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Abstract— This paper proposes using hierarchical wavelets
as a basis in parametric continuous-time batch estimation. The
need for a continuous-time robot pose in the simultaneous
localization and mapping (SLAM) problem has arisen as state-
of-the-art batch SLAM algorithms attempt to handle more
challenging hardware; specifically, the continuous-time frame-
work is particularly beneficial when using high-rate sensors,
multiple unsynchronized sensors, or scanning sensors, such as
lidar and rolling-shutter cameras, during motion. Although the
traditional discrete-time SLAM formulation can be adapted
by using temporal pose interpolation, approaches using the
continuous-time framework are able to generate smooth robot
trajectories with less state variables. In this paper, we focus
on the parametric approach using temporal basis functions to
develop a finite-element representation of the continuous-time
robot trajectory. While the majority of current implementations
have utilized a uniformly spaced B-spline basis, we note that
trajectory richness is often quite variable; in this paper, we
show how a hierarchical system of wavelet basis functions can
be used to increase the resolution of the solution only in the
temporally local regions of the trajectory that require additional
detail. We validate our approach by contrasting uniform B-
splines and wavelets in a six-dimensional pose-graph SLAM
experiment, using both simulated and real data.

I. INTRODUCTION

Batch nonlinear optimization techniques for simultaneous
localization and mapping (SLAM) are an important aspect of
autonomous robotics and are a staple for generating accurate
pose estimates over long distances. In particular, the use
of stereo cameras for visual odometry remains a leading
paradigm that encourages the formulation of a full nonlinear
least-squares optimization problem, because it is both flexible
and efficient [1]. However, due to the nature of the traditional
discrete-time SLAM formulation, it is not well-suited to
handle many challenging sensor outputs; specifically, the use
of high-rate, motion-distorted, or unsynchronized sensors all
require special treatment. For example, motion-distorted sen-
sor outputs are often ignored by reducing platform velocity,
increasing capture rate, or limiting the robot to a stop-and-
go motion tactic, and extremely high-rate measurements are
often marginalized to occur at a more convienent rate.

A recent strain of estimators focus on addressing the
shortcoming of discrete-time batch SLAM to handle high-
rate measurements by leveraging a continuous-time model to
represent the pose of the robot. A motivating example for the
robotics community is the desire to use rolling-shutter type
cameras interchangeable with global-shutter type cameras

!University of Toronto Institute for Aerospace Studies, 4925 Duf-
ferin Street, Toronto, Ontario, Canada, sean.anderson@mail.
utoronto.ca, tim.barfoot@utoronto.ca. 2School of In-
teractive Computing, Georgia Institute of Technology, Atlanta, GA 30332,
USA, frank@cc.gatech.edu.

Fig. 1.

This figure shows the ROC6 mobile rover, equipped with an Au-
tonosys LVCO0702 lidar and a Thales DG-16 Differential GPS unit, traversing
the Ethier Sand and Gravel pit in Sudbury, Ontario, Canada. Data collected
from this experiment is used to validate our approach in Section IV. Using
hierarchical wavelets, our algorithm is able to automatically add detail to
segments of the solution that experience rough terrain, while maintaining a
smaller state size in smooth parts of the trajectory.

in a bundle adjustment style estimator; rolling shutter cam-
eras often use Complementary Metal-Oxide-Semiconductor
(CMOS) technology, which is known to be far cheaper
than global shutter cameras that employ a Charge-Coupled
Device (CCD). Continuous-time batch estimation has been
performed both parametrically, using a weighted sum of
temporal basis functions [2], and non-parameterically, using
a Gaussian-Process [3]. A benefit of the continuous-time
approach is that it provides an elegant means to include
asynchronous and high-rate measurements, such as those
from an inertial measurement unit (IMU) or even individually
timestamped features extracted from a motion-distorted im-
age, into a typical batch nonlinear optimization framework.

While several continuous-time, state estimation implemen-
tations have used uniformly spaced B-splines, in reality
the richness of a trajectory can be quite variable. Consider
a traversal where a ground robot is twisting and turning
over natural, unstructured, three-dimensional terrain and then
encounters a flat, open space where it travels in a straight
line for several meters (see Figure 1); in order to sufficiently
model this trajectory, it is expected that each segment will
require a very different temporal density of basis functions.

