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Fall 2025

Lecture 8:
A Vacuum Cleaning Robot:
Sensing and Perception
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Conditional probability tables

Motion Model as a CPT of 5x4 conditionals probability distributions, 5x4x5 = 100 numbers
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This table was constructed by hand, with intuitively reasonable
probability values.
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If the robot is in the Office and moves right, it will stay in the
Office (prob = 0.2) or arrive to the Hallway (prob = 0.8)




Posterior probabilities

e Let’s take a closer look at this result:

P(X¢11 = X¢11|Ky) = Z P(X¢11 = Xe1| X¢ = X, a4 )|P(Xt = X¢|K¢-1)

Xt

Action model, given by a
conditional probability table

Prior probability for X;, given the
actions ag, ... Ay_q

How do we know P(X; = x¢|K;_1) ?




Markov chains

* Suppose we have chosen a specific sequence of actions: ay, ... a,

* Atstage t + 1, we compute the belief by, using conditional probability matrix M,, and the
prior belief b;:

bt+1 — that — boMaOMalMaz Mat—lMat
—
by
| J
! Recall that b, is the initial
b, distribution for state, in our
| | example scenario:
1
: : bs b, =[00100]

At any time t, all of the available
information about the history of the robot :
(where it has been, what it has done) is .
contained in the belief state b,.
If you know b, learning specific previous \ Y J
actions does not add information. b,




Controlled Markov chains

Qo a4 **e Apn—1
Note:
States are random — circles.
Actions are deterministic — boxes.
Example: homing sequence RRRRR... yields stationary distribution: Eigs: {1,1,0.2,0.2,0.2 }
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* For the trash sorting robot, we had multiple sensors,
and their measurements were conditionally
independent (given state).

* We could combine those measurements using Bayes
to formulate state estimates.

* For the vacuum cleaning robot, we’ll use a single
sensor that has only three possible outputs: not very
powerful.

Sensing

 We'll take measurements at each time step, and
combine these with the robot’s knowledge about its
actions and the environment to make inferences
about state.

* Bayes networks — and various special cases of Bayes
nets — will be the key inference tool.




rash Sorting Sensors

* Three sensors (weight, conductivity, vision-classifier).
* At any time t, collect measurements from the three sensors: z*, z;, z{ and use Bayes to
compute P(X; = x |z{, z{, z{).

* Measurements are conditionally independent given state, which gives a nice
computational simplification after applying Bayes.

» The passing of time was irrelevant — each new sensor measurement was for a new
piece of trash:

 Completely independent of previous measurements
* Completely independent of previous actions
* Completely independent of previous states

This is not the case for our vacuuming robot!



Vacuuming robot sensor

N—~
* Asingle sensor that detects light levels, and returns a
measurement z: -

I v
X1 dark medium light [ |

Living Room 0.1 01 08 L;”;“\] s om Uilchew

. Kitchen 0.1 0.1 0.8
* Bright, z = 2 — -
. ! Office 0.2 07 0.1 l

o MEdlum, z=1 Hallway 08 01 04 OFF:.. Haollys - D.';.;,V

° Dark; Z = O Dining Room 0.1 08 0.1 ] 4 I o
|

e Sun is to the south, so plenty of light for living room + For Hallway, (z = 0 |H) = 0.8, MLE wil
and kitchen. do the job!

* Forz =1,z = 2, there’s really no way to
uniquely identify state from one

* Hallway has no windows and is always dark. measurement.

e Office and Dining room are poorly lit via windows.



Exploiting History

* Suppose we observe a sequence of measurements and
actions:
z1=0,a =up,z, = 2

» Where do you think we are?
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Exploiting History

e Suppose we observe a sequence of measurements and
actions:

z1=0,a; =up,z, =2
»> It seems likely that x; = H,x, = L

e Suppose we observe a sequence of measurements and
actions:

Z1 = 1, a, = Tlght
z, =0,a, =right
Z3 —_ 1
» It seems likely that x; = 0,x, = H,x3 =D

These examples illustrate the basic idea, but these examples
are really simple.

How do we formalize/generalize this into a sensor model that
accounts for actions and measurements as time sequences?
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Bayes Networks

In the past, we have seen graphical models for various sorts of Markov chains:

These models are special cases of the more general Bayesian Networks (Bayes nets):
 Directed Acyclic Graph (DAG)

* For conditional probability P(X|Y3, ..., Y;;,,) there are directed edges from each of Y; to X.
* There are no other edges in the graph.



