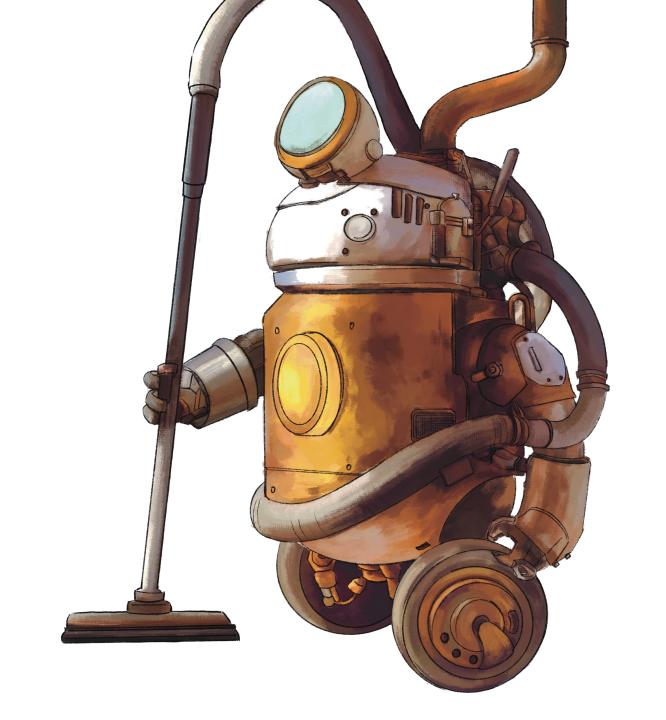
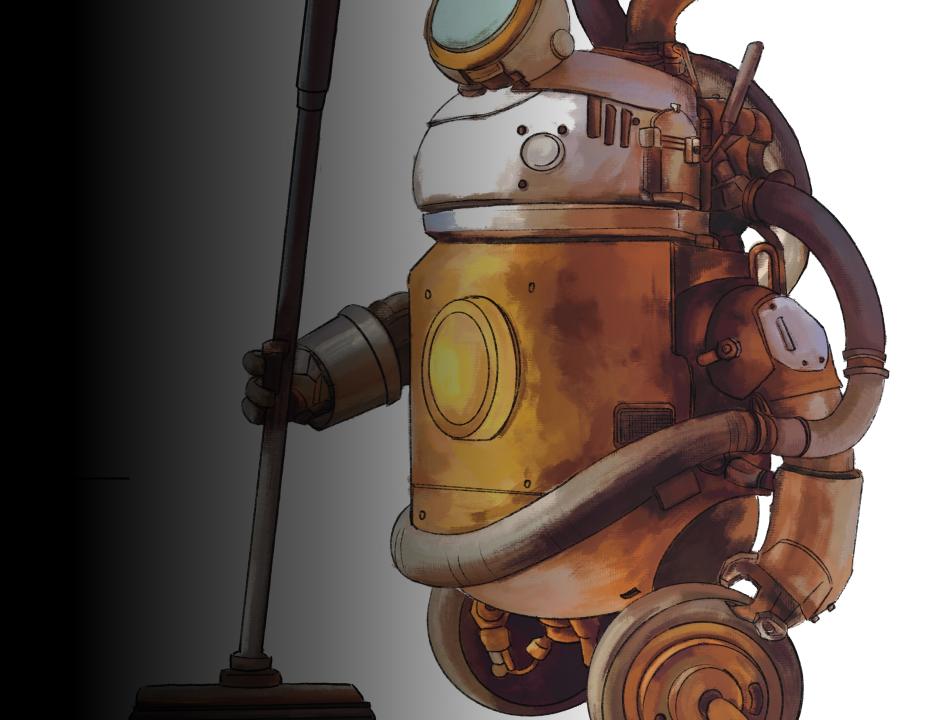
CS 3630, Fall 2025

Lecture 8:

A Vacuum Cleaning Robot: Sensing and Perception



Lecture 7 recap

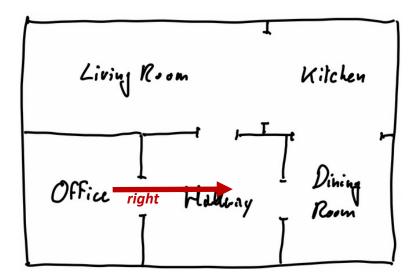


Conditional probability tables

Motion Model as a CPT of 5x4 conditionals probability distributions, 5x4x5 = 100 numbers

X1	A1	Living Room	Kitchen	Office	Hallway	Dining Room
Living Room	L	1	0	0	0	0
Living Room	R	0.2	8.0	0	0	0
Living Room	U	1	0	0	0	0
Living Room	D	0.2	0	0	8.0	0
Kitchen	L	0.8	0.2	0	0	0
Kitchen	R	0	1	0	0	0
Kitchen	U	0	1	0	0	0
Kitchen	D	0.2	0	0	0	0.8
Office	L	0	0	1	0	0
Office	R	0	0	0.2	0.8	0
Office	U	0	0	1	0	0
Office	D	0	0	1	0	0
Hallway	L	0	0	0.8	0.2	0
Hallway	R	0	0	0	0.2	0.8
Hallway	U	0.8	0	0	0.2	0
Hallway	D	0	0	0	1	0
Dining Room	L	0	0	0	0.8	0.2
Dining Room	R	0	0	0	0	1
Dining Room	U	0	0.8	0	0	0.2
Dining Room	D	0	0	0	0	1

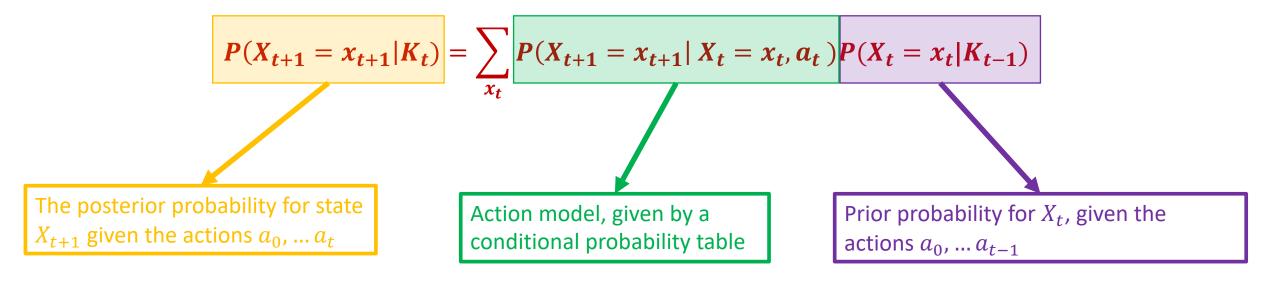
This table was constructed by hand, with intuitively reasonable probability values.



If the robot is in the *Office* and moves *right*, it will stay in the *Office* (prob = 0.2) or arrive to the *Hallway* (prob = 0.8)

Posterior probabilities

• Let's take a closer look at this result:



How do we know $P(X_t = x_t | K_{t-1})$?

Markov chains

- Suppose we have chosen a specific sequence of actions: $a_0, \dots a_n$
- At stage t+1, we compute the belief b_{t+1} using conditional probability matrix M_{a_t} and the prior belief b_t :

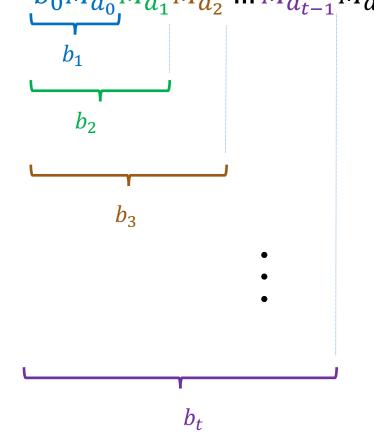
$$b_{t+1} = b_t M_{a_t} = b_0 M_{a_0} M_{a_1} M_{a_2} \dots M_{a_{t-1}} M_{a_t}$$

$$b_1$$

$$b_2$$

At any time t, all of the available information about the history of the robot (where it has been, what it has done) is contained in the belief state b_t .

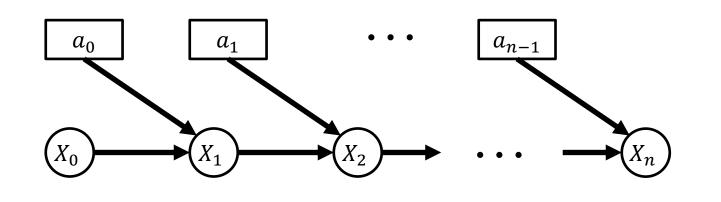
If you know b_t , learning specific previous actions does not add information.



Recall that b_0 is the initial distribution for state, in our example scenario:

$$b_0 = [0\ 0\ 1\ 0\ 0]$$

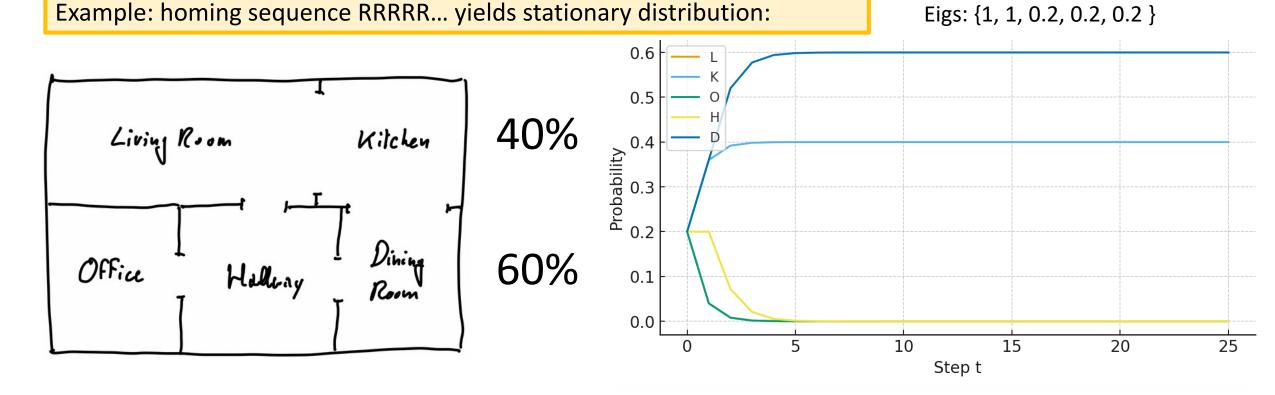
Controlled Markov chains



Note:

States are **random** – circles.

Actions are **deterministic** – boxes.



Sensing

- For the trash sorting robot, we had multiple sensors, and their measurements were conditionally independent (given state).
- We could combine those measurements using Bayes to formulate state estimates.
- For the vacuum cleaning robot, we'll use a single sensor that has only three possible outputs: **not very powerful**.
- We'll take measurements at each time step, and combine these with the robot's knowledge about its actions and the environment to make inferences about state.
- Bayes networks and various special cases of Bayes nets – will be the key inference tool.

Trash Sorting Sensors

- Three sensors (weight, conductivity, vision-classifier).
- At any time t, collect measurements from the three sensors: z_t^w , z_t^c , z_t^v and use Bayes to compute $P(X_t = x | z_t^w, z_t^c, z_t^v)$.
- Measurements are conditionally independent given state, which gives a nice computational simplification after applying Bayes.
- ➤ The passing of time was irrelevant each new sensor measurement was for a new piece of trash:
 - Completely independent of previous measurements
 - Completely independent of previous actions
 - Completely independent of previous states

This is not the case for our vacuuming robot!

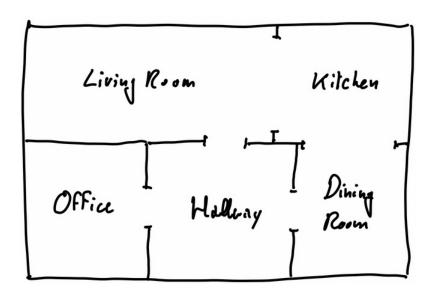
Vacuuming robot sensor

 A single sensor that detects light levels, and returns a measurement z:

- Bright, z = 2
- Medium, z = 1
- Dark, z = 0

X1	dark	medium	light
Living Room	0.1	0.1	0.8
Kitchen	0.1	0.1	0.8
Office	0.2	0.7	0.1
Hallway	8.0	0.1	0.1
Dining Room	0.1	0.8	0.1

- Sun is to the south, so plenty of light for living room and kitchen.
- Office and Dining room are poorly lit via windows.
- Hallway has no windows and is always dark.



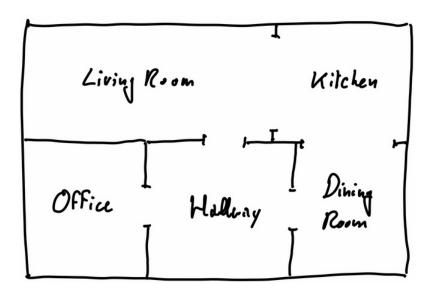
- For Hallway, (z = 0 | H) = 0.8, MLE will do the job!
- For z = 1, z = 2, there's really no way to uniquely identify state from one measurement.

Exploiting History

• Suppose we observe a sequence of measurements and actions:

$$z_1 = 0$$
, $a_1 = up$, $z_2 = 2$

Where do you think we are?



Exploiting History

 Suppose we observe a sequence of measurements and actions:

$$z_1 = 0$$
, $a_1 = up$, $z_2 = 2$

- \triangleright It seems likely that $x_1 = H$, $x_2 = Living Room$
- Suppose we observe a sequence of measurements and actions:

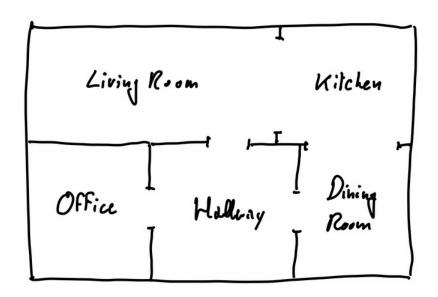
$$z_1 = 1, a_1 = right$$

 $z_2 = 0, a_2 = right$
 $z_3 = 1$

 \triangleright It seems likely that $x_1 = 0$, $x_2 = H$, $x_3 = D$

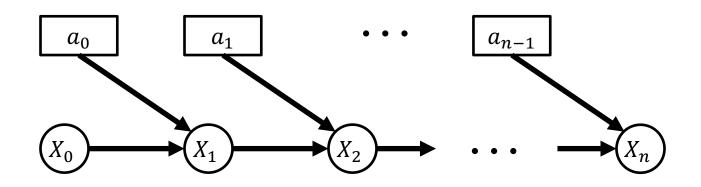
These examples illustrate the basic idea, but these examples are really simple.

How do we formalize/generalize this into a sensor model that accounts for actions and measurements as time sequences?



Bayes Networks

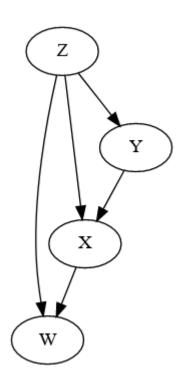
In the past, we have seen graphical models for various sorts of Markov chains:



These models are special cases of the more general Bayesian Networks (Bayes nets):

- Directed Acyclic Graph (DAG)
- For conditional probability $P(X|Y_1, ..., Y_m)$ there are directed edges from each of Y_i to X.
- There are no other edges in the graph.

Bayes Nets



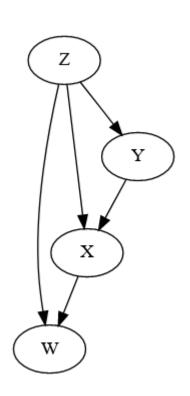
This network represents several conditional probability relationships:

- P(W|X,Z)
- P(X|Y,Z)
- P(Y|Z)
- P(Z)

Perhaps more importantly, Bayes nets explicitly encode conditional independence relationships:

W is conditionally independent of Y given X

The (first) Magic of Bayes Nets



For a Bayes net with variables $X_1 ... X_n$, the joint distribution is given by:

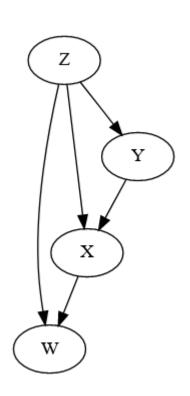
$$P(X_1 ... X_n) = \prod_j P(X_j | \Pi(X_j))$$

Where $\Pi(X_i)$ denotes the set of parents of node X_i

For this specific network, the joint distribution is given by

$$P(W,X,Y,Z) = P(W|X,Z)P(X|Y,Z)P(Y|Z)P(Z)$$

The (first) Magic of Bayes Nets



We can see why this works (for this example) by expanding the chain rule for joint probability distributions:

$$P(W,X,Y,Z) = P(W|X,Y,Z)P(X|Y,Z)P(Y|Z)P(Z)$$

But from the topology of the Bayes net, we know

$$P(W|X,Y,Z) = P(W|X,Z)$$

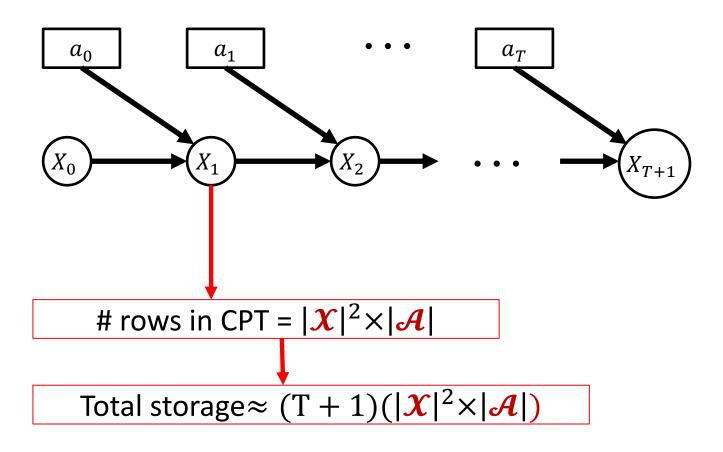
Making this substitution, we arrive to the desired result:

$$P(W,X,Y,Z) = P(W|X,Z)P(X|Y,Z)P(Y|Z)P(Z)$$

More Magic of Bayes Nets

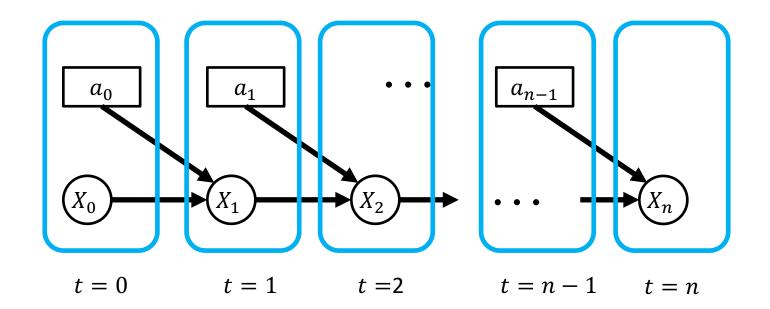
How difficult would it be to encode the joint distributions for our vacuum cleaning robot? Suppose we consider $X_1, ... X_{T+1}$, and we want to encode $P(X_1, ... X_{T+1})$

X_1	X_2	•••	X_T	X_{T+1}	$P(X_1, \dots X_{T+1})$
L	L		L	L	
L	L		L	K	
			L	0	
			L	Н	
			L	D	
:	:	:	:	:	:



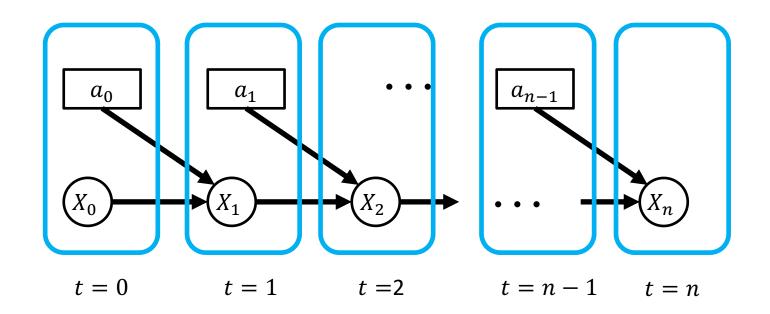
Dynamic Bayes Nets

- Bayes nets can be used to represent systems that evolve over time.
- Our vacuum cleaning robot is an example of such a system, at any time t, we have x_t and a_t and together, these determine (probabilistically) what happens for x_{t+1} .
- A dynamic Bayes net has a simple structure that repeats at each time step:



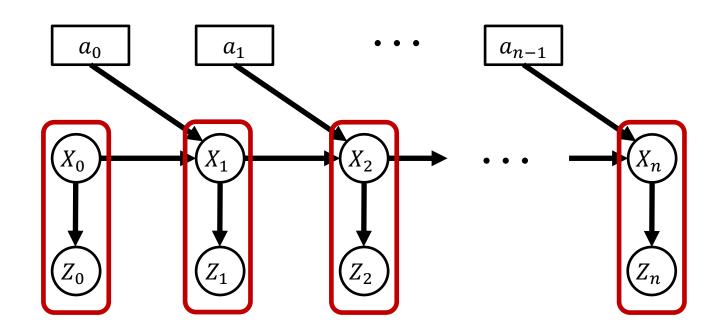
Simulation

- Forward simulation is easy for Dynamic Bayes Nets (DBNs).
- Sample initial state x_0 from the prior $P(X_0)$
- For each k generate a sample x_{k+1} from the distribution $P(X_{k+1}|X_k=x_k,a_k)$
- This is sometimes called ancestral sampling: to generate a sample for some node, look at its immediate ancestors.



Observations

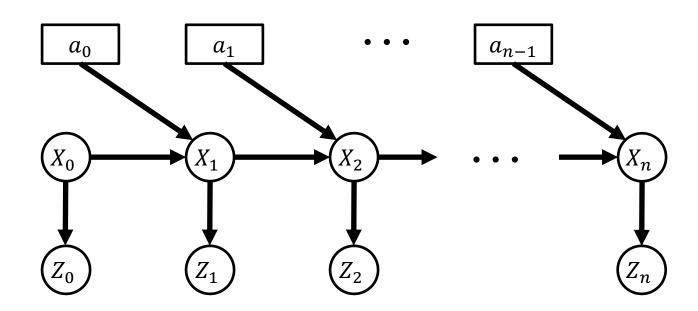
- The motivation for all of this Bayes net machinery was the idea that the history of sensor measurements was interesting. How do we encode this in a Bayes net?
- Recall our sensor model: $P(Z_t | X_t)$.
- This is easy to encode in a Bayes net!



Still More Magic of Bayes Nets

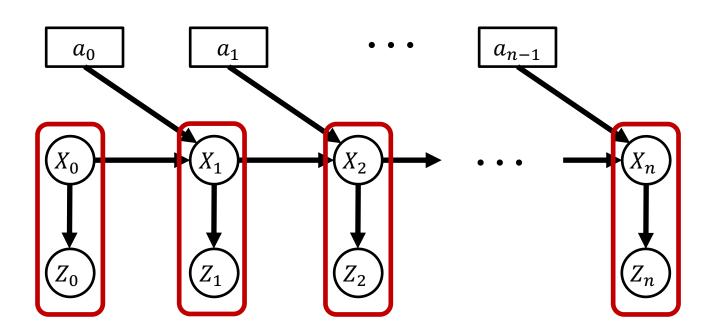
For a controlled HMM with states $X_0, ..., X_n$, and observations $Z_0, ..., Z_n$, the joint distribution is given by:

$$P(Z_0, \dots, Z_n, X_0 \dots X_n | a_0 \dots a_n) = P(Z_0 | X_0) P(X_0) \prod_i P(Z_i | X_i) P(X_i | X_{i-1}, a_i)$$



Simulation Revisited

- Forward simulation is easy for Dynamic Bayes Nets (DBNs).
- Sample initial state x_0 from the prior $P(X_0)$
- For each *k*
 - generate a sample z_k from the distribution $P(Z_k|X_k=x_k)$
 - generate a sample x_{k+1} from the distribution $P(X_{k+1}|X_k=x_k,a_k)$



Perception

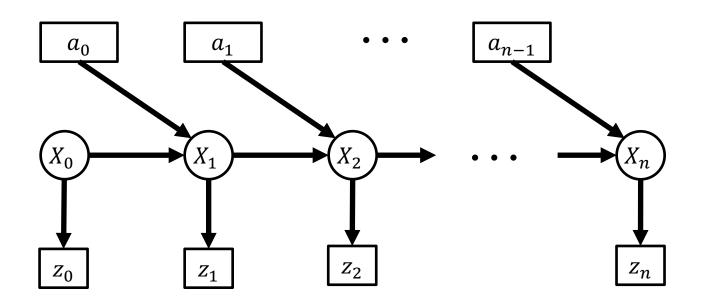
As before, perception is the problem of inferring things about the world given sensor information and context.

For our controlled HMM, we have

- a sequence of given measurements $Z_t = z_t$
- the known sequence of applied actions $a_1, ..., a_n$ and we want to infer the states, $X_1, ..., X_n$
- There is a lot of structure in this problem, and we can exploit this structure to obtain computationally efficient inference algorithms.

Hidden Markov Models (HMMs)

- Notice that in the system shown below,
 - we know $Z_t = Z_t$ for all t
 - We know a_t for all t
- We do not know any of $X_0 \dots X_1$, but we do know that the states form a Markov chain.
- We say that the states, $X_0 \dots X_n$, are hidden.



HMMs are a good model for speech recognition systems:

- Spoken words behave like a Markov chain (if you know the current word, you know a lot about what will be the next word).
- Measurements are audio signals.

Note: If we increase the relevant history, e.g., so that state X_t depends on $X_{t-1}, X_{t-2} \dots X_{t-n}$, we have an nth order Markov chain. Larger n gives better prediction.

Inference in Bayes Nets

Our perception problem is straightforward:

- Given $Z_1 = z_1 \dots Z_n = z_n$, and the sequence of applied actions a_1, \dots, a_n ,
- Infer the states, X_1, \dots, X_n

The description of the problem almost immediately tells us the mathematical specification:

Use $P(X_1, ..., X_n \mid Z_1 = z_1 ... Z_n = z_n, a_1, ..., a_n)$ to determine an estimate of the state sequence.

Most Probable Explanation

Recall the definition of conditional probability:

$$P(A,B) = P(A|B)P(B)$$

• We want to compute P(X|Z,A):

$$P(X|Z,A) = \frac{P(X,Z,A)}{P(Z,A)} \propto P(X,Z,A)$$

• We know how to compute P(X, Z, A)! (Bayes net magic)

$$X = X_1, ... X_n$$

 $Z = Z_1, ... Z_n$
 $A = \alpha_1, ... \alpha_n$

Most Probable Explanation

We are given $Z_t = z_t$, and a_t for all t.

For every possible value of $x_0, ..., x_n$, compute

$$P(X,Z,A) = P(Z_0 = z_0|X_0 = x_0)P(X_0 = x_0)\prod_i P(Z_i = z_i|X_i = x_i)P(X_i = x_i|X_{i-1} = x_{i-1},a_i)$$

Our estimate is given by

$$X^* = arg max_X P(X, Z, A)$$

Not the most efficient algorithm, but in principle, this gets the job done.