
Eliminating Conditionally Independent Sets in Factor Graphs:
A Unifying Perspective based on Smart Factors

Luca Carlone, Zsolt Kira, Chris Beall, Vadim Indelman, and Frank Dellaert

Abstract— Factor graphs are a general estimation framework
that has been widely used in computer vision and robotics. In
several classes of problems a natural partition arises among
variables involved in the estimation. A subset of the variables
are actually of interest for the user: we call those target
variables. The remaining variables are essential for the for-
mulation of the optimization problem underlying maximum a
posteriori (MAP) estimation; however these variables, that we
call support variables, are not strictly required as output of the
estimation problem. In this paper, we propose a systematic way
to abstract support variables, defining optimization problems
that are only defined over the set of target variables. This
abstraction naturally leads to the definition of smart factors,
which correspond to constraints among target variables. We
show that this perspective unifies the treatment of heteroge-
neous problems, ranging from structureless bundle adjustment
to robust estimation in SLAM. Moreover, it enables to exploit
the underlying structure of the optimization problem and the
treatment of degenerate instances, enhancing both computa-
tional efficiency and robustness.

I. INTRODUCTION

Future generations of robots will be required to operate
fully autonomously for extended periods of time over large-
scale environments. This goal stresses the importance of
scalability for the estimation algorithms supporting robot
navigation. State-of-the-art techniques for localization and
mapping (SLAM) have reached a maturity that enables fast
solution of medium-sized scenarios [1], [2], [3], [4]. These
techniques are based on a maximum a posteriori estima-
tion paradigm that computes the optimal state estimate by
solving a nonlinear optimization problem. While in specific
cases it is possible to exploit problem structure and devise
closed-form solutions (or approximations) [5], [6], general
techniques are based on iterative nonlinear optimization.
The optimal solution of the original nonlinear optimization
problem is computed by solving a sequence of linear systems
(normal equations). In real-world applications the state may
involve robot poses, location of external landmarks, and other
auxiliary variables (e.g., sensor biases, sensor calibration).
Therefore, the optimization problem to be solved is very
large. Moreover, the size of the state to be estimated grows
over time, and this prevents long-term operation.

This work was partially funded by the National Science Foundation
Award 11115678 “RI: Small: Ultra-Sparsifiers for Fast and Scalable Map-
ping and 3D Reconstruction on Mobile Robots”.

L. Carlone, C. Beall, V. Indelman, and F. Dellaert are with
the College of Computing, Georgia Institute of Technology, At-
lanta, GA 30332, USA, {luca.carlone,cbeall3}@gatech.edu,
{frank,indelman}@cc.gatech.edu.

Z. Kira is with the Georgia Tech Research Institute, Atlanta, GA 30332,
USA, zkira@gatech.edu.

The issue of scalability recently attracted the interest of the
research community for its practical relevance. In [4], Polok
et al. propose ad-hoc techniques for speeding-up solution of
normal equations, exploiting problem structure. In [7], Ila
et al. consider the problem of pose graph optimization and
propose information-theoretic measures to select only the
most informative edges, so to prevent uncontrolled growth
of the graph. In [8], Stachniss and Kretzschmar propose a
graph compression technique for the specific case of laser-
based SLAM. In [9], Huang et al. focus on consistency issues
and propose a node marginalization scheme, based on Schur
complement; moreover, they introduce a technique for edge
sparsification, based on `1-regularized optimization. In [10],
Carlevaris-Bianco and Eustice propose a sparsification tech-
nique based on marginalization for pose graphs.

Scalability issues also emerge when dealing with outlier
rejection in SLAM. Outlier rejection can be addressed in
the front-end (i.e., before performing inference) [11], [12]
or the choice of removing an outlying measurement can be
part of the inference process [13]. The latter approaches
are becoming very popular as they allow the optimization
process to dynamically decide the best set of measurements;
these approaches have been shown to be resilient to ex-
treme percentages of outlying measurements. Sünderhauf and
Protzel [13] propose to model the choice of selecting or
discarding a measurement using binary variables that are
added to the optimization problem; relaxation is then used
to solve the otherwise intractable mixed-integer optimization
problem. In this case, the price of robustness is the increase
in the computational cost of optimizing over a large number
of latent variables (the binary variables). Olson and Agarwal
[14] proposes a max-mixture model, to avoid introduction of
binary variables. Agarwal et al. [15] propose to fix the value
of the relaxed binary variables, in order to circumvent the
solution of a large optimization problem.

While recent literature offers effective solutions for spe-
cific problem instances (e.g., pose-only graphs, sensor-
specific applications, outlier rejection), in this context we are
interested in developing a general probabilistic framework
for variable elimination. The basic observation is that in
several computer vision and robotics problems a natural
partition arises in the set of variables. In particular, it is
possible to split the set of variables into two sets: a first
set, that we call target variables, contains variables that are
actually required as output of the estimation problem. The
remaining variables, which we call support variables, are
only functional to the estimation problem although they are
often not required as output of the estimator. Furthermore,

the set of support variables can often be partitioned into
subsets that are conditionally independent given the set of
target variables. Several motivating examples in which this
pattern emerges are reported in Section III. Starting from
this observation we model the problem using factor graph
formalism. We then show how to reduce the original opti-
mization problem to a smaller problem, which only involves
the (usually small) set of target variables, abstracting support
variables (implicit parameterization). Moreover, we show
that elimination of the conditionally independent subsets of
support variables naturally leads to the definition of new
factors, that we call smart factors, which substitute a (usually
large) set of factors that were previously connected to the
support variables. The new factors are “smart” for different
reasons: first of all, thanks to the implicit parametrization, the
optimization problem to be solved becomes smaller (small
number of variables and small number of factors) hence the
introduction of these factors leads to a computational ad-
vantage; moreover, these factors can easily include domain-
specific knowledge, allowing the management of degenerate
problem instances (e.g., under-constrained problems) without
compromising the solution of the overall problem. Finally, a
smart factor contains the intelligence to retrieve a subset of
the support variables, if needed, exploiting the conditional
independence property that is satisfied by these variables.