Bayes Nets

This network represents several conditional probability
relationships:

- P(W|X,Z)

« P(X|Y,Z)

« P(Y|Z)

« P(Z)

Perhaps more importantly, Bayes nets explicitly encode
conditional independence relationships:

W is conditionally independent of ¥ given X



he (first) Magic of Bayes Nets

For a Bayes net with variables X; ... X, the joint distribution is
given by:

P(Xy..X,) = HP(X]-|H(X]-))
j

Where I1(X;) denotes the set of parents of node X;

For this specific network, the joint distribution is given by

P(W,X,Y,Z) = P(W|X,Z)P(X|Y,Z)P(Y|Z)P(Z)



he (first) Magic of Bayes Nets

We can see why this works (for this example) by expanding the
chain rule for joint probability distributions:

P(WW,X,Y,Z) = P(W|X,Y,Z)P(X|Y,Z)P(Y|Z)P(Z)

But from the topology of the Bayes net, we know

PWW|X,Y,Z) = P(W|X, Z)

Making this substitution, we arrive to the desired result:

P(W,X,Y,Z) = P(W|X,Z)P(X|Y,Z)P(Y|Z)P(Z)



More Magic of Bayes Nets

How difficult would it be to encode the joint distributions for our vacuum cleaning robot?

Suppose we consider X4, ... X741, and we want to encode P (X1, ... X741)

X1 X Xr | Xr+1 PXy, - X741) 4o a1 vt ar
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# rows in CPT = | X|? x| A

Total storage~ (T + 1) (| X|*%x|A|)

Number of rows = | X|T+1



Dynamic Bayes Nets

* Bayes nets can be used to represent systems that evolve over time.

* Our vacuum cleaning robot is an example of such a system, at any time t, we have x; and a;
and together, these determine (probabilistically) what happens for x;, 1.

* A dynamic Bayes net has a simple structure that repeats at each time step:




Simulation

e Forward simulation is easy for Dynamic Bayes Nets (DBNs).
* Sample initial state xy from the prior P(X;)
* For each k generate a sample x4, from the distribution P (X1 |Xx = xi, ax)

* This is sometimes called ancestral sampling: to generate a sample for some node, look
at its immediate ancestors.




Observations

* The motivation for all of this Bayes net machinery was the idea that the history of
sensor measurements was interesting. How do we encode this in a Bayes net?

* Recall our sensor model: P(Z;| X; ).
* This is easy to encode in a Bayes net!




Still More Magic of Bayes Nets

For a controlled HMM with states X, ..., X,,, and observations 7, ..., Z,,, the joint
distribution is given by:

P(Zo, o) 2, Xg o Xl @) = P(Zg|Xo)P(Xo) ﬂp(zi|xi)P(xi|xi_1, a;)
[




Simulation Revisited

* Forward simulation is easy for Dynamic Bayes Nets (DBNs).
* Sample initial state x, from the prior P(X,)

* Foreachk
 generate a sample z; from the distribution P(Z; | X, = x3)

 generate a sample x4, from the distribution P (X541 |Xx = X, ax)




As before, perception is the problem of inferring

things about the world given sensor information and
context.

For our controlled HMM, we have
Pe rce ptl() N * a sequence of given measurements Z; = z;
* the known sequence of applied actions a4, ..., a,

and we want to infer the states, X4, ..., X,

» There is a lot of structure in this problem, and we
can exploit this structure to obtain computationally
efficient inference algorithms.




Hidden Markov Models (HMMs)

* Notice that in the system shown below,
* we know Z; = z; forall t
* We know a, forall t

* We do not know any of X ... X1, but we do know that the states form a Markov
chain.

* We say that the states, X ... X,,, are hidden.

HMMs are a good model for speech recognition

Qg aq LI Ap_1 systems:

* Spoken words behave like a Markov chain (if
you know the current word, you know a lot
about what will be the next word).

@ @ @ e oo  Measurements are audio signals.

Note: If we increase the relevant history, e.g., so
that state X; dependson X;_4, X;_» ... X¢_,,, we
Zy Zq ) Zn have an nth order Markov chain.

Larger n gives better prediction.




Inference in Bayes Nets

Our perception problem is straightforward:

* GivenZ{ = z; ... Z, = z,, and the sequence of applied actions a4, ..., a,,
* Infer the states, X4, ..., X,

The description of the problem almost immediately tells us the mathematical specification:

» Use P(Xy,..,.X, |21 =21..Z,, = 2,044, ..., Qy) to determine an estimate of the state
sequence.



Most Probable Explanation

* Recall the definition of conditional probability:

P(A,B) = P(A|B)P(B)

e We want to compute P(X|Z, A):

P(X,Z,4)
P(X|Z,A) = « P(X,Z,A)

P(Z,A4)

* We know how to compute P(X, )! (Bayes net magic)



Most Probable Explanation

We are given Z, = z;, and a, for all ¢,

For every possible value of xy, ..., x,, compute

P(X,Z,A) = P(Zy, = zy| Xy = x9)P(Xy = x9) HP(Zi = 7| X; = x)P(X; = x| X;-1 = x;-1, a;)
i

Our estimate is given by

X" =argmaxx P(X,Z,A)

Not the most efficient algorithm, but in principle, this gets the job done.