We propose using a hierarchical system of wavelet basis
functions to parameterize the continuous-time robot trajec-
tory. Wavelets and the theory of multiresolution analysis are



a parametric approach used in a variety of fields, ranging
from signal analysis to computer graphics [4]. Using wavelet
functions allows us to decompose our continuous-time tra-
jectory into a coarse overall shape and a set of refining detail
functions that can be adaptively added to the solution where
they are required.

In Section II, we begin with a review of related literature.
In Section III, we provide some background on multiresolu-
tion analysis techniques and formulate our adaptive wavelet
parameterization for continuous-time state estimation. In
Section IV, we set up an example state estimation problem
and provide the results of our algorithm using both simulated
and real data. Final comments and a discussion of future
work are available in Section V.

II. RELATED WORK

In its most fundamental form, continuous-time estimation
can be performed by applying pose-interpolation techniques
to the traditional, discrete-time SLAM formulation. Similarly
to discrete-time SLAM, notable works using pose inter-
polation place keyframes at every frame acquisition time.
Although it is possible to interpolate between non-sequential
frames, the representational power of these formulations
is somewhat limited. Using a continuously spinning lidar,
Bosse and Zlot [5] present a technique for performing SLAM
while scanning and moving; the technique is akin to the
iterative closest point (ICP) algorithm and interpolates poses
in order to compensate a sequence of temporally discretized
lidar scans. Continuations of this work have been successful
in mapping a large underground mine [6] and estimating
the irregular motion of a 2D lidar attached to the end
of a spring [7]. Dong and Barfoot [8] perform frame-to-
frame motion-compensated visual odometry using sparse,
appearance-based features extracted from the intensity data
of a two-axis scanning lidar. With a high-rate, rolling-shutter
camera, Hedborg et al. [9] demonstrate the application of
interpolation to the full nonlinear bundle adjustment problem.

Modelling the trajectory of a robot as a continuous-time
function is an active research area in the field of robotics.
Furgale et al. [2] formally derive the general continuous-time
SLAM problem and demonstrate the use of uniformly spaced
temporal basis functions to model the state in a typical
camera-IMU calibration problem. The works by Bibby and
Reid [10] and Fleps et al. [11] also exhibit the use of uni-
formly spaced B-splines to parameterize the robot trajectory
in a global frame. Anderson and Barfoot [12] also leverage
this parametric approach to continuous-time estimation, but
derive the relative formulation of the problem, similar to the
discrete-time work of Sibley et al. [13].

In an effort to improve representational power, Tong et
al. [3] use a Gaussian process to model the continuous-
time trajectory of a robot. Although using a Gaussian pro-
cess in essence provides an infinite resolution solution, we
note that the often weak prior term, common to many of
the continuous-time SLAM formulations including the one
presented in this paper, plays a much more important role
without a finite basis to help prevent overfitting.

Fig. 2. This figure depicts the shape and temporal spacing of our
chosen scaling and wavelet functions over a uniformly spaced integer knot
sequence. The blue line depicts a cubic B-spline scaling function at level £,
spanning four time segments. The red and green lines depict our choice of
wavelet function, at level £ and ¢ + 1, spanning 7 and 3.5 time segments,
respectively. Note that at each increase of resolution level, wavelets are
simply defined over a knot sequence that uses half-size time intervals.

Recent work by Oth et al. [14] demonstrates the use of
parametric, continuous-time batch estimation to calibrate the
line delay of a rolling-shutter camera. Due to the highly
nonlinear nature of this problem, an integral component of
their technique is an adaptive scheme that chooses a non-
uniform basis spacing to prevent overfitting the data. To
the authors’ knowledge, this is the only other work that
demonstrates an adaptive scheme for refining the parametric
representation of a continuous-time trajectory.