The contribution of the paper is threefold: (i) a tutorial
contribution, as we propose a unifying perspective that draws
connections among techniques applied to different problems
and in different research communities (e.g., robotics and
computer vision); (ii) a practical contribution, as we show
that the definition of smart factors leads to improvements
in the estimation process in terms of computational effort
and robustness; (iii) a technical contribution, as we discuss
several elimination techniques and we show insights on
their formulation and on the underlying approximations; for
instance we show the equivalence of the Schur complement
(widely used in computer vision) and the null space trick
which has been proposed in the context of EKF-based nav-
igation. Moreover, we show that in rotation graphs (graphs
in which only a rotation matrix is assigned to each node)
elimination can be performed nonlinearly, while the same
approach constitutes an approximation for pose graphs. The
source code of several smart factors is available online at
https://borg.cc.gatech.edu/.

The paper is organized as follows. Section II provides
preliminaries on factor graphs. Section III describes some
motivating examples. Section IV introduces the probabilistic
framework, the concept of implicit parametrization, and
shows how the elimination of support variables leads to the
definition of smart factors. Section V provides viable tech-
niques for elimination, for each of the motivating examples.
Conclusions are drawn in Section VI.

II. FACTOR GRAPHS

Factor graphs are a general representation of estimation
problems in terms of graphical models [16]. A factor graph
is a bipartite graph G = {F ,Θ, E}, where F is the set of

factor nodes, Θ is the set of variable nodes, and E are edges
in the graph. A (given) measurement Zi is associated to the
factor node φi ∈ F . An (unknown) variable is associated
to each variable node in Θ. Fig. 1(a) provides a pictorial
representation of a factor graph. The graph is bipartite, in
the sense that edges may only connect a node in F to a
node in Θ. A factor graph essentially encodes a density over
the variables in Θ:

P (Θ|Z) =

|F|∏
i=1

P (Θi|Zi) =

|F|∏
i=1

φi(Θi) (1)

where each factor φi(Θi) = P (Θi|Zi) involves a subset of
variables Θi ⊆ Θ. Note that Bayes nets and Markov random
fields can be modeled as factor graphs; moreover, factor
graphs also find applications outside the estimation domain
(e.g., constraint satisfaction problems). In this context we
focus on those factor graphs where φi(Θi) can be normalized
to a probability distribution, i.e.,

´
φi(Θi)dΘi = 1; clearly

this can easily accommodate discrete variables and the mixed
continuous-discrete case.

Given a factor graph G = {F ,Θ, E}, the maximum a
posteriori estimate of variables in Θ is defined as:

Θ? = arg max
Θ

|F|∏
i=1

φi(Θi) = arg min
Θ

|F|∏
i=1

− log φi(Θi) (2)

where φi(Θi) is usually approximated as a Gaussian density
and − log φi(Θi) becomes a squared residual error.

x1

x2

1

2

x3

x4

b1

b2

3

4

5

F

ε A B

(a)

x1

x2

1

2

x3

x4

1

A

b

b

(b)
Fig. 1. (a) Factor graph with 5 factors F = {φ1, . . . , φ5} and 6 variable
nodes Θ = {x1, . . . , x4, b1, b2}. In this paper we discuss how to eliminate
a subset of the original variables. The elimination leads to the creation of
a new graph (b), which contains a smaller number of variables and a small
number of smart factors (factors with the red circle in (b)).

III. MOTIVATING EXAMPLES

In several computer vision and robotics problems a natural
partition arises in the set of variable nodes Θ. In particular,
it is possible to write Θ = {A,B}, where A is the set
of target nodes, that are actually required as output of
the estimation problem. The remaining nodes B are only
functional to the estimation problem although they are often
not required as output of the estimator; we call B the support
nodes. Furthermore, in many practical applications the set B
naturally splits in (small) conditionally independent sets. In
the following we discuss many practical examples in robotics
and computer vision in which one can observe this property.

Long-term navigation. Consider the pose graph in
Fig. 2(a). The robot starts at pose Po and acquires odometric
measurements which are modeled as factors connecting con-
secutive poses. Moreover, the robot can occasionally acquire
loop closing constraints (dashed blue lines in the figure),
using exteroceptive sensors (e.g., camera, GPS). Odometric
measurements are acquired at high rate (e.g., 100Hz, from
an Inertial Measurement Unit). However, one is usually
interested in having estimates at a lower frequency (say,
1Hz). For instance, in the example in Fig. 2(a) we may
only want to estimate few poses, say P0, P1, P2, P3, P4.
In our framework we treat A = {P0, P1, P2, P3, P4} as
target variables and abstract the remaining poses as support
variables into smart factors. The resulting graph is the one
in Fig. 2(b), where the smart factors are shown as red dotted
links. We note that the choice of the target variables implies
the following conditional independence relation:

P (Θ) = P (A)
∏
bi⊂B

P (bi|A) (3)

where the set B (support variables) includes all poses that
are not in A, and each subset bi contains the nodes along
the path connecting two target variables; the subsets bi are
conditionally independent given the separator nodes A.

