagrangian dual problem and we analyze the relations between
the primal and the dual solutions. Our key result proves that the
duality gap is connected to the number of eigenvalues of the
penalized pose graph matrix. In particular, if this matrix has
a single eigenvalue in zero (SZEP), then (i) the duality gap is
zero, (ii) the primal PGO problem has a unique solution (up to
an arbitrary roto-translation), and (iii) the primal solution can
be computed by scaling an eigenvector of the penalized pose
graph matrix. The third contribution is algorithmic: we propose
an algorithm that returns a guaranteed optimal solution when
the SZEP is satisfied, and (empirically) provides a very good
estimate when the SZEP fails. Moreover, we provide two
algorithms to verify the quality of a given estimate. One of
the two algorithms does not require solving the dual problem,
hence it can be applied to large-scale problems. Numerical
results show that the SZEP holds for noise levels of practical
applications, and confirms the effectiveness of the proposed
algorithms in both simulations and real datasets.

VIII. APPENDIX

A. Proof of Proposition 5: Cost in the Complex Domain

Let us prove the equivalence between the complex cost and
its real counterpart, as stated in Proposition 5.

We first observe that the dot product between two 2-vectors
x1,x2 ∈ R2, can be written in terms of their complex
representation x̃1

.
= x∨1 , and x̃2

.
= x∨2 , as follows:

x>1 x2 =
x̃∗1x̃2 + x̃1x̃

∗
2

2
(51)

Moreover, we know that the action of a matrix Z ∈ αSO(2)
can be written as the product of complex numbers, see (18).

Combining (51) and (18) we get:

(x>1 Zx2)∨ =
x̃∗1 z̃ x̃2 + x̃1 z̃

∗ x̃∗2
2

(52)

where z̃ = Z∨. Furthermore, when Z is multiple of the
identity matrix, it easy to see that z = Z∨ is actually a real
number, and Eq. (52) becomes:

(x>1 Zx1)∨ = x̃∗1 z x̃1 (53)

Defining the real vector x .
= [ρ r] we write the left-hand

side of (22) as x>Wx. With the machinery introduced so far
we are ready to express x>Wx in complex form. Since W
is symmetric, the product becomes:

x>Wx =

2n−1∑
i=1

x>i [W ]iixi +

2n−1∑
j=i+1

2 x>i [W ]ijxj

 (54)

where xi ∈ R2 is the subvector of x at indices (2i − 1, 2i).
Using the fact that [W ]ii is a multiple of the identity



15

matrix, W̃ii
.
= [W ]∨ii ∈ R, and using (53) we conclude

x>i [W ]iixi = x̃∗i W̃iix̃i. Moreover, defining W̃ij
.
= [W ]∨ij

(these will be complex numbers, in general), and using (52),
eq. (54) becomes:

x>Wx =

2n−1∑
i=1

x̃∗i W̃iix̃i +

2n−1∑
j=i+1

(x̃∗i W̃ij x̃j + x̃iW̃
∗
ij x̃
∗
j )


=

2n−1∑
i=1

x̃∗i W̃iix̃i +
∑
j 6=i

x̃∗i W̃ij x̃j

 = x̃∗W̃ x̃ (55)

where we set the lower triangular entries ofW̃ to W̃ji=W̃
∗
ij .

B. Proof of Proposition 7: Spectrum of Complex and Real
Pose Graph Matrices

Recall that any Hermitian matrix has real eigenvalues, and
possibly complex eigenvectors. Let µ ∈ R be an eigenvalue
of W̃ , associated with an eigenvector ṽ ∈ C2n−1, i.e.,

W̃ ṽ = µṽ (56)

From equation (56) we have, for i = 1, . . . , 2n− 1,
2n−1∑
j=1

W̃ij ṽj = µṽi ⇔
2n−1∑
j=1

[W ]ijvj = µvi (57)

where vi ∈ R2 is such that v∨i = ṽi. Since eq. (57) holds for
all i = 1, . . . , 2n− 1, it can be written in compact form as:

Wv = µv (58)

hence v is an eigenvector of the real anchored pose graph
matrix W , associated with the eigenvalue µ. This proves that
any eigenvalue of W̃ is also an eigenvalue of W .

To prove that the eigenvalue µ is actually repeated twice in
W , consider now equation (56) and multiply both members
by the complex number eπ2 :

W̃ ṽeπ2 = µṽeπ2 (59)

For i = 1, . . . , 2n− 1, we have:
2n−1∑
j=1

W̃ ∗
ij ṽje

π2 = µṽie
π2 ⇔

2n−1∑
j=1

[W ]ijwj = µwi (60)

where wi is such that w∨i = ṽje
π2 . Since eq. (60) holds for

all i = 1, . . . , 2n−1, it can be written in compact form as:

Ww = µw (61)

hence also w is an eigenvector of W associated with the
eigenvalue µ.

Now it only remains to demonstrate that v and w are
linearly independent. One can readily check that, if ṽi is in
the form ṽi = ηie

θi , then

vi = ηi

[
cos(θi)
sin(θi)

]
. (62)

Moreover, observing that ṽjeπ2 = ηie
(θi+π/2), then

wi = ηi

[
cos(θi + π/2)
sin(θi + π/2)

]
= ηi

[
− sin(θi)
cos(θi)

]
(63)

From (62) and (63) is it easy to see that v>w = 0, thus
v,w are orthogonal, hence independent. To each eigenvalue
µ of W̃ there thus correspond an identical eigenvalue of W ,
of geometric multiplicity at least two. Since W̃ has 2n − 1
eigenvalues and W has 2(2n − 1) eigenvalues, we conclude
that to each eigenvalue µ of W̃ there correspond exactly two
eigenvalues of W in µ. The previous proof also shows how
the set of orthogonal eigenvectors of W is related to the set
of eigenvectors of W̃ .