We draw our wavelet motivation from the variational mod-
elling technique developed by Gortler and Cohen [15] in the
field of computer graphics. However, we note a fundamental
difference in the problems being solved. The goal of their
variational modelling approach is to find a continuous curve
that passes exactly through a few known constraint points,
while satisfying a minimum energy cost function. In contrast,
a typical robotics problem has many noisy measurements and
in parametric, continuous-time estimation, we are concerned
with the problem of overfitting. This leads our formulation
to adopt a different metric for determining the addition and
placement of high-resolution wavelets.

III. METHODOLOGY

In this section, we derive our adaptive, continuous-time es-
timation scheme using a system of hierarchical wavelet basis
functions. Using a wavelet basis allows us to decompose our
solution into a rough overall shape and a hierarchy of refining
details. Furthermore, it allows detail to be adaptively added to
local segments of the continuous-time trajectory that require
it. To gain a deeper understanding of these concepts we
recommend reading [4]; motivation for the specific approach
we take to variational modelling can be found in [15]. The
necessary background information required to develop a hi-
erarchical wavelet basis for continuous-time state estimation
is summarized here.

A. Hierarchical Wavelets
We begin by defining our 6D continuous-time trajectory,
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where p(t) are the translational parameters, and ¢(¢) are the
rotational parameters. Using a wavelet basis we define our
trajectory as the sum of a coarse shape function, s(t), and
detail function, d(¢),

x(t) =s(t) +d(t), (2)

where each is in turn a weighted sum of temporal basis
functions.

In many robotic applications, the richness of motion in
a trajectory can be quite variable; while some trajectory
segments may be sufficiently smooth, others may include
heavy maneuvering that require additional detail in the
continuous-time parameterization to be properly modelled.
In order to refine our finite-element solution, we define a
hierarchical detail function,

where ¢ = 0. .. L denotes the resolution /evel, and with each
increase in level, ¢ + 1, basis functions are simply defined
over a knot sequence that uses half-size time intervals.

In the context of parametric continuous-time state esti-
mation, there are a few important properties that we want
our basis to have. The first is that only a temporally local
subset of the basis functions is non-zero at any sample time;
this is often referred to as local support. This property is
important in order to enable local batch optimizations, such
as a sliding window filter. The second important property
is that the basis functions have simple analytical derivatives
and integrals, which can be important when developing error
terms for some sensors (such as an IMU).

The basis of our shape function, s(¢), is constructed using
temporally translated copies of a chosen scaling function,
denoted ¢(t); in this paper, we choose to use cubic B-
spline basis functions. The cubic B-spline is a popular choice
because it has C? continuity, which is important when
evaluating the state for acceleration. Furthermore, it is simple
to include B-splines in our formulation using the matrix
representations developed by [16].

The basis of the detail functions, d,(t), are constructed
using both scaled and temporally translated copies of a
chosen wavelet function, denoted 1 (t). In this paper, we
adopt the wavelet basis recommended for cubic B-splines
in [15], depicted in Figure 2.

Our hierarchical system uses a single shape function,
s(t), at only the coarsest resolution level, £ = 0. However,
we define it more generally to assist in our discussion of
multiresolution analysis, in Section III-C, where we show
the construction method of the chosen wavelet basis function.
Using matrix notation, we write a shape function as

Sg(t) = 'I)é(t)cmv “4)
®(t) == [pro(t) - brw-1(1)] (5)
bei(t) == p(2't — u;), (6)

where the scaling basis, ®,(t), spans the vector space, V;
(of dimension vy), ¢¢,;(t) is a 6 x 1 column vector, u; is the
translation of basis function ¢, and ¢4, is a v, X 1 column

vector of weights that allow us to vary the output. Similarly,
we write the detail functions as

d@(t) = ‘I’g(t)Cw, (7
\I’g(t) = [1/1470(75) - ’l/)g’w[_l(t)] 5 (8)
Yeit) = (2 — w), ©)

where the wavelet basis, W,(¢), spans the vector space, Wy
(of dimension wy), t¢;(t) is a 6 X 1 column vector, u; is the
translation of basis function ¢, and ¢y, is a we X 1 column
vector of weights that allow us to vary the output. The full
hierarchical framework can then be written as

x(t) := Q(t)c, (10)
Q(t) = [‘I’o(t) ‘I’o(t) ‘I’l(t) ‘I’L(t)] , (11)
= [CZ;O 050 czl:l T ch]T ’ (12)

where L is the finest resolution level used by the hierarchical
parameterization.