P0

P1

P2

P4

P01

P02

P12

P12

P21

P22

P31
P32

P3

(a)

P1

P2

P4

P3

P0

(b)
Fig. 2. Long-term navigation example. (a) Sensor measurements are
acquired at high rate and estimation over the entire graph rapidly be-
comes prohibitive. In this paper we define a set of target variables A =
{P0, P1, P2, P3, P4}, and eliminate the remaining poses (support variables)
leading to the smaller graph in (b).

Landmark-based SLAM. Consider the range-based
SLAM problem in Fig. 3. A mobile robot takes range mea-
surements with respect to external landmarks and has to solve
SLAM using these measurements and measurements of the
ego-motion from odometry. In order to perform estimation of
robot motion one usually solves a large optimization problem
involving both robot poses (target variables) and the position
of external landmarks (support variables). This problem can
be not well-behaved, as, for instance, the position of a
landmark is ambiguous for m < 3 range measurements. If
we call R the set of robot poses and L = {l1, . . . , lm} the
set of landmarks positions, we have the following conditional
independence relation

P (R,L) = P (R)
∏
li∈L

P (li|R)

x

r0

r1

r2

r3

r4

l1

l2

Fig. 3. Landmark-based SLAM. A mobile robot takes range measurements
with respect to external landmarks and has to solve SLAM using these
measurements and measurements of the ego-motion from odometry. Note
that in some cases the landmark position remains ambiguous, e.g., from two
range measurements taken from pose r3 and r4 the robot cannot determine
if the landmark l2 is in the position denoted with a red dot, or the one
denoted with the red cross.

in which each landmark is independent on all the other
landmarks given robot poses.

Exactly the same pattern emerges for the case in which
the robot observes landmarks from a vision sensor (bundle
adjustment in computer vision). Landmarks are only used
to properly model each measurement in terms of projective
geometry, although they may not be useful for the final
user (instead of a sparse map of features the user may be
interested in dense map representations which can be easily
built from robot poses). In our framework we eliminate
landmarks, generating smart factors connecting robot poses.

Structure from motion. In this case the user is interested
in the structure, hence in landmark positions rather than
observation poses. A typical example of this problem is
photo tourism [17], in which one wants to reconstruct the 3D
geometry of a place from a collection of photos. In this case
the camera calibration has to be estimated, therefore we have
three sets of variables: the camera poses C, the calibration
matrices K, and the landmark positions L. In SFM we can
observe conditional independence relations between different
sets. For example we can factorize the joint density as:

P (C,K,L) = P (C,K)
∏
li∈L P (li|C,K) =

= P (C)P (K|C)
∏
li∈L P (li|C,K)

Note that the other way, eliminating K first, create correla-
tion between all landmarks and cameras, destroying condi-
tional independence.

Outlier rejection in SLAM. Let us consider a setup
in which a mobile robot has to perform SLAM in pres-
ence of outliers [13], [14], [15]. In this case, some of the
measurements are distributed according to a given mea-
surement model (say, a zero-mean Gaussian noise), while
other measurements are outliers. Recent approaches propose
to introduce a binary variable for each measurement, with
the convention that if the binary variable is equal to 1 the
measurement is an inlier, or it is zero for outliers. Also in this
case the binaries are conditionally independent given graph
configuration. Moreover, the user may be not interested in
the binaries, but the estimation problem needs to be solved
over these variables as well, as a robust solution requires
distinguishing inliers from outliers. In our framework the
binary variables do not appear in the optimization and they
are implicitly modeled inside smart factors.

IV. ELIMINATING CONDITIONALLY INDEPENDENT SETS

Suppose we can divide Θ into A and B such that

P (Θ) = P (A)
∏
bi⊂B

P (bi|A) (4)

i.e., the support set B can be partitioned into subsets bi
that are conditionally independent given the set A (we omit
the dependence on the measurements for simplicity); we
observed in Section III that this pattern occurs in several
practical examples. Note that we can calculate

P (b|A) =
∏
i∈Ibi

φi(b|Ai) (5)

where Ibi are the indices of factors connected to variables in
the i-th support set bi, and Ai are the separators. Likewise,

P (A) =
∏
i∈IA

φi(Ai)×
∏
bi⊂B

φbi (A
b
i) (6)

where IA are the indices of the factors that do not involve
any variable in B and each factor φbi (A

b
i) on the separators

is formed by the “sum-product”:

φbi (A
b
i) =

ˆ
bi

∏
k∈Ibi

φk(Ak, bi)dbi (7)

Note that the factors φbi (A
b
i) only involve a subset of target

variables Abi ⊆ A, which are those variables that shared some
factor with the support variables bi in the original graph. With
this we get the marginal density on A, from which we can
compute the MAP estimate of the variables in A as:

A? = arg max
A

∏
i∈IA

φi(Ai)×
∏
bi⊂B

φbi (A
b
i) (8)

Computing A? involves solving an optimization problem
over some of the original factors (φi(Ai), with i ∈ IA) and
other new factors φbi (A

b
i), that we call smart factors. Problem

(8) is now defined over the set of variables of interest, A,
while the original problem (2) was defined over Θ = {A,B};
this is important since typically |B| � |A|. Moreover, the
number of smart factors is equal to the number of subsets
bi ⊂ B, and this is usually much smaller number than the
original number of factors (see Fig. 1). Later in this section
we stress that this perspective has advantages in terms of
graph compression (reducing the number of variables) and
also provides tools to enhance robustness.