C. Proof of Proposition 9: Dual Optimal Solution

Let us first prove that the dual optimal value is attained at
a finite λ?. Since W̃ (λ) � 0 implies that the diagonal entries
are nonnegative, the feasible set of (30) is contained in the
set {λ : Q̃ii − λi ≥ 0, i = 1, . . . , n}.5 On the other hand,
λ̄ = 02n−1 is feasible and all vectors in the set {λ : λi ≥ 0}
yield an objective that is at least as good as the objective at λ̄.
Therefore, problem (30) is equivalent to maxλ

∑
i λi subject

to the original constraint, plus a box constraint λ ∈ {0 ≤ λi ≤
Q̃ii, i = 1, . . . , n}. Thus we maximize a linear function over
a compact set, hence a finite solution λ? must be attained.

Now let us prove that W̃ (λ?) has an eigenvalue in zero.
Assume by contradiction that W̃ (λ?) � 0. From the Schur
complement rule applied to W̃ (λ?) (cf. (27)) we know:

W̃ (λ?) � 0⇔
{
L � 0

Q̃(λ?)− S̃∗L−1S̃ � 0
(64)

The condition L � 0 is always satisfied for a connected
graph, since L = A>A, and the anchored incidence matrix
A, obtained by removing a node from the original incidence
matrix, is always full-rank for connected graphs [54, Section
19.3]. Therefore, our assumption W̃ (λ?) � 0 implies that

Q̃(λ?)− S̃∗L−1S̃ = Q̃− S̃∗L−1S̃ − diag(λ?) � 0 (65)

Now, let

ε = λmin(Q̃(λ?)− S̃∗L−1S̃) > 0.

which is positive by the assumption W̃ (λ?) � 0. Consider
λ = λ? + ε1, then

Q̃(λ)− S̃∗L−1S̃ = Q̃(λ)− S̃∗L−1S̃ − εI � 0,

thus λ is dual feasible, and
∑
i λi >

∑
i λ

?
i , which would

contradict optimality of λ?. We thus proved that Q̃(λ?) must
have a zero eigenvalue. �

D. Proof of Proposition 10: No Duality Gap when SZEP holds

We have already observed in Proposition 8 that (35) is
the dual problem of (30), therefore, we can interpret X̃ as
a Lagrange multiplier for the constraint W̃ (λ) � 0. If we
consider the optimal solutions X̃? and λ? of (35) and (30),
respectively, the complementary slackness condition ensures

5We recall that Q̃ii is the bottom right block of W̃ as per (24), and that
the diagonal terms of W̃ (and hence of Q̃) are reals according to Remark 2.



16

that Tr (W̃ (λ?)X̃?) = 0 (see [5, Example 5.13]). Let us
parametrize X̃? � 0 as

X̃? =

2n−1∑
i=1

µiṽiṽ
∗
i ,

where 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µ2n−1 are the eigenvalues
of X̃ , and ṽi form a unitary set of eigenvectors. Then, the
complementary slackness condition becomes

Tr (W̃ (λ?)X̃?) = Tr

(
W̃ (λ?)

2n−1∑
i=1

µiṽiṽ
∗
i

)

=

2n−1∑
i=1

µiTr
(
W̃ (λ?)ṽiṽ

∗
i

)
=

2n−1∑
i=1

µi ṽ
∗
i W̃ (λ?)ṽi = 0.

Since W̃ (λ?) � 0, the above quantity is zero at a nonzero X̃?

(X̃? cannot be zero since it needs to satisfy the constraints
X̃ii = 1) if and only if µi = 0 for i = m+1, . . . , 2n−1, and
W̃ (λ?)ṽi = 0 for i = 1, . . . ,m, where m is the multiplicity
of 0 as an eigenvalue of W̃ (λ?). Hence X̃? has the form

X̃? =

m∑
i=1

µiṽiṽ
∗
i , (66)

where ṽi, i = 1, . . . ,m, form a unitary basis of the null-
space of W̃ (λ?). Now, if m = 1, then the solution X̃? to
problem (35) has rank one, but according to Proposition 8
this implies d? = f?, proving the claim. �

E. Proof of Theorem 1: Primal-dual Optimal Pairs

We prove that, given λ ∈ Rn, if an x̃λ ∈ N (λ) is
primal feasible, then x̃λ is primal optimal; moreover, λ is
dual optimal, and the duality gap is zero.

By weak duality we know that for any λ:

L(x̃λ,λ) ≤ f? (67)

However, if x̃λ is primal feasible, by optimality of f?, it must
also hold

f? ≤ f(x̃λ) (68)

Now we observe that for a feasible x̃λ, the terms in
the Lagrangian associated to the constraints disappear and
L(x̃λ,λ) = f(x̃λ). Using the latter equality and the inequal-
ities (67) and (68) we get:

f? ≤ f(x̃λ) = L(x̃λ,λ) ≤ f? (69)

which implies f(x̃λ) = f?, i.e., x̃λ is primal optimal.
Further, we have that

d? ≥ min
x̃
L(x̃,λ) = L(x̃λ,λ) = f(x̃λ) = f?,

which, combined with weak duality (d? ≤ f?), implies that
d? = f? and that λ attains the dual optimal value.
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