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States and Actions



Lectures 3-5 Recap



Trash Sorting Robot• States are uncertain:
• Prior probability distribution on states

• No dependence on past actions
• Three simple sensors

• Discrete sensors, discrete conditional distributions
• Continuous sensor, conditional distribution is Gaussian

• Perception using Bayes equation:
• Bayes inversion equation to infer state from sensors
• Maximum likelihood estimation (MLE)
• Maximum a posteriori estimate (MAP)
• Sensors are conditionally independent, given state

• Deterministic actions make planning easy:
• Formulate decision making as an optimization problem
• Minimize expected cost, minimize worst-case cost, etc.

• Learning prior distributions and sensor models
• Counting outcomes and using proportions (discrete)
• Parameter estimation for Gaussian distributions



A Vacuum Cleaning Robot

Chapter 3



Overview
• The state space is more interesting, but still discrete.
• Actions are not deterministic.

• Uncertainty in the effects of actions.
• Probability associated to an action’s effects depends on the current state.

• Very simple sensing system
• Perception includes both sensing and context

• An individual measurement from a simple sensor doesn’t provide much information.
• History of sensor observations affects current belief about the world.

• Planning is more complex in this scenario.
• Because effects of actions depend on state, we need to think about more than one action, and about 

how the effects of actions propagate through time.
• Because there is uncertainty, we plan to maximize expected reward, not deterministic outcomes or goals.

• Reinforcement Learning (RL) is appropriate when we don’t have access to large data sets, 
and when the robot operates in the same setting for a long period of time.



States

In this chapter, we consider the following scenario:
• The robot can move in any direction, so its 

orientation doesn’t matter.
• The robot is equipped with navigation software 

(which is not perfect), so we won’t worry about path 
planning from room to room.
• To clean a specific room, the robot can execute a 

preprogrammed motion (maybe boustrophedon, 
maybe random), so we don’t need to worry about 
the exact position of the robot in a specific room.
• The robot has built-in collision avoidance, so no need 

to have a detailed map of object locations
Ø  The room in which the robot is currently located is 

the only interesting piece of information for this 
robot.



State Space
For this robot, the state, 𝑋, is defined as the room in which 
the robot is currently located:

𝑋 ∈ 𝑙𝑖𝑣𝑖𝑛𝑔	𝑟𝑜𝑜𝑚, 𝑘𝑖𝑡𝑐ℎ𝑒𝑛, 𝑜𝑓𝑓𝑖𝑐𝑒, ℎ𝑎𝑙𝑙𝑤𝑎𝑦, 𝑑𝑖𝑛𝑖𝑛𝑔	𝑟𝑜𝑜𝑚

A typical vacuum 
cleaning robot.

For all of the robot locations shown here, 
we have:

𝑿 = 𝒍𝒊𝒗𝒊𝒏𝒈	𝒓𝒐𝒐𝒎

The exact location within the living room 
is not relevant for this robot.

To simplify notation, we’ll sometimes write  𝑿 ∈ 𝑳,𝑲, 𝑶,𝑯,𝑫 .



State Space
The state space is the set of all states, along with 
connectivity information (i.e., neighborhood 
relationships between states).

In this case, we can represent the state space by a 
simple undirected graph.

Living
Room Kitchen

Office Dining
RoomHallway

• Our robot can move directly from the living room 
to the kitchen or hallway, but cannot move 
directly from the kitchen to the office.

• This representation will be useful for both 
planning and for perception.



Prior probability distribution
• For our trash sorting robot, the prior probability distribution on state described our belief 

(before making any sensor measurements) about the type of object in the work cell.
• For our vacuum cleaning robot, the prior probability distribution on state describes our 

belief about the initial location of the robot: When the robot “wakes up,” where will it be?
• In this chapter, we’ll assume that the robot always returns to its charging station in the 

office after operation (perhaps with the help of a human, or a very smart dog).
• Therefore, our prior distribution on state at the start of the day is given by:

State, x P(X=x)

Living room 0

Kitchen 0

Office 1

Hallway 0

Dining room 0

• 𝑃 𝑋 = 𝑜𝑓𝑓𝑖𝑐𝑒 = 1 implies that there is no uncertainty 
in our initial state.

• BUT… because there will be uncertainty associated to the 
effects of actions, this certainty will not long endure after 
the robot begins its daily activities.



Discrete time systems
• For our trash sorting robot, there was no need to consider the passing of time.

• Past actions did not affect future performance,
• Actions were executed in a single time step.
• The state, 𝑋, denoted the state at the present time, and we never needed to represent the state at any other time 

(neither past nor present).

• For our vacuum cleaning robot, the passing of time is important.
• We know the location of the robot at the start of the day, but after the robot executes its first actions, there will be 

uncertainty in the robot’s state.
• The state could change each time the robot executes an action.
• Sensor measurements depend on state, and state depends on actions; therefore, the sequence in which sensor 

measurements occur will give us information about the world that can be used for perception.