Note that in several applications we are not interested
in computing the marginal probability (6), but we rather
want to compute its maximum A?. This suggests a second
optimization-based elimination approach, which is often a
better option with respect to the integration in (7):

A? = arg max
A,B

∏
i∈IA φi(Ai)

∏
i∈IB φi(Ai, bi) =

arg max
A

∏
i∈IA φi(Ai)

(
maxB

∏
i∈IB φi(Ai, bi)

)
=∏

i∈IA φi(Ai)×
∏
bi⊂B φ

b
i (A

b
i) (9)

with φbi (A
b
i) = maxbi

∏
k∈Ibi

φk(Ak, bi). In (9) we first
split the factors including support variables (factors in the

set IB) from remaining factors (set IA); then we ob-
served that we can solve independently each sub-problem
maxbi

∏
k∈Ibi

φk(Ak, bi) involving a single set of support
variables bi; each optimization sub-problem returns a func-
tion of A, i.e., φbi (A

b
i) = maxbi

∏
k∈Ibi

φk(Ak, bi). With
slight abuse of notation we use the same symbol φbi (A

b
i) for

both elimination techniques (sum-product and optimization-
based). Both elimination techniques allows transforming a
collection of factors into a small set of smart factors φbi (A

b
i)

whose number is equal to the number of conditionally
independent subsets in B. In Section V we tailor these
elimination techniques to practical examples. In particular,
we discuss cases in which one can perform elimination
linearly, nonlinearly, or via upper-bound approximations.
Note that after computing A? we can easily compute (if
needed) the MAP estimate for variables in bi:

b?i = arg max
bi

∏
k∈Ibi

φk(A?k, bi) (10)

Smart factors. We used the name smart factors for
the factors φbi (A

b
i) arising from the elimination of each

subset bi ∈ B. The new factors are “smart” for different
reasons: first of all, thanks to the implicit parametrization,
the optimization problem to be solved becomes smaller
(small number of variables and small number of factors)
hence leading to a computational advantage. Moreover, the
elimination process to be carried out inside the factor, as
per (8) or (9), always has the same structure, therefore the
corresponding code can be highly optimized and it is suitable
for cache-friendly implementations. Furthermore, since the
integral (or the maximization) to be solved inside each smart
factor is independent on the other factors in the graph, the
code can therefore be highly parallelized.

A second reason is that these factors can easily include
domain-specific knowledge, allowing management of degen-
erate problem instances (e.g., under-constrained problems)
without compromising the overall solution. For instance,
in vision-based applications, the marginalization (8) has to
follow a different route for degenerate robot motion (e.g.,
pure rotation). This awareness, which is hard to maintain at
the factor graph level, becomes trivial if included in a factor
that decides the marginalization approach dynamically.

Finally, smart factors contain the intelligence to retrieve
a subset of the support variables, if needed, exploiting the
conditional independence property that is satisfied by these
variables, once the target variables have been computed. In
specific applications, the maximization (10) can be computed
or approximated in closed form, hence enabling quick re-
trieval of the complete set of variables Θ? = {A?, B?}.

V. LINEAR AND NONLINEAR ELIMINATION:
THEORY AND EXAMPLES

In practice, the integral (or the maximization) underlying
the definition of a smart factor does not have a closed-form
solution, but there are lucky cases in which this is possible.
In general, it is possible to approximate the expression of
the factor locally, or using suitable upper bounds. We will

discuss several examples in which we can exploit closed-
form solutions, approximations, or resort to upper bounds.

A. Elimination in Linear(ized) factor graphs

Let us consider the case in which we have linear Gaussian
factors connected to the set of support variables bi. Then we
want to compute the expression of the smart factor φbi (A

b
i) =

maxbi
∏
k∈Ibi

φk(Ak, bi). According to standard procedures,
we are rather interested in the (negative) logarithm of the
probability density φbi (A

b
i) (see also eq. (2)):

−logφbi (Abi) = min
bi

∑
k∈Ibi

−log(φk(Ak, bi)) (11)

For the case in which the factors φk(Ak, bi) are linear
Gaussian factors, we can rewrite (11) explicitly as:

min
xb

∑
k∈Ibi

∥∥Hk
axa+Hk

b xb−rk
∥∥2

=min
xb

‖Haxa+Hbxb−r‖2 (12)

where we stack all the subsets of variables in Ak, with k ∈
Ibi , into a single column vector xa (for instance in landmark-
based SLAM this vector may include all robot poses from
which the same landmark bi is observed); similarly, we
stack in a vector xb the support variables in the set bi (in
our landmark-based SLAM example xb may describe the
position of a single landmark bi); finally, Ha, Hb are matrices
describing a linear(ized) version of the measurement model
and r is the vector of residual errors.