In this paper, we perform only full batch optimizations and
make use of the extreme case, where the coarsest resolution
level contains only a single time segment. However, we
note that it is trivial to perform local batch optimizations
by including more time segments at the coarsest level;
this would becomes important when implementing a sliding
window filter for SLAM.

B. Adaptability

A key benefit of using a wavelet basis for the continuous-
time parameterization of a robot trajectory is that it provides
a means to adaptively add resolution only where it is
needed in the solution. The contribution of a wavelet to the
continuous-time trajectory depends on its resolution and the
detail required in the time segments that it locally supports.

An important intuition is that as £ is increased, and we add
finer and finer resolution wavelets to our parameterization,
the wavelet coefficient weights, ¢,,, should tend to zero as
we capture the shape of the curve. Therefore, a hierarchical
wavelet basis has the ability to exclude all wavelet basis
functions with a negligable coefficient weight, while making
only a small approximation to the continuous-time function.

The development of an adaptive algorithm, to decide if
and where the basis requires refinement, plays a critical role
in using the hierarchical wavelet system to its full potential.
The variational modelling approach from computer graphics
uses an oracle algorithm that simply looks at the magnitude
of the coefficient weights. However, as noted previously, the
variational modelling problem often only needs to satisfy
a few noise-free constraints. Closely analyzing the weights
of wavelet coefficients in a typical robotics problem will
inevitably lead to overfitting our solution.

In order to safely predict where we need more detail,
without overfitting, we adopt the metric proposed by Oth
et al. [14] in their adaptive knot subdivision scheme. The
proposed metric helps avoid overfitting by comparing the
objective function cost, J, against its expected value, E[J].
In our hierarchical wavelet system, we begin by activating



only the coarsest level of basis functions, L = 0. For
each time segment, s, of each active level, £ = 0...L,
we then check if J;, > E[Jys]; if true, it implies the
trajectory requires additional detail in that time segment,
and we enable the wavelet basis functions that have local
support over that temporal area. Iteratively, we then solve for
the coefficients of active wavelets, increment our maximum
active resolution level, L = L+1, and re-check if, and where,
additional resolution is required. We note that the success of
this scheme is dependent on having properly modelled the
covariance of the measurements.

By tactically placing detail coefficients, we expect a
reduced state size, which is computationally important to
performing batch estimation problems. Additionally, the hier-
archical approach we take to iteratively adding detail allows
for a convienent initialization method. At each iteration, the
previously solved state vector, using { =0...L—1, is still a
valid solution to the expanded state vector, using £ =0... L.
The new components, ¢y,, can simply be initialized to
zero. Assuming the solution does not change drastically,
initializing at the previously optimal solution allows the
nonlinear batch estimator to converge in less iterations.

C. Multiresolution Analysis

In this subsection, we will define the relationship that
exists between basis functions at different resolution levels,
show how this relationship is used to construct our chosen
wavelet basis function, and derive an interesting parallel
that exists between our hierarchical parameterization and a
traditional uniform B-spline parameterization. This parallel
will be useful in quantifying the compression of our pa-
rameterization. We begin by noting that the scaling-function
vector spaces, Vy, are nested:

VocVicCc...CcV,C... (13)

Since the basis of V;_; is a subspace of the basis of V,
we know that a double-width scaling function, belonging to
the level £ — 1, can be expressed as a linear combination of
single-width scaling functions, belonging to the level ¢. In
matrix notation, this is written as,

Do1(t) = Po(t)Py, (14)

where Py is a tall, band matrix of dimension vy X vy_; and
each column is a translated copy of the vector p, which is
independent of level; the well-known weighting sequence for
cubic B-spline basis functions is

11 3 1 11"

8 2 4 2 8

The effect of projecting a curve from a basis in V; to
a double-width basis in V,_; is that the resulting curve is
smoothed. The goal in choosing a wavelet basis is to be
able to capture the detail that is lost between the adjacent
scaling-function vector spaces; that is, we wish to choose a
wavelet basis such that W,_; is the complement of V;_; in
the space Vy. Although there is some freedom in choosing
the mother wavelet, 1)(t), we must be able to express any

15)

function in V; as a combination of a function in V,_; and
a function in W,_;. Note that the wavelet space, Wy_, is
also a subspace of V; and therefore a double-width wavelet
function, belonging to the level £ — 1, can also be expressed
as a linear combination of single-width scaling functions,
belonging to level ¢. In matrix notation, this is written as,

Wy (t) = Py(t)Qe

where Qy is a tall, band matrix of dimension vy X wy_; and
each column is a translated copy of the vector q. By using
these hierarchical relationships, all that is left in order to
construct a wavelet function is choosing a valid weighting
vector, . In this paper, we adopt the sequence for cubic
B-splines suggested by [17]:

1

q:—[5 20 1 -96 —-70 280 70
256

(16)

a7
—96 1 20 5],

which results in the wavelet basis function shape illustrated
in Figure 2.

Using the invertible isomorphic relationship, Wy, note that
a finite-element solution can be expressed equivalently in
different vector spaces:

|:c¢z_1:| :Wécdw W, = [Pg Qf]il . (18)

Coppy

By applying this relationship recursively,

Wy 0| (W O W, 0
wa= [0 4[N 3 N we a9

we note a parallel between the hierarchical wavelet param-
eterization and the more traditional uniform cubic B-spline
parameterization of continuous-time SLAM,

x(t) = Qt)e = Brir(Deg, ..

where Q(t)Wq = ®1.1(t) and Wo ‘e =cy, .

Using this parallel, we will later validate that our adaptive
algorithm does not smooth any important details that could
be captured in the available vector space, V1, by verifying
that our wavelet solution has similar, or less, error than a
uniform B-spline solution using the basis ®1(t).

(20)

IV. EXPERIMENTAL VALIDATION

In this section, we validate our proposed hierarchical
trajectory parameterization by applying it to a 6D pose-
graph SLAM problem. We begin by formulating the prob-
lem in continuous time and then test our approach using
both simulated and real data. We note that previous work
[21[3][12] has shown the formulation of continuous-time
bundle-adjustment-type problems and the associated state
size reduction benefits over the discrete-time formulation;
although the hierarchical formulation presented in this paper
would also benefit bundle-adjustment-type problems, we
simplify our problem formulation and focus on the contribu-
tion by only considering relative pose change measurements.
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Fig. 3. In this figure, we contrast the sparsity patterns of the matrix
(Am + Auw) using uniform B-splines (shown on the left) and using a
hierarchical wavelet scheme (shown on the right). Each basis spans an
identical vector space and the bases are correlated to the state vectors ¢4, +1
and c, respectively. Although hierarchical systems exhibit a denser sparsity
pattern, we are able to maintain a relatively sparse block-banded structure
by carefully ordering our state vector. At a high level, it is important that
the state, ¢, be sorted by level, as in (12); this also makes it trivial to add
higher level wavelet coefficients on to an existing solution. The banded
structure is obtained when the chosen wavelet basis has local support and
coefficients of the sub-states, €4, €yq; - - - , €y » are sorted temporally. The
hierarchical system shown here uses a single time segment at the coarsest
level, 0, and has a maximum level of L = 6. In this extreme case, the entries
corresponding to scaling functions and wavelets in the levels £ = 0...2
are fully dense because they have local support over the entire trajectory;
using more time segments at the coarsest level will result in a sparser upper
and left hand side.

A. Continuous-Time Pose-Graph SLAM

We begin by formulating the pose-graph SLAM problem
and provide an overview of the typical continuous-time
SLAM setup. A full derivation of the continuous-time, state-
estimation framework can be found in [2].

In pose-graph SLAM we are given a set of relative pose
change measurements, Tm, between times t,, 1 and %, o,
where each measurement, T,,, is a 4 x 4 transformation
matrix belonging to SE(3), and has an associated 6 x 6 un-
certainty matrix, U,,. Our goal is to minimize a cost function
by finding the optimal solution of the continuous-time robot
trajectory, x(¢). Using our hierarchical parameterization, we
note that the solution of x(¢) can be varied using only the
finite-element vector c.

