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Abstract—In this paper we present a technique to generate
highly accurate reconstructions of underwater structures by
employing bundle adjustment on visual features, rather than
relying on a filtering approach using navigational sensor data
alone. This system improves upon previous work where an
extended information filter was used to estimate the vehicle
trajectory. This filtering technique, while very efficient, suffers
from the shortcoming that linearization errors are irreversibly
incorporated into the vehicle trajectory estimate.

This drawback is overcome by applying smoothing and map-
ping to the full problem. In contrast to the filtering approach,
smoothing and mapping techniques solve for the entire vehicle
trajectory and landmark positions at once by performing bundle
adjustment on all the visual measurements taken at each frame.
We formulate a large nonlinear least-squares problem where we
minimize the pixel projection error of each of the landmark
measurements.

The technique is demonstrated on a large-scale underwater
dataset, and it is also shown that superior results are achieved
with smoothing and mapping as compared to the filtering
approach.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has en-
joyed widespread application in large scale reconstruction
problems. City-scale reconstructions using images have been
achieved in recent years [1], [2], [3], and a lot of progress has
already been made in developing efficient algorithms to solve
these large-scale reconstruction problems.

Motivated by continuing deterioration of underwater ecosys-
tems, there has been a growing interest in adapting large-
scale SLAM and smoothing and mapping (SAM) techniques to
work in underwater environments. Translating standard SLAM
techniques to the underwater reconstruction domain presents
various difficulties, in part due to the challenging conditions
and the limited types of sensors that can be used underwater.
Furthermore, visibility is often limited, while poor illumination
begins to play a significant role at greater depths.

Early techniques for underwater mapping were introduced
in [4] which proposed a complete framework for sparse 3D
mapping of the seafloor. Problems such as incremental position
estimation, recursive global alignment of the final trajectory,
and 3D reconstruction of the topographical map were tackled.
In [5] the vehicle positions are estimated within a visual-

based delayed state SLAM framework. The vehicle position
estimation incorporates relative pose constraints from image
correspondences. The result is an efficient filtering method
that works on large trajectories. This approach was validated
experimentally using monocular imagery collected of the RMS
Titanic. Along the same line, the method proposed in [6] was
used within scientific expedition surveys of submerged coral
reefs. The result was a composite 3D mesh representation
which allowed marine scientists to interact with the data
gathered during the mission.

Pizarro et al. devoted close attention to low level image
processing algorithms, from feature extraction to relative pose
transformation between cameras [7]. The result was an en-
riched structure from motion (SfM) technique for sparse 3D
reconstruction, where the steps were adapted to suit spe-
cific underwater conditions. The method was validated within
controlled water tank conditions by comparing image based
reconstruction to accurate laser scan measurements.

Dense reconstructions of submerged structures have been
obtained in [8]. However, this was a very small-scale method
where the stereo system was mounted on a controlled manip-
ulator arm, so that the camera rotation and translation were
known. Dense reconstruction has also been proposed as a
second stage after sparse SfM [9]. Piecewise planar models
were constructed by tracking landmarks in the scene in [10],
with new landmarks being added as they became visible.

A complete system capable of large-scale underwater 3D
reconstructions was presented in [11]. State estimates are
recovered using an extended information filter (EIF), which
takes advantage of the sparseness of the information matrix
[5]. The efficiency of the EIF was further improved by
updating the Cholesky factor directly, rather than recomputing
the entire Cholesky factorization at each update step [12]. This
is possible because the information matrix remains sparse,
and only the last columns have to be recomputed as more
vehicle states are added. Nonetheless, EKF and EIF filtering
approaches still suffer from the permanent incorporation of
linearization errors.

SAM was successfully applied to underwater stereo se-
quences in [13], and while the reconstruction had a large
number of landmarks, the area covered by the 3D recon-
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Figure 1: (a) The AUV Sirius being retrieved after a mission
aboard the R/V Southern Surveyor. (b) AUV system diagram
showing two thrusters, stereo camera pair and lights, as well
as navigation sensors.

[ Sensor [ Specification |
Attitude + heading Tilt £0.5 deg, compass +2 deg
Depth Digiquartz pressure sensor, 0.01%
Velocity RDI 1,200-kHz Navigator DVL +2 mm/s
Altitude RDI navigator four-beam average
USBL TrackLink 1,500 HA (0.2-m range, 0.25 deg)

uBlox TIM-4S
Prosilica 12-bit, 1360 x 1024 charge
coupled device stereo pair

GPS receiver

Camera

Table I: Summary of the Sirius AUV specifications

struction was not large-scale. In this paper we build on the
work by [5], [11], [12], and show that more consistent results
can be obtained by applying SAM to the full problem. We
demonstrate our approach on a large-scale underwater dataset
collected at the Scott Reef off the coast of Australia, and
show that the solution is qualitatively superior to the filtering
based solution that has been obtained previously. We perform
full bundle adjustment over all cameras and a subset of
landmarks detected in the images collected by the Autonomous
Underwater Vehicle (AUV) . By increasing the reconstruction
accuracy, we are able to provide oceanographers with better
tools to study the ocean floor.