From (12) we can easily compute the minimum with
respect to xb, as x?b =

(
HT
b Hb

)−1
HT
b (r −Haxa). Plugging

x?b back into (12) we get the expression of our smart factor:

−logφbi (Abi)=
∥∥∥(I−Hb

(
HT
b Hb

)−1
HT
b

)
(Haxa−r)

∥∥∥2

(13)

In our framework this sub-problem is solved by the i-th
smart factor. We do not claim the novelty of this derivation:
the expert reader will notice that the elimination procedure
applied here corresponds to the Schur complement, which
allows the solving of linear system in a subset of variables.
Similar results can be obtained by applying Householder
transformations when eliminating bi in a linear factor graph.
In the linear case, the elimination (7) leads to the same result.
Less trivial is the fact that one can directly obtain the smart
factor by multiplying the terms inside the squared cost (12)
by a matrix Ub, which is unitary (i.e., UTb Ub = I), and
defines a basis for the left nullspace of Hb:

−logφbi (Abi)=
∥∥UTb (Haxa+Hbxb−r)

∥∥2
=
∥∥UTb (Haxa−r)

∥∥2

(14)
While we omit the proof here, it can be shown that (13)
and (14) are equivalent. Techniques based on (14) have been
used in EKF-based navigation, e.g., [18], [19].

When the constraints (12) are linearized nonlinear con-
straints, the smart factors (13) (or the equivalent version (14))
have to be recomputed at each iteration of the optimization
algorithm. In our smart factor perspective we only use
linearization points for the variables in A, while we compute
the corresponding linearization points for variables in B

Original Smart factors
#Variables 388K 4541
#Factors 1.65M 389K

Time 673.31s 79.13s
Error 0.24% 0.27%

Fig. 4. Application of smart projection factors on the Kitti dataset. The
original dataset has 4541 poses and 389008 landmarks. The figure shows
the estimated trajectory with standard projection factors (solid red line)
versus the one estimated with smart projection factors (solid blue line),
with translation error reported as a percentage of distance traveled.

via (10), where we use the current linearization point instead
of A?k. This approach, which may seem to require extra
computation, has been shown to improve convergence speed
[20] and avoids committing to a specific parametrization
of the support variables (our smart factors can dynamically
change the structure of the optimization problem (10), en-
abling correct management of degenerate problem instances).

Example 1 - Smart Vision Factors: We apply the
linearized elimination approach to a standard vision-based
SLAM problem. The data is from the Kitti dataset [21]: a
vehicle trajectory is estimated using monocular vision. A
standard approach would proceed as follows: one creates
a factor graph including both vehicle poses and landmark
positions. Then, each monocular observation is modeled as
a projection factor. The corresponding statistics are shows
in Fig. 4 (Column: “Original”). In our approach, each smart
factor independently performs elimination of a landmark
via (14); then, we only optimize a smaller graph which
involves vehicle poses and smart factors, see Fig. 4 (Column:
“Smart factors”). The same statistics reveal a consistent
computational advantage in using the proposed approach.

We remark that Schur complement is a common tool in
computer vision [22], [20]. However, smart factors do more
than Schur complement: they are able to manage degenerate
problems, exploiting domain-specific knowledge. In monoc-
ular SLAM one can have the following degeneracies: (i)
single observation of a landmark, (ii) degenerate motion
(e.g., pure rotation, motion in the direction of a landmark).
In both cases one is not able to determine the distance from a
landmark; this causes numerical issues in factor graphs with
standard projection factors since a variable (3D position of
the landmark) is underconstrained. In our formulation the
smart factor can detect degenerate instances when solving
the subproblem (10) to compute the linearization point for
the landmarks. After the degeneracy is detected the smart
factor only has to use a different expression of Jacobians
in eq. (13), while the overall elimination scheme remains
the same. It is easy to show that in degenerate instances, the
Jacobians will lead to rotation-only constraints among poses.

Example 2 - Smart Range Factors: We now resume
the range-SLAM example of Section III. We consider a
toy example to remark that smart factors allow a better
management of degenerate problem instances. The example
is the one in Fig. 5(a): the robot starts from pose r1 and
traverses the scenario, reaching pose r7. At each pose, the
robot takes range measurements of the position of unknown
landmarks in the scenario (l1, l2, l3). Moreover, it takes noisy
measurement of the ego-motion (odometry).

(a) (b)

Fig. 5. (a) Toy example of range SLAM. Robot poses: r1 to r7; landmark
positions l1 to l3. (b) Ground truth (solid black line) versus (i) trajectory
estimated using standard range factors (dashed red line), and (ii) trajectory
estimated using smart range factors (solid blue line).

In our toy example, after the first two time steps (r1

and r2) the robot only has two range measurements of l1,
therefore the position of the landmark is ambiguous (in Fig.
5(a) we draw as a red cross the other admissible position,
while the actual one is the red dot). In factor graphs with
standard range factors, one has to be very careful to the
linearization point of the landmark. If at the second time
step the landmark is initialized incorrectly (to the red cross,
instead of the red dot) the trajectory estimate converges to
a local minimum (dashed red line in Fig. 5(b)) and it is not
able to recover even if the remaining landmarks (l2 and l3)
are initialized at the correct position. Conversely, when using
smart factors, the factor can detect degeneracy and impose
different constraints among poses. The estimate using a basic
version of the smart range factors is shown as a solid blue
line in Fig. 5(b).

B. Nonlinear Elimination

If the linear factor graphs of the previous section are
obtained by linearization, the elimination inside the smart
factor has to be repeated whenever the linearization point
for the variables in A changes. In few lucky examples the
elimination can be done nonlinearly, which implies that the
smart factor has to be computed only once.