We begin by defining our measurement error term, e,
to be the difference between our measured and estimated
relative transform,

e =In(T, T(ty1)T(tmo) )Y = In(T,,T,;})Y, (1)

where T(t) is a transformation matrix constructed from our
state vector, ¢, using the exponential map,

T(t) :=exp(x(t)") = exp((Q(t)e)"), (22)
A
T -
A
©1 0 —p3 2
" =lp2| = o3 0 —pf, (@4

and V is the inverse operation of A. The exponential map
can be computed in closed form [18] using

C
Tent) = [ %],

(25)
where the rotation matrix C € SO(3) is

C :=exp(p”) = cos pl + (1 — cos p)aa’ + sin pa’,
(26)

the left Jacobian of SO(3) is

sin

3=ty 1 - Sy LTS g
2

and our rotational parameters, ¢, use an axis-angle param-
eterization, ¢ := (a, such that ¢ is the angle and a is a
unit-length axis vector.

In continuous-time state estimation, we also typically
associate a cost with our motion model; this acts as a prior
and helps to smooth the solution. A typical choice is to model

acceleration as a zero-mean, white-noise Gaussian process,

where the covariance function is Q4(t—t') and 4(+) is Dirac’s
delta function. The error term is simply,

e, (t) :=x(t). (29)
The objective function that we wish to minimize is
J(x(t)) == Jm + Ju (30)
1 Ty7—1

Im = 5 > el U len (31)

1 /7
Ju = f/ e.(7)TQ e, (r)dr. (32)

2 Ji=o

The full derivation, and details concerning (32), can be found
in [2]. In order to minimize our objective function, J, with
respect to the state vector, ¢, we take the Gauss-Newton
approach; we first linearize the error terms with respect to a
perturbation in the state, dc, initialize the nominal solution,
¢, and iteratively solve for the optimal update step, dc*, by
solving %TT‘CJ = 0 for dc.

From the basis function definition, x(¢) = Q(t)c, it
follows that X(t) 4+ 6x(t) = Q(t)(¢ + dc¢) and therefore the
nominal and perturbed solutions are simply X(t) = Q(t)c
and 0x(t) = Q(t)dc. At each iteration, the nominal error is
evaluated as

e =In(T,, exp(X(tm1)") exp(—X(tm.2)"))V. (33)
Linearizing our measurement term, we find that
e,(c+ dc) ~ e, — H,Jdc, (34)
where,
H,, = [T (tn2)Qtm,2) — Ad(Tm>.7(tm,1m(tm,l)](%s)
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Fig. 4.  This figure shows the estimated (coloured) and ground truth
(black) trajectory used for the simulation results. The estimated trajectory is
coloured based on the number of actively contributing wavelet coefficients
at each sample time. The wavelet density is distinguishably higher near the
corners of the solution, and relaxes in the straight segments.

Ad(-) is the adjoint of SE(3), and J is referred to as
the Jacobian of SE(3) (discussed further in [18]). Setting

T . .
% 527 = 0, we find the optimal state update equation:

(Am + Ay)d¢* =b,, +b,. (36)

Therefore, with respect to J,,, 8; (gcm = A,,0c —Db,,, where,
A, = Z HI U 'H,,, (37)
b, :=> HLU,'e,. (38)

m

The derivation of A, and b, is found in [2]. Following the
Gauss-Newton approach, we solve for dc* and update the
nominal solution, ¢ < ¢+dc*; the whole approach is iterated
to convergence. The sparsity pattern of (A,, + A,,), created
by using a hierarchical system of wavelet basis functions is
shown in Figure 3. With respect to the adaptive algorithm,
this optimization scheme is run at every iteration, L = L+1,
before evaluating J and adding higher resolution wavelets
where they are required.