The remainder of this paper is organized as follows: Section
II explains the data collection process, and in section III the
initial filtering approach upon which we improve is outlined.
This is followed by a discussion of the Smoothing and Map-
ping solution and our results in sections [Vand V, respectively.

II. DATA COLLECTION

The data used for this work was collected using the Au-
tonomous Underwater Vehicle Sirius, operated by the Aus-
tralian Centre for Field Robotics, University of Sydney, Aus-
tralia. A picture and system diagram of Sirius are shown in
Fig. 1. The AUV is equipped with a suite of oceanography
sensors, as well as a stereo-camera, multi-beam sonar, doppler-
velocity log, and a GPS that can be used to geo-reference
underwater surveys when the vehicle surfaces. The AUV is

Figure 2: Top view of Scott Reef 3D reconstruction off western
Australia covering an area of 50 x 75m with 9831 stereo image
pairs.

passively stable in pitch and roll, meaning that the stereo rig
mounted in the bottom compartment is always imaging the sea
floor. The stereo camera pair has a baseline of approximately
7 cm and a resolution of 1360 x 1024, with a field of view
of 42 x 34 degrees. The sensors relevant to the work in this
paper are listed in Table I.

Data was collected at the South Scott Reef, which is located
300 km northwest of Cape Leveque, Western Australia. The
survey covered an area of 50m x 75m, and consists of 9831
stereo image pairs, taken at a frequency of about 1Hz, with
the AUV programmed to maintain an altitude of 2m.

The AUV was programmed to follow a predetermined
trajectory in the survey area. The rectangular area was densely
covered with back-and-forth transects. The spatial overlap in
between temporally consecutive images generally is around
50%. It is important to note that the AUV’s navigation sensors
(not the camera) were used to travel along the pre-planned
path, and the sensors’ measurements were used within the
context of an EIF to reconstruct the trajectory that was actually
followed.

Images collected by the stereo camera are preprocessed
to compensate for lighting and wavelength-dependent color
absorption of the water.

III. TRAJECTORY ESTIMATION

The vehicle state and trajectory are estimated using the
data collected by the navigation sensors. This is done using
an improved version of the viewpoint augmented navigation
(VAN) framework [5], [12]. Reconstruction results obtained
using the VAN framework for the dataset used in this paper
are shown in Fig. 2.



Figure 3: Features matched between two images taken at
different AUV poses by the left camera.

The stereo imagery collected with the AUV is only used
to introduce loop closures to the solution. This is a necessary
step in large-scale reconstructions to ensure self-consistency
of the resulting map. Creating loop closure hypotheses in-
volves extracting features in both images of each stereo pair,
finding valid stereo correspondences, and triangulating the
corresponding 3D points using the midpoint method [14].
Features from images that are likely to have come from the
same specific location in the survey area are then compared
to establish correspondences. Once made, these are then used
to robustly compute the rotation and translation between the
two AUV poses at which the images were taken, and if
successful, this information is added to the EIF. The loop
closure search is carried out in multiple passes. In entirety,
48002 loop closure hypotheses were made, and 7951 of these
were actually accepted and added to the filter. For more details
on this work, please see [11]. An example of features matched
between two images taken at different AUV poses by the left
camera is shown in Fig. 3.

Figure 4: Factor Graph of two camera poses z and three
landmarks [. The black nodes are the factors, which represent
the landmark measurements taken by the respective cameras.
The factor graph is used as the underlying computing paradigm
for our SAM algorithm.

IV. SMOOTHING AND MAPPING

Smoothing and Mapping refers to the process of simulta-
neously estimating the full set of robot poses and landmark
locations in the scene [15]. When this technique is applied to
visual image features and camera poses, it is called Structure
from Motion [16]. The structure of the scene is inferred
from visual measurements taken by the camera from different
vantage points. Features are extracted and matched between
all the images [17], [18], and camera poses and landmark
locations are optimized to minimize a cost function. The non-
linear minimization process to estimate the best possible scene
configuration is also referred to as bundle adjustment in the
literature [19].

Bundle adjustment has been applied to create highly ac-
curate, city-scale reconstructions from large photo-collections
[2], [3]. Applying SAM to data collected by Sirius is an excel-
lent way to create a highly accurate model of the survey area,
making these models more useful to oceanographers. Whereas
the VAN framework discussed in section IIlonly makes use of
image correspondences for loop closure generation, our SAM
approach differs substantially as we also use correspondences
between temporally consecutive image pairs. In other words,
in addition to the feature matches introduced by the 7951 loop
closures, we also add all the feature correspondences that can
be found between the 9831 camera poses along the trajectory.