Example 3 - Smart Rotation Factors: We now show that
the elimination framework that we applied in the previous
section in a linear factor graph, can be applied nonlinearly,
in some specific problem instances. We consider a rotation
graph, which is a factor graph in which each variable is a
rotation matrix (in SO(2) or SO(3)), and the factor nodes
correspond to relative rotation measurements among nodes
pairs. Fig. 2 is an example of this graph for the case in which
we disregard the position information and we only consider
the orientation of each node. In the example of Fig. 2 we
defined a set of target variables, while the support variables

corresponds to nodes along the path connecting a pair of
target nodes. In this section we want to show that the nodes
in each branch can be eliminated into a single smart factor;
for this purpose, consider the branch between an arbitrary
pair of target nodes u and v (Fig. 6).

Ru RvR2 R3 Rs

R1,2 R2,3 Rs,s+1

Fig. 6. A branch of a rotation graph; target variables are in black, support
variables in red, and relative rotation measurements are denoted with bar.

The original factor graph contains s factors along the
branch from u to v. The rotations Ru and Rv are target
variables. Rotations R2, . . . , Rs are support variables and
will be eliminated. As in Section V-A we start from the
negative logarithm of the original factors, which in the
rotation case assumes a more complex (nonlinear) form:

− log φbi (A
b
i)= min

R1,2,...,Rs,s+1

∑s
i=1

∥∥Log
(
R̄Ti,i+1R

T
i Ri+1

)∥∥2

σ2
i,i+1

with R1 = Ru and Rs+1 = Rv (15)

where Ri is the (unknown) rotation of node i = 1, . . . , s+1,
R̄i,i+1 is the measured rotation between Ri and Ri+1 (which
is assumed to be affected by isotropic noise with variance
σ2
i,i+1), and Log(R) denotes the logarithmic map which

returns an element of the Lie algebra whose exponential is
R; with slight abuse of notation Log(·) returns a rotation
vector instead of a skew symmetric matrix. In Appendix we
prove that nonlinear elimination of Ri, with i = 2, . . . , s
leads to a single factor on the target variables Ru and Rv:

− log φbi (A
b
i) =

∥∥Log
(
R̄T1,s+1R

T
uRv

)∥∥2∑s
i=1 σ

2
i,i+1

(16)

where R̄1,s+1 = R̄1,2 . . . R̄s,s+1 is the composition of the
rotation measurements in the factors along the branch. The
result may appear trivial: the smart factor is nothing else
than the composition of the intermediate rotations and the
noise variance is the sum of the variances of the intermediate
measurements. However, recall that we are in a nonlinear
domain, and intuitions that are true for the linear case often
fail: for instance, the same elimination procedure cannot be
repeated in the case with non-isotropic noise. Also, in a
pose graph, a similar elimination procedure only results in an
approximation, as we briefly show in the next section. We
conclude this section by noting that the rotation example
is not just a toy problem: from [5] we know that we
can use rotations to bootstrap pose estimation and enhance
convergence speed and robustness. In Fig. 7 we report an
example of use of the smart rotation factors in a spherical
scenario, where the origin at the bottom is fixed. The original
graph has 266 nodes and factors are connecting nearby nodes
along each meridian (Fig. 7(a)); we can convert each branch
connecting the node at the bottom with the node at the top
into a smart factor, obtaining a graph with only 2 nodes Fig.
7(b). In the table (Column: “SO(3)”) we report the mismatch
between the rotation estimate at the top node for the complete
graph of Fig. 7(a), versus the corresponding estimate in Fig.

−3

−2
−1

0

1

2
3

−3

−2

−1

0

1

2

3

0

1

2

3

4

5

6

7

Noise−free Pose Initialization

Rotation Noise (deg) SE(3) SO(3)
0 0 0
5 0.08 < 1E-7
10 0.12 < 1E-7
15 0.23 < 1E-7

Fig. 7. Application of smart rotation factors. (a) Original graph. (b)
Compressed graph with smart rotation factors. The table reports the rotation
mismatch (norm of the rotation error) of the top-most node in the original
versus the corresponding estimate in the compressed graph, for different
values of rotation noise. While the estimates coincide for rotation graphs
(column: “SO(3)”), they are different for pose graphs (column: “SE(3)”).

7(b). The mismatch is negligible and independent on the
rotation noise, confirming the derivation in this section. If
we repeat the same experiment including the full poses for
each node and we consider relative pose measurements, the
estimates will no longer match, as discussed in the following.

Example 4 - Smart Pose Factors: Without going in the
mathematical details, it is pretty easy to see that, in a pose
graph, simple pose composition is not equivalent to nonlinear
elimination, see also [10]. For this purpose consider Fig. 6
and imagine that a pose is attached to each node, and that we
want to simply compose the intermediate poses to obtain a
relative pose measurement between node u and v. Applying
pose composition and a first-order propagation of the corre-
sponding covariance matrix one may easily realize that both
the measurement between u and v (and the corresponding
covariance) will depend on the linearization point of all the
intermediate nodes. This implies that, as for the linearized
case, at every change of the linearization point, the smart
factor has to be recomputed, hence the elimination can only
be performed on a linearized version of the factors.

Nevertheless one may be satisfied with an approximation
and not recompute the smart pose factor (for small changes
of the linearization point). This idea appeared several times in
literature [23], [24], [25], (while to the best of our knowledge
the corresponding elimination in rotation graphs has not
been investigated). In particular, in [25] intermediate pose
relations (computed from an IMU sensor) are “summarized”
or preintegrated into a single constraint. Our C++ imple-
mentation of the preintegrated IMU factors, and a Matlab
example on the Kitti dataset [21] are available on the website
https://borg.cc.gatech.edu/.

C. Upper bounds Approximations

In several applications, it is difficult to solve the optimiza-
tion problem (9) or to compute the integral (8). Therefore,
one rather looks for a lower bound for (8), and iteratively
optimizes this lower bound. This idea is an old one [26]. In

this case our smart factor has to compute

φ̌bi (A
b
i) ≤ φbi (Abi) =

ˆ
bi

∏
k∈Ibi

φk(Ak, bi)dbi (17)

It is shown in [26] (and the reference therein) that taking
the expectation of the logarithm of

∏
k∈Ibi

φk(Ak, bi)dbi with
respect to bi yields a lower bound for φbi (A

b
i). Therefore the

following upper bound on the negative logarithm follows:

−log φbi (A
b
i) ≤ −log φ̌bi (A

b
i) = −E

bi

∑
k∈Ibi

log φk(Ak, bi)dbi


(18)

This is particularly convenient for the case in which the
support variables bi are discrete, as the expectation can be
computed as a weighted sum. This approach leads to standard
expectation-maximization (EM) algorithms, see [26].

Example 5 - Robust SLAM: Many recent robust SLAM
approaches follows the philosophy described in Section III
(paragraph: Outlier rejection in SLAM). An excellent exam-
ple is [13]: binary variables are used to decide whether to
accept or discard a measurement; in [13] binary variables
are relaxed to continuous variables in the interval [0, 1].
Although the approach [13] greatly enhance robustness to
outliers it pays the price of optimizing over a large number of
latent variables. If the binaries are relaxed to continuous vari-
able the elimination approach that we described in Section V-
A is directly amenable to transform the original problem into
one that only includes the target variables. However, in this
example, we avoid relaxation and maintain discrete values
for the support variables. Therefore, we use the elimination
technique discussed in Section V-C.

(a) (b) (c)
Fig. 8. (a) Ground truth trajectories of 3 robots moving in the same
scenario. (b) Tentative correspondences between robot observations (black
lines). (c) Trajectories estimated with the elimination approach of Section
V-C; after optimization we can distinguish inliers (black solid lines) from
outliers (cyan dashed lines).

We consider a multi robot problem in which 3 robots
traverse the same scenario (Fig. 8(a)), without prior knowl-
edge of their initial pose and without being able to directly
measure relative poses during rendezvous. During operation,
the robots try to establish possible correspondences between
observed places, leading to several possible relative pose
measurements (tentative correspondences are shown in Fig.
8(b) as black lines); most of these measurements will be out-
liers and correspond to false matches. We apply the elimina-
tion approach of Section V-C to robustly solve the problem,

without explicitly introducing binary variables. Each smart
factor in this case only computes the expectation (18). The
corresponding estimate is shown in Fig. 8(c), where after the
optimization we can distinguish measurements classified as
inliers (black lines) from outliers (cyan dashed lines).

VI. CONCLUSION

A natural structure emerges in several applications in
computer vision and robotics: the variables involved in the
problem can be partitioned in a set of target variables, which
are of interest for the user, and a set of support variables
that are only auxiliary. Moreover, the set of support variable
can be partitioned in conditionally independent subsets. We
exploit this structure to eliminate each subset of support
variables. This elimination naturally leads to the definition of
new factors, that we call smart factors. This perspective not
only allows dramatic reduction in the size of the problem to
be solved, but provides natural tools to enhance robustness
when performing inference over factor graphs.

APPENDIX

We prove that nonlinear elimination of R2, . . . , Rs in (15)
leads to the expression (16). We reparametrize (15) in terms
of the relative rotations Ri,i+1 = RTi Ri+1, with i = 1, . . . , s:

− log φbi (A
b
i) = min

R1,2,...,Rs,s+1

∑s
i=1

∥∥Log
(
R̄Ti,i+1Ri,i+1

)∥∥2

σ2
i,i+1

subject to R1,2 . . . Rs,s+1 = RTuRv (19)

As in the linear case, to get our smart factor, we solve
for the support variables in function of the target variables.
Therefore, we compute {Ri,i+1}? from (19) and back-
substitute the optimal value in the expression of the factor.
This problem has been explored with a different application
in [6] and [27]. Therefore we know that the optimal solution
can be computed for fixed (unknown) Ru and Rv as:
R?i,i+1 = R̄i,i+1R̄>iExp

(
ωi,i+1 log

(
R̄T1,s+1R

T
uRv

))
R̄T>i

where we denote with R̄>i the product R̄i+1,i+2 . . . R̄s,s+1

(or the identity matrix for i= s), R̄1,s+1 = R̄1,2 . . . R̄s,s+1,

and ωi,i+1 =
σ2
i,i+1∑s

i=1 σ
2
i,i+1

. As in the linear case, we obtain our

smart factor by plugging back the optimal solution {Ri,i+1}?
(which is function of Ru to Rv) into (19):
s∑
i=1