B. Simulation Results

In order to illustrate the behaviour of the adaptive wavelet
algorithm in a controlled environment, we begin with a
simulation example. The simulated path is a square with
sharply rounded corners to emphasize the need for tempo-
rally local detail coefficients, seen in Figure 4. The simulated
robot moved at a constant linear velocity for 120 seconds
and 6D relative pose estimates were generated at a rate of
10Hz (corrupted with zero-mean Gaussian noise); a loop
closure observation was also provided near the end of the run.
Intuitively, the expected result is that the adaptive algorithm
will add very high-level resolution wavelet functions near the
corners of the trajectory and add very low-level resolution
wavelets on the straight segments.
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Fig. 5. This figure shows the wavelet coefficient magnitudes, ¢y, for

the continuous-time function ¢3(t). Each row of the plot corresponds to
a different resolution level, ¢, and contains 2¢ wavelet coefficients; non-
active wavelet coefficients are set to 103 for colouring purposes. The
distinguishable four spikes in wavelet depth correspond to the four corners
traversed in the simulation trajectory.

In order to verify this intuition, we generated both geomet-
ric and weight-space plots that illustratively show the density
of active wavelets being used in our adaptive solution. First,
in Figure 4 we plot the estimated trajectory against the
ground truth and colour it based on the number of actively
contributing wavelet coefficients at each sample time. As
expected, we see that near the corners there is a very high
number of contributing wavelets (roughly 60 wavelets) and
furthermore that the wavelet density gradually reduces as we
approach the midpoint of a straight segment (roughly 25-30
wavelets). Second, we plot the wavelet coefficient magni-
tudes, ¢y, for the continuous-time function ¢3(t), seen in
Figure 5. Specifically, we are interested in 3(t) because
it roughly corresponds to the rotation of the robot around
the z-axis, which is the state component requiring the sharp
details in this simulation. Each row of the plot corresponds
to a different resolution level, £, and contains 2¢ temporally
sorted wavelet coefficients. From this plot, the four corners in
the simulated trajectory are easily distinguished by the deep
level of high-magnitude coefficients. Furthermore, we see a
nice gradient drop-off of wavelet magnitude on the sides of
each peak.

In order to quantitatively discern if we are gaining any
benefit by using a system of hierarchical wavelets, we
compared the solution provided by the adaptive wavelet
algorithm against the solution found using a set of uniform
cubic B-splines. We plot the objective function cost and
maximum translation error against the number of finite-
element state variables used in each of the solutions, as
seen in Figure 6. In contrast to the uniform cubic B-spline
solution, where the number of knots used in the solution
is gradually increased, the progression of sample points for
the adaptive wavelet algorithm corresponds to the maximum
wavelet resolution level used in each iteration of the adaptive
algorithm, L = 0. .. 10. The final wavelet sample, near 2000
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Fig. 6. This figure shows the objective function cost, J, and the maximum
Euclidean translation error for solutions to the simulated dataset. The blue
line shows the progression of the adaptive wavelet algorithm, where each
sample corresponds to an iteration of the adaptive scheme. The red line
shows the uniform B-spline solution with a gradually increasing number
of knots. We place markers at the uniform B-spline solutions with bases,
P, 1, that have an equivalent representations (using Wq) in the available
vector space of an adaptive wavelet solution. By verifying that the maximum
error of corresponding solutions is near identical, we can establish that the
adaptive algorithm has not smoothed any important details; the difference in
state size is the compression benefit gained by using the adaptive algorithm.

state variables, marks the end of the adaptive scheme, as the
cost function evaluated to less than the expected value in all
time segments.

Although the cost function of the uniform B-spline method
reduces quite smoothly, the error term varies wildly depend-
ing on how well the control points align with the corners in
the solution; this is most visible during the sub-1500 state
variable range. Furthermore, we see the effect of overfitting
occur in the uniform B-spline solution near the 6200 state
variable mark.