Factor graphs offer a natural representation for the SAM
problem. A factor graph is a bipartite graph containing only
two types of nodes: state variables and factors. In our case, the
unknown camera poses X = {x;|i € 1...M} and landmarks
L = {l;]j € 1...N} correspond to the set of state variables.
The factors in the graph represent the landmark measurements
Z = {zx|k € 1..K} that are made by the cameras. An
example of a factor graph is shown in Fig. 4.

We minimize the non-linear cost function

K
ZHhk(mik’ljk) _Zk”ZEk (H
k=1



where hy(.) is the measurement function of landmark I;
from camera x;, and the notation ||H% represents the squared
Mabhalanobis distance with covariance . We assume that
we have normally distributed Gaussian measurement noise.
Assuming a rectified image pair, we have individual landmark
measurements (the features detected in the images) given by
z = (up,upr,v), where uy, and ug are the horizontal pixel
coordinates of the left and right camera, respectively, and v
is the vertical coordinate. For a properly calibrated stereo
rig, v may be assumed to be the same for left and right
images after rectification. The cameras used as part of the
stereo rig are modeled using a pinhole camera model, and the
standard projection equations apply. In practice one considers
a linearized version of the problem, and the terms in equation
1 can be linearized as

hk’(xik7ljk) — 2k

{hk(xo 10) + H*5;, + J,g'kaljk} )

ik " Jk

Q

where H,i",J,Z’“ are the Jacobians of hy(.) with respect to
iy, 1y, evaluated at (zf,,19,).

During optimization the ordering in which variables are
elimiated is crucial for performance. This also applies to
matrix factorization methods used in the EIF, and we use an
AMD ordering [20]. For more details on the SAM optimization

process, we refer the interested reader to [15].

V. SAM RESULTS

For the experiments in this paper, image features are
matched between consecutive stereo rig poses, as well as for
loop closure observations. These feature matches are then
used to construct the factor graph for our SAM problem.
In all, the factor graph contains 9831 camera poses, 185261
landmarks, and 350988 factors. The camera poses computed
by the EIF algorithm are used to initialize the camera poses for
the SAM algorithm. Due to problematic lighting conditions,
feature matching and relative pose estimation was unsuccessful
in about 1% of the data, and odometry constraints from the
EIF solution are used in their place. In other words, the factor
graph contains many thousands of factors for landmark mea-
surements, and a very small number of odometry factors. The
odometry factors are added to ensure a contiguous trajectory
without gaps.

Visual inspection of the results shows noticeable inconsis-
tencies in the EIF camera trajectory, while the SAM solution
is much smoother. Fig. 5 shows an area near the beginning of
the trajectory where the differences are particularly significant.
The point cloud and camera trajectory that is output from the
SAM algorithm is shown in Fig. 6.

Ground truth is not available for this dataset. However, as-
suming a high quality camera calibration, the pixel projection
errors hy(z;,, lj, )— 2k from eq. 1 provide a meaningful metric.
This error allows for the direct comparison of map consistency
resulting from the EIF and SAM solutions. The root mean
square errors (RMSE) for EIF and SAM optimzation are 8.32
and 0.26, respectively. The root mean square error for the EIF

(a) EIF result showing local inconsistencies

(b) SAM result showing a very smooth trajectory

Figure 5: Partial view showing camera poses along the AUV
trajectory. The first leg north is highlighted for clarity. The
SAM result in (b) is notably smoother than the EIF result (a).

solution is significantly larger than that of the SAM solutions,
because relative visual odometry from consecutive poses was
not used to estimate the trajectory in the EIF, but was only
used to introduce loop closure constraints. Projection RMSE
are shown in Fig. 7. The runtime for the SAM optimization is
287 seconds on an Intel Core 2 Duo 2.53Ghz MacBook Pro.

VI. CONCLUSIONS

In this paper we showed that smoothing and mapping leads
to 3D maps that are more consistent than those resulting
from employing a filtering approach. SAM provides a globally
more optimal result due to optimizing over all cameras and
landmarks, and does not suffer from the incorporation of lin-
earization errors as do filters, since the current state estimate is
always available to relinearize around. Full bundle adjustment
on this dataset took just under 5 minutes. Future work includes
applying more efficient SAM algorithms, such as Tectonic
SAM [21], which hierarchically split up the problem for faster
optimization, and consequently reduce the processing time
required.
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Figure 6: Camera trajectory and ocean floor point cloud with point colors taken from the corresponding images.
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Figure 7: Root mean square projection errors per camera, with camera locations plotted using the respective optimization

results. The error is shown in color. Note the difference in error scales.