∥∥Log
(
R̄>iExp

(
ωi,i+1 log

(
R̄T1,s+1R

T
uRv

))
R̄T>i

)∥∥2

σ2
i,i+1

where {Ri,i+1}? were computed so to satisfy the constraint
R1,2 . . . Rs,s+1 = RTuRv [6]. Noticing that (i) for rotation
matrices S1 and S2 it holds Log

(
S1S2S

T
1

)
= S1Log(S2),

that (ii) the norm is invariant to rotation, (iii) that the Log
is the inverse of the exponential map, we prove the claim:

− log φbi (A
b
i)=
∑s
i=1

σ2
i,i+1

(
∑s

i=1 σ
2
i,i+1)

2

∥∥log
(
R̄T1,s+1R

T
uRv

)∥∥2
=

=
∥∥log

(
R̄T1,s+1R

T
uRv

)∥∥2∑s
i=1 σ

2
i,i+1

REFERENCES

[1] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Del-
laert, “iSAM2: Incremental smoothing and mapping using the Bayes
tree,” Intl. J. of Robotics Research, vol. 31, pp. 217–236, Feb 2012.

[2] K. Konolige, G. Grisetti, R. Kuemmerle, W. Burgard, L. Benson, and
R. Vincent, “Efficient sparse pose adjustment for 2D mapping,” in
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), Taipei,
Taiwan, Oct 2010, pp. 22–29.

[3] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), Shanghai, China,
May 2011.

[4] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik, “Incremental
block cholesky factorization for nonlinear least squares in robotics,”
in Robotics: Science and Systems (RSS), 2013.

[5] L. Carlone, R. Aragues, J. Castellanos, and B. Bona, “A linear ap-
proximation for graph-based simultaneous localization and mapping,”
in Robotics: Science and Systems (RSS), 2011.

[6] G. Dubbelman, I. Esteban, and K. Schutte, “Efficient trajectory bend-
ing with applications to loop closure,” in IEEE/RSJ Intl. Conf. on
Intelligent Robots and Systems (IROS), 2010, pp. 1–7.

[7] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
Pose SLAM,” IEEE Trans. Robotics, vol. 26, no. 1, 2010, In press.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2009.2034435

[8] H. Kretzschmar and C. Stachniss, “Information-theoretic compression
of pose graphs for laser-based slam,” Intl. J. of Robotics Research,
vol. 31, no. 11, pp. 1219–1230, 2012.

[9] G. Huang, M. Kaess, and J. Leonard, “Consistent sparsification for
graph optimization,” in Proc. of the European Conference on Mobile
Robots (ECMR), 2012.

[10] N. Carlevaris-Bianco and R. M. Eustice, “Generic factor-based node
marginalization and edge sparsification for pose-graph SLAM,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2013, pp. 5728–
5735, name in key is spelled wrong.

[11] J. Neira and J. Tardos, “Data association in stochastic mapping using
the joint compatibility test,” IEEE Trans. Robot. Automat., vol. 17,
no. 6, pp. 890–897, December 2001.

[12] E. Olson, “Recognizing places using spectrally clustered local
matches,” Robotics and Autonomous Systems, vol. 57, no. 12, pp.
1157–1172, 2009.

[13] N. Sünderhauf and P. Protzel, “Switchable constraints for robust pose
graph SLAM,” in IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), 2012.

[14] E. Olson and P. Agarwal, “Inference on networks of mixtures for
robust robot mapping,” Intl. J. of Robotics Research, vol. 32, no. 7,
pp. 826–840, 2013.

[15] L. S. C. S. P. Agarwal, G.D. Tipaldi and W. Burgard, “Robust map
optimization using dynamic covariance scaling,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2013.

[16] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Trans. Inform. Theory, vol. 47, no. 2,
February 2001.

[17] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world
from Internet photo collections,” Intl. J. of Computer Vision,
vol. 80, no. 2, pp. 189–210, November 2008. [Online]. Available:
http://phototour.cs.washington.edu/

[18] A. Mourikis and S. Roumeliotis, “A multi-state constraint Kalman
filter for vision-aided inertial navigation,” in IEEE Intl. Conf. on
Robotics and Automation (ICRA), April 2007, pp. 3565–3572.

[19] M. Li and A. Mourikis, “High-precision, consistent EKF-based visual-
inertial odometry,” Intl. J. of Robotics Research, vol. 32, no. 6, pp.
690–711, 2013.

[20] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I. Kweon, “Pushing
the envelope of modern methods for bundle adjustment,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 34, no. 8, pp. 1605–1617, 2012.

[21] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the KITTI vision benchmark suite,” in IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), Providence, USA,
June 2012, pp. 3354–3361.

[22] K. Konolige, “Sparse sparse bundle adjustment,” in British Machine
Vision Conf. (BMVC), September 2010.

[23] ——, “Large-scale map-making,” in Proc. 21th AAAI National Con-
ference on AI, San Jose, CA, 2004.

[24] J. Folkesson and H. I. Christensen, “Robust SLAM,” in IAV-2004,
Lisboa, PT, July 5-7 2004.

[25] T. Lupton and S. Sukkarieh, “Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions,”
IEEE Trans. Robotics, vol. 28, no. 1, pp. 61–76, Feb 2012.

[26] T. Minka, “Expectation-Maximization as lower bound maximization,”
November 1998.

[27] G. Sharp, S. Lee, and D. Wehe, “Multiview registration of 3D scenes
by minimizing error between coordinate frames,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 26, no. 8, pp. 1037–1050, 2004.