In order to show the compressive ability of the adap-
tive algorithm, we place markers at the uniform B-spline
solutions with bases, ®,;, that have an equivalent repre-
sentations (using Wq) in the available vector space of an
adaptive wavelet solution. By verifying that the maximum
error of corresponding solutions is near identical, we can
establish that the adaptive algorithm has not smoothed any
important details. Furthermore, a corresponding uniform B-
spline solution with similar, or possibly higher, error and a
lower objective function cost, is likely overfitting segments
of the solution that did not require additional detail. The
advantage of using a richer available vector space is shown
by the difference in objective function cost and error between
wavelet and uniform B-spline solutions that use a similar
number of state variables. Although we see marginal error
improvement at the final wavelet solution, we note that
without knowledge of the true trajectory it is difficult to
know when error has plateaued. Assuming we must rely on
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Fig. 7. This figure shows the estimated (coloured) and DGPS (black)
trajectory used for the 200m experimental trajectory. The estimated solution
is coloured based on the number of actively contributing wavelet coefficients
at each sample time. Note that the wavelet density tends to be higher near
turns and high frequency motion.
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Fig. 8. This figure shows the objective function cost, J, and the maximum
Euclidean translation error for solutions to the experimental dataset. In a
similar fashion to Figure 6, the blue line shows the progression of the
adaptive wavelet algorithm, where each sample corresponds to an iteration
of the adaptive scheme and the red line shows the uniform B-spline solution
with a gradually increasing number of knots. Again, we place markers at
the uniform B-spline solutions with bases, ®, 1, that have an equivalent
representations (using Wq) in the available vector space of an adaptive
wavelet solution. By verifying that the maximum error of corresponding
solutions is near identical, we can establish that the adaptive algorithm
has not smoothed any important details Notably, the smaller objective
function cost of corresponding uniform B-spline solutions suggest that
smooth regions of the solution are overfit.

the objective function cost, J, and its expected value, E[J],
we note that the uniform B-spline solution does not reach
the same objective function stopping point until it has used
roughly 5000 state variables.

C. Real Data Results

In order to verify that our technique works in practice,
we applied an identical methodology to a set of real data
acquired using a ROC6 mobile rover, as seen Figure 1,
at a sand and gravel pit in Sudbury, Ontario, Canada.
Specifically, we used a 200m traversal from The Gravel Pit



Lidar-Intensity Imagery Dataset [19]. During the experiment,
the robot travelled between 0.0 and 0.5 m/s and used an
Autonosys LVCO0702 lidar to capture intensity and range
images, with a resolution of 480 x 360, at 2Hz. A Differential
Global Positioning System (DGPS) was used to collect the
ground-truth data used to validate our estimation results. A
SURF implementation was used to extract features from
the intensity imagery and then 3D pose estimates (and
uncertainties) were generated using a motion-compensated
RANSAC algorithm [20].

Similar to the simulation analysis, we plotted the estimated
trajectory against the ground truth and coloured it based on
the number of actively contributing wavelet coefficients at
each sample time, as seen in Figure 7. Again, we see that
areas involving turns generally required a higher density of
wavelet functions. However, the analysis is no longer as
straightforward; we note that even during seemingly straight
segments there appears to be an influx of active wavelet
functions. Although not well demonstrated in the simulation
example, changes in attitude from driving over uneven terrain
and even sharp variations in robot velocity can cause the
solution to require additional detail.

The objective function cost and maximum translation
error, seen in Figure 8, exhibit similar findings to that of the
simulation example. A key difference is that these results
clearly show marked uniform B-spline solutions, with bases
@/, having similar error to the corresponding wavelet
solutions, but a lower objective function cost. This suggests
that the uniform B-spline solutions are overfit in regions that
are sufficiently smooth. Furthermore, this effect is noticeable
at the second last pair of corresponding solutions, which
occurs before the proposed objective function stopping point.
We draw attention to the result that overfitting real data
can results in dramatic error spikes (seen past 6500 state
variables); this emphasizes the need for an adaptive technique
to add detail only where it is required.

V. CONCLUSION AND FUTURE WORK

This paper has explored the novel application of a hierar-
chical wavelet basis to the continuous-time SLAM problem.
Using multiresolution analysis, we are able to decompose
the continuous-time solution into a coarse shape function
and a set of hierarchical detail functions. Furthermore, by
selecting a wavelet basis with local support we note the
ability to adaptively add detail to the solution only where it is
required. This allows us to find a high-quality solution using
a smaller state vector than traditional methods. In order to
validate the technique, our adaptive wavelet algorithm was
applied to both simulated and real data. The next steps in
extending this work are to apply it to a full bundle adjustment
style problem, and to try using a wavelet basis in the
relative, continuous-time SLAM formulation. By performing
multiresolution analysis in the velocity domain, it may be
possible to gain even larger state compression benefits.
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