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Conditional probability tables
Motion Model as a CPT of 5x4 conditionals probability distributions, 5x4x5 = 100 numbers

If the robot is in the Office and moves right, it will stay in the 
Office (prob = 0.2) or arrive to the Hallway (prob = 0.8)

This table was constructed by hand, with intuitively reasonable 
probability values.

right



• Let’s take a closer look at this result:

𝑷 𝑿𝒕"𝟏 = 𝒙𝒕"𝟏 𝑲𝒕) ='
𝒙𝒕

𝑷 𝑿𝒕"𝟏 = 𝒙𝒕"𝟏 	𝑿𝒕 = 𝒙𝒕, 𝒂𝒕	)𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕%𝟏)

Posterior probabilities

The posterior probability for state 
𝑋!"# given the actions 𝑎$, … 𝑎!

Action model, given by a 
conditional probability table

Prior probability for 𝑋!, given the 
actions 𝑎$, … 𝑎!%#  

How do we know 𝑷(𝑿𝒕 = 𝒙𝒕|𝑲𝒕&𝟏) ?



Markov chains
• Suppose we have chosen a specific sequence of actions: 𝑎(, … 𝑎) 
• At stage 𝑡 + 1, we compute the belief 𝑏*+, using conditional probability matrix 𝑀-!  and the 

prior belief 𝑏*:
𝑏*+, = 𝑏*𝑀-! = 𝑏(𝑀-"𝑀-#𝑀-$ …𝑀-!%#𝑀-!

𝑏#

𝑏&

𝑏!

𝑏'At any time 𝒕, all of the available 
information about the history of the robot 
(where it has been, what it has done) is 
contained in the belief state 𝒃𝒕.

If you know 𝑏!, learning specific previous 
actions does not add information.

Recall that 𝑏$ is the initial 
distribution for state, in our 
example scenario:

𝑏$ = 0	0	1	0	0



Controlled Markov chains

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%# Note:
  States are random – circles.
  Actions are deterministic – boxes.

Example: homing sequence RRRRR… yields stationary distribution:

40%

60%

Eigs: {1, 1, 0.2, 0.2, 0.2 }



Sensing

• For the trash sorting robot, we had multiple sensors, 
and their measurements were conditionally 
independent (given state). 
• We could combine those measurements using Bayes 

to formulate state estimates.
• For the vacuum cleaning robot, we’ll use a single 

sensor that has only three possible outputs: not very 
powerful.
• We’ll take measurements at each time step, and 

combine these with the robot’s knowledge about its 
actions and the environment to make inferences 
about state.
• Bayes networks – and various special cases of Bayes 

nets – will be the key inference tool.



Trash Sorting Sensors
• Three sensors (weight, conductivity, vision-classifier).
• At any time 𝑡, collect measurements from the three sensors: 𝑧*4, 𝑧*5, 𝑧*6 and use Bayes to 

compute 𝑃 𝑋* = 𝑥	 𝑧*4, 𝑧*5, 𝑧*6 .
• Measurements are conditionally independent given state, which gives a nice 

computational simplification after applying Bayes.

Ø The passing of time was irrelevant – each new sensor measurement was for a new 
piece of trash:
• Completely independent of previous measurements
• Completely independent of previous actions
• Completely independent of previous states

This is not the case for our vacuuming robot!



Vacuuming robot sensor
• A single sensor that detects light levels, and returns a 

measurement 𝑧:

• Bright, 𝑧 = 2
• Medium, 𝑧 = 1
• Dark, 𝑧 = 0

• Sun is to the south, so plenty of light for living room 
and kitchen.
• Office and Dining room are poorly lit via windows.
• Hallway has no windows and is always dark.

• For Hallway, 𝒛 = 𝟎	 𝑯) = 𝟎. 𝟖, MLE will 
do the job!

• For 𝒛 = 𝟏, 𝒛 = 𝟐, there’s really no way to 
uniquely identify state from one 
measurement.



Exploiting History
• Suppose we observe a sequence of measurements and 

actions:
𝑧, = 0, 𝑎, = 𝑢𝑝, 𝑧> = 2

Ø Where do you think we are?



Exploiting History
• Suppose we observe a sequence of measurements and 

actions:
𝑧! = 0, 𝑎! = 𝑢𝑝, 𝑧" = 2

Ø  It seems likely that 𝑥! = 𝐻, 𝑥" = 𝐿iving Room

• Suppose we observe a sequence of measurements and 
actions:

𝑧! = 1, 𝑎! = 𝑟𝑖𝑔ℎ𝑡
	𝑧" = 0, 𝑎" = 𝑟𝑖𝑔ℎ𝑡

𝑧# = 1
Ø It seems likely that 𝑥! = 𝑂, 𝑥" = 𝐻, 𝑥# = 𝐷

These examples illustrate the basic idea, but these examples 
are really simple.
How do we formalize/generalize this into a sensor model that 
accounts for actions and measurements as time sequences?



Bayes Networks
In the past, we have seen graphical models for various sorts of Markov chains:

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#

These models are special cases of the more general Bayesian Networks (Bayes nets):
• Directed Acyclic Graph (DAG)
• For conditional probability 𝑃 𝑋 𝑌,, … , 𝑌?) there are directed edges from each of 𝑌@	to 𝑋.
• There are no other edges in the graph.



Bayes Nets

This network represents several conditional probability 
relationships:
• 𝑷 𝑾 𝑿,𝒁)
• 𝑷 𝑿 𝒀, 𝒁)
• 𝑷 𝒀 𝒁)
• 𝑷(𝒁)

Perhaps more importantly, Bayes nets explicitly encode 
conditional independence relationships:

• 𝑾 is conditionally independent of 𝒀 given 𝑿



The (first) Magic of Bayes Nets

For a Bayes net with variables 𝑋,…𝑋), the joint distribution is 
given by:

𝑷 𝑿𝟏…𝑿𝒏 =?
𝒋

𝑷 𝑿𝒋 𝚷(𝑿𝒋))

Where 𝚷(𝑿𝒋) denotes the set of parents of node 𝑿𝒋

For this specific network, the joint distribution is given by

𝑷 𝑾,𝑿, 𝒀, 𝒁 = 𝑷 𝑾 𝑿,𝒁)𝑷 𝑿 𝒀, 𝒁)𝑷 𝒀 𝒁)𝑷(𝒁)



The (first) Magic of Bayes Nets

We can see why this works (for this example) by expanding the 
chain rule for joint probability distributions:

𝑷 𝑾,𝑿, 𝒀, 𝒁 = 𝑷 𝑾 𝑿,𝒀, 𝒁)𝑷 𝑿 𝒀, 𝒁)𝑷 𝒀 𝒁)𝑷(𝒁)

Making this substitution, we arrive to the desired result:

𝑷 𝑾,𝑿, 𝒀, 𝒁 = 𝑷 𝑾 𝑿,𝒁)𝑷 𝑿 𝒀, 𝒁)𝑷 𝒀 𝒁)𝑷(𝒁)

But from the topology of the Bayes net, we know

𝑷 𝑾|𝑿, 𝒀, 𝒁 = 𝑷 𝑾 𝑿,𝒁)



More Magic of Bayes Nets
How difficult would it be to encode the joint distributions for our vacuum cleaning robot?
Suppose we consider 𝑋,, …𝑋C+,, and we want to encode	𝑃(𝑋,, …𝑋C+,)

𝑋# 𝑋& ⋯ 𝑋* 𝑋*"# 𝑃(𝑋#, …𝑋*"#)

L L L L

L L L K

L O

L H

L D

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Number of rows = 𝓧 C+,

𝑋$ 𝑋# 𝑋& 𝑋*"#

𝑎$ 𝑎# 𝑎*

# rows in CPT = 𝓧 >× 𝓐

Total storage≈ (T + 1)( 𝓧 >× 𝓐 )



Dynamic Bayes Nets
• Bayes nets can be used to represent systems that evolve over time.
• Our vacuum cleaning robot is an example of such a system, at any time 𝑡, we have 𝑥* and 𝑎* 

and together, these determine (probabilistically) what happens for 𝑥*+,.
• A dynamic Bayes net has a simple structure that repeats at each time step:

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#

𝑡 = 0 𝑡 =2 𝑡 = 𝑛 − 1 𝑡 = 𝑛𝑡 = 1



Simulation
• Forward simulation is easy for Dynamic Bayes Nets (DBNs).
• Sample initial state 𝑥( from the prior 𝑃(𝑋()
• For each 𝑘 generate a sample 𝑥K+, from the distribution 𝑃 𝑋K+, 𝑋K = 𝑥K, 𝑎K)
• This is sometimes called ancestral sampling: to generate a sample for some node, look 

at its immediate ancestors.

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#

𝑡 = 0 𝑡 =2 𝑡 = 𝑛 − 1 𝑡 = 𝑛𝑡 = 1



Observations
• The motivation for all of this Bayes net machinery was the idea that the history of 

sensor measurements was interesting.  How do we encode this in a Bayes net?
• Recall our sensor model:  𝑷 𝒁𝒕 	𝑿𝒕	).
• This is easy to encode in a Bayes net!

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#

𝑍$ 𝑍# 𝑍& 𝑍)



Still More Magic of Bayes Nets
For a controlled HMM with states 𝑋(, … , 𝑋), and observations 𝑍(, … , 𝑍), 𝑡ℎ𝑒 joint 
distribution is given by:

𝑃 𝑍(, … , 𝑍), 𝑋(…𝑋)|𝑎(…𝑎) = 𝑃 𝑍( 𝑋()𝑃(𝑋()?
@

𝑃 𝑍@ 𝑋@)𝑃 𝑋@ 𝑋@&,, 𝑎@)

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#

𝑍$ 𝑍# 𝑍& 𝑍)



Simulation Revisited
• Forward simulation is easy for Dynamic Bayes Nets (DBNs).

• Sample initial state 𝑥& from the prior 𝑃(𝑋&)
• For each 𝑘 

• generate a sample 𝑧' from the distribution 𝑃 𝑍' 𝑋' = 𝑥')
• generate a sample 𝑥'"( from the distribution 𝑃 𝑋'"( 𝑋' = 𝑥', 𝑎')

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#

𝑍$ 𝑍# 𝑍& 𝑍)



Perception

As before,  perception is the problem of inferring 
things about the world given sensor information and 
context.

For our controlled HMM, we have
• a sequence of given measurements 𝑍* = 𝑧*
• the known sequence of applied actions 𝑎,, … , 𝑎)
and we want to infer the states, 𝑋,, … , 𝑋)

Ø There is a lot of structure in this problem, and we 
can exploit this structure to obtain computationally 
efficient inference algorithms.



Hidden Markov Models (HMMs)
• Notice that in the system shown below, 
• we know 𝒁𝒕 = 𝒛𝒕 for all 𝒕
• We know 𝒂𝒕 for all 𝒕

• We do not know any of 𝑿𝟎…𝑿𝟏, but we do know that the states form a Markov 
chain. 
• We say that the states, 𝑿𝟎…𝑿𝒏, are hidden.

𝑋$ 𝑋# 𝑋& 𝑋)

𝑎$ 𝑎# 𝑎)%#
HMMs are a good model for speech recognition 
systems:
• Spoken words behave like a Markov chain (if 

you know the current word, you know a lot 
about what will be the next word).

• Measurements are audio signals.

Note: If we increase the relevant history, e.g., so 
that state 𝑋! depends on 𝑋!%#, 𝑋!%&…𝑋!%), we 
have an nth order Markov chain.
Larger 𝑛 gives better prediction.

𝑧$ 𝑧# 𝑧)𝑧&



Inference in Bayes Nets
Our perception problem is straightforward:
• Given Z, = 𝑧,…𝑍) = 𝑧), and the sequence of applied actions 𝑎,, … , 𝑎),
• Infer the states, 𝑋,, … , 𝑋)

The description of the problem almost immediately tells us the mathematical specification:
Ø   Use   P(𝑋,, … , 𝑋)	|	𝑍, = 𝑧,…𝑍) = 𝑧), 𝑎,, … , 𝑎)) to determine an estimate of the state 

sequence.



Most Probable Explanation
• Recall the definition of conditional probability:

𝑷 𝑨,𝑩 = 𝑷 𝑨 𝑩 𝑷(𝑩)

• We want to compute 𝑷 𝑿 𝒁, 𝑨 :

𝑷 𝑿 𝒁, 𝑨 =
𝑷(𝑿, 𝒁, 𝑨)
𝑷(𝒁, 𝑨)

∝ 𝑷(𝑿, 𝒁, 𝑨)

• We know how to compute 𝑷(𝑿, 𝒁, 𝑨)!  (Bayes net magic)

𝑿 = 𝑿𝟏, …𝑿𝒏
𝒁 = 𝒁𝟏, …𝒁𝒏
𝑨 = 𝒂𝟏, …𝒂𝒏



Most Probable Explanation

We are given 𝑍) = 𝑧), and 𝑎) for all 𝑡.

For every possible value of 𝑥&, … , 𝑥*, compute
 

𝑷 𝑿, 𝒁, 𝑨 = 𝑷 𝒁𝟎 = 𝒛𝟎 𝑿𝟎 = 𝒙𝟎)𝑷(𝑿𝟎 = 𝒙𝟎):
𝒊

𝑷 𝒁𝒊 = 𝒛𝒊 𝑿𝒊 = 𝒙𝒊)𝑷 𝑿𝒊 = 𝒙𝒊 𝑿𝒊%𝟏 = 𝒙𝒊%𝟏, 𝒂𝒊)

Our estimate is given by

𝑿∗ = 𝒂𝒓𝒈	𝒎𝒂𝒙𝑿	𝑷(𝑿, 𝒁, 𝑨)

Not the most efficient algorithm, but in principle, this gets the job done.