• Most of the time, nothing interesting happens.
• We don’t need to keep track of the state for all 𝑡 ∈ ℝ!".
• We only need to keep track of state at discrete time instants, 𝑡 ∈ {𝑡", 𝑡#…}, where {𝑡", 𝑡#…} is the set of times at which 

something “interesting” occurs.

• We will represent the state at time 𝒕 by 𝑿𝒕, and we’ll simplify notation by simply using 𝒕 ∈ 𝟎, 𝟏, 𝟐… .
• The initial state of the robot (i.e., when it wakes up in the morning) is therefore:  𝑋" = 𝑜𝑓𝑓𝑖𝑐𝑒.



Belief state

• The belief state 𝑏#$% is conditioned on the initial state 𝑥" and all actions taken until time 𝑡.

𝑏#$%& =

𝑃 𝑋#$%	 = 𝐿	|	𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$%	 = 𝐾	|	𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$%	 = 𝑂	|	𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$%	 = 𝐻	|	𝑎%…𝑎#, 𝑥"
𝑃 𝑋#$%	 = 𝐷	|	𝑎%…𝑎#, 𝑥"

Ø   Note that we use 𝑏#$%&  to denote the transpose of 𝑏#$% (for formatting purposes).

• It will sometimes be convenient to refer to the entire probability distribution at time 𝑡.
• We refer to this distribution as the belief state at time 𝑡, denoted by 𝑏#.
• The belief state is a row vector whose elements correspond to the possible states.
• In our case, there are five possible states, so 𝑏# has five elements.
• At 𝑡 = 0, the belief state is merely our initial distribution:

𝑏" = 𝑃(𝑋" = 𝐿), 𝑃 𝑋" = 𝐾 𝑃 𝑋" = 𝑂 𝑃 𝑋" = 𝐻 𝑃 𝑋" = 𝐷
                
                                          = 0 0 1 0 0

We need to learn about actions…



Actions

• Our vacuum cleaning robot has four actions:  
Ø  Move left, right, up, or down (relative to the map 

of the house)

• Effects of actions are probabilistic.
• Effects of actions depend on the current state.
Ø  Use conditional probabilities to model the effects 

of actions.

• For a specific sequence of actions (e.g., up, right, 
down, left), computing probabilities for states in the 
distant future seems complicated. 

Ø  Happily, thanks to the Markov property, these 
computations are not so difficult.



Actions

Living
Room Kitchen

Office Dining
RoomHallway

up up downdown

left left

left

rightright

right

Our robot has four actions: 
   up, down, left, right.
• Effects of actions are context dependent.
• Actions potentially cause a change in state.
• Executing an action in state 𝑋# produces 

state 𝑋#$%

up

down

right left

We can represent this by a slight modification to our state 
space:
• Instead of using an undirected graph, use a directed graph.
• Each edge (𝑢, 𝑣) corresponds to an action meant to 

change the state from 𝑥$ = 𝑢 to 𝑥$%# = 𝑣.
• Sadly, our actions are not deterministic, so we need to do 

a bit more work.



• We will model uncertainty in the effects of actions by using conditional probability 
distributions.
• In particular, we define the conditional probability distribution for the next state, 𝑋OPQ, 

given that the current state, 𝑋O is room 𝑥O, and that action 𝑎O was executed at time 𝑡.

𝑃 𝑋OPQ = 𝑥OPQ	 𝑎O, 𝑋O = 𝑥O)

Uncertainty in the effects of actions

Example: If we are in the Office at time t and execute the move right action, 𝑃 𝑋$%# = 𝐻	 𝑟𝑖𝑔ℎ𝑡	, 𝑋$ = 𝑂) 
denotes the conditional probability of arriving to the Hallway. 



• We will model uncertainty in the effects of actions by using conditional probability 
distributions.
• In particular, we define the conditional probability distribution for the next state, 𝑋OPQ, 

given that the current state, 𝑋O is room 𝑥O, and that action 𝑎O was executed at time 𝑡.

𝑃 𝑋OPQ = 𝑥OPQ	 𝑎O, 𝑋O = 𝑥O)

Uncertainty in the effects of actions

Random variable 
that denotes the 
state at time 𝑡 + 1. Value taken 

by 𝑋$%#	at 
time 𝑡 + 1. 

Action taken 
at time 𝑡. 

The random state 
𝑋$	took the value 𝑥$.

Example: If we are in the Office at time t and execute the move right action, 𝑃 𝑋$%# = 𝐻	 𝑟𝑖𝑔ℎ𝑡	, 𝑋$ = 𝑂) 
denotes the conditional probability of arriving to the Hallway. 



The Markov property
• Suppose we start in state 𝑋! = 𝑂, execute two actions, right, up, and move through the states,  
𝑋" = 𝐻,𝑋# = 𝐿.

• What can we say about 𝑋$ if we now execute the action right?  Or, more formally, what can we say 
about the conditional probability

𝑃 𝑋$ = 𝑥$	 𝑟𝑖𝑔ℎ𝑡, 𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑋! = 𝑂