CS 3630,
Fall 2025

Lecture 6:
A Vacuum Cleaning Robot:
States and Actions







States are uncertain:
* Prior probability distribution on states

No dependence on past actions

Three simple sensors
* Discrete sensors, discrete conditional distributions
* Continuous sensor, conditional distribution is Gaussian

Perception using Bayes equation:
* Bayes inversion equation to infer state from sensors
* Maximum likelihood estimation (MLE)
* Maximum a posteriori estimate (MAP)
* Sensors are conditionally independent, given state

Deterministic actions make planning easy:
* Formulate decision making as an optimization problem
* Minimize expected cost, minimize worst-case cost, etc.

Learning prior distributions and sensor models
e Counting outcomes and using proportions (discrete)
* Parameter estimation for Gaussian distributions

Trash Sortig Robot







Overview

The state space is more interesting, but still discrete.

Actions are not deterministic.
* Uncertainty in the effects of actions.
* Probability associated to an action’s effects depends on the current state.

* Very simple sensing system

* Perception includes both sensing and context
* An individual measurement from a simple sensor doesn’t provide much information.
* History of sensor observations affects current belief about the world.

Planning is more complex in this scenario.

* Because effects of actions depend on state, we need to think about more than one action, and about
how the effects of actions propagate through time.

e Because there is uncertainty, we plan to maximize expected reward, not deterministic outcomes or goals.

Reinforcement Learning (RL) is appropriate when we don’t have access to large data sets,
and when the robot operates in the same setting for a long period of time.



In this chapter, we consider the following scenario:

* The robot can move in any direction, so its
orientation doesn’t matter.

* The robot is equipped with navigation software
(which is not perfect), so we won’t worry about path
planning from room to room.

States * To clean a specific room, the robot can execute a
preprogrammed motion (maybe boustrophedon,
maybe random), so we don’t need to worry about
the exact position of the robot in a specific room.

 The robot has built-in collision avoidance, so no need
to have a detailed map of object locations

» The room in which the robot is currently located is
the only interesting piece of information for this
robot.




State Space

For this robot, the state, X, is defined as the room in which
the robot is currently located:

X € {living room, kitchen, of fice, hallway, dining room}
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To simplify notation, we’ll sometimes write X € {L,K, 0, H, D}.




State Space

The state space is the set of all states, along with e Our robot can move directly from the living room
connectivity information (i.e., neighborhood to the kitchen or hallway, but cannot move
relationships between states). directly from the kitchen to the office.

In this case, we can represent the state space by a * This representation will be useful for both

simple undirected graph. planning and for perception.
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Prior probability distribution

* For our trash sorting robot, the prior probability distribution on state described our belief
(before making any sensor measurements) about the type of object in the work cell.

* For our vacuum cleaning robot, the prior probability distribution on state describes our
belief about the initial location of the robot: When the robot “wakes up,” where will it be?

* |In this chapter, we’ll assume that the robot always returns to its charging station in the
office after operation (perhaps with the help of a human, or a very smart dog).

* Therefore, our prior distribution on state at the start of the day is given by:

State, x
Living room
Kitchen
Office
Hallway

Dining room

PIX=x) * P(X = office) = 1implies that there is no uncertainty
0 in our initial state.

0

1 e BUT... because there will be uncertainty associated to the
0 effects of actions, this certainty will not long endure after
- the robot begins its daily activities.



Discrete time systems

For our trash sorting robot, there was no need to consider the passing of time.
e Past actions did not affect future performance,
* Actions were executed in a single time step.
* The state, X, denoted the state at the present time, and we never needed to represent the state at any other time
(neither past nor present).
For our vacuum cleaning robot, the passing of time is important.

* We know the location of the robot at the start of the day, but after the robot executes its first actions, there will be
uncertainty in the robot’s state.

* The state could change each time the robot executes an action.

* Sensor measurements depend on state, and state depends on actions; therefore, the sequence in which sensor
measurements occur will give us information about the world that can be used for perception.

Most of the time, nothing interesting happens.

* We don’t need to keep track of the state for all t € R,,.

* We only need to keep track of state at discrete time instants, t € {ty, t; ... }, where {ty, t; ... } is the set of times at which
something “interesting” occurs.

We will represent the state at time t by X;, and we’ll simplify notation by simply using t € {0,1,2 ... }.

The initial state of the robot (i.e., when it wakes up in the morning) is therefore: Xy = of fice.



Belief state

* |t will sometimes be convenient to refer to the entire probability distribution at time ¢.

* We refer to this distribution as the belief state at time t, denoted by b;.

* The belief state is a row vector whose elements correspond to the possible states.

* Inour case, there are five possible states, so b; has five elements.
e Att = 0, the belief state is merely our initial distribution:

by =[P(Xo=L), PXo=K) PXo=0) PXo=H) P(X,=D)]

=[0 0 1 0 0]
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The belief state b;, 4 is conditioned on the initial state xy and all actions taken until time t.

We need to learn about actions...

> Note that we use th+1 to denote the transpose of by, (for formatting purposes).



* Our vacuum cleaning robot has four actions:

» Move left, right, up, or down (relative to the map
of the house)

 Effects of actions are probabilistic.
 Effects of actions depend on the current state.

ACt IONS » Use conditional probabilities to model the effects
of actions.

* For a specific sequence of actions (e.g., up, right,
down, left), computing probabilities for states in the
distant future seems complicated.

» Happily, thanks to the Markov property, these
computations are not so difficult.




Actions

Our robot has four actions: We can represent this by a slight modification to our state

up, down, left, right. space:
- Effects of actions are context dependent. * Instead of using an undirected graph, use a directed graph.

+  Actions potentially cause a change in state. * Each edge (u, v) corresponds to an action meant to

. ti tion in state X q change the state from x; = uto x;.1 = v.
XecULing an action in state A, proauces e Sadly, our actions are not deterministic, so we need to do
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- I N
.. ) right
Liviug o om U ldheu
\l down Living
Room
D up down up down
OFF' o - "‘“"V right right
el i a
right H‘“‘f y left o Dining
] I Room
L ) 5 left left




Uncertainty in the effects of actions

* We will model uncertainty in the effects of actions by using conditional probability
distributions.

* In particular, we define the conditional probability distribution for the next state, X;, 1,
given that the current state, X; is room x, and that action a; was executed at time t.

P(Xt41 = Xe41 lae, Xe = x¢)

Example: If we are in the Office at time t and execute the move right action, P(X;,, = H | right ,X; = 0)
denotes the conditional probability of arriving to the Hallway.



Uncertainty in the effects of actions

* We will model uncertainty in the effects of actions by using conditional probability
distributions.

* In particular, we define the conditional probability distribution for the next state, X;, 1,
given that the current state, X; is room x, and that action a; was executed at time t.

P(Xei1)= xep1(lae e = x¢)

Random variable The random state

that denotes the X, took the value x;.
state at time t + 1.

Action taken
at time t.

Example: If we are in the Office at time t and execute the move right action, P(X;,, = H | right ,X; = 0)
denotes the conditional probability of arriving to the Hallway.



he Markov property

. ?(uppolge)\éve stzirt in state X, = O, execute two actions, right, up, and move through the states,
1 — 11,4 = L.

* What can we say about X3 if we now execute the action right? Or, more formally, what can we say
about the conditional pro%ablllty

P(X; = x5 |right,up,right,X, = 0,X; = H,X, = L)

Key Observation:

> If we know that the robot is in the Living Room at time t = 2 and executes the action a, = right,
our belief about X5 is completely independent of where the robot may have been at timest = 0,1
or of the actions taken at times t = 0, 1.

» More generally, if we know the current room (aka , X.) then the history of how the robot came to
be in that room will not affect our belief about what happens when the robot executes its next
action.

» This is an example of a Markov property.



The Markov property

e Using this Markov property, we can write

P(X3 = x5 | right,up,right, Xy, = 0,X; = H,X, = L) = P(X3 = x3 |right,X, = L)



The Markov property

e Using this Markov property, we can write

P(X3 = x5 I‘ right, up,

|

T'l.ght,XO — O,Xl — H,X2 — L) — P(X3 = X3

What the robot has
done before time t.

Where the robot has What the robot
been before time t. does now, at time t.

|right,

X2

= L)

|

Where the robot is
now, at time t.

P(X¢41 = X¢41 | @p,

Our Markov assumption:

@y Xo = X, o, X¢ = X¢) = P(Xp41 = Xpp1lae, Xe= x¢)




Next Lecture: More

Vacuum Cleaning
Robot Stuff

* Uncertainty in actions: Markov
Decision Process (MDP)

e Uncertainty in sensing for a
sequence of measurements:
Hidden Markov Model (HMM)

* Planning using Value Iteration

* Reinforcement Learning (RL)




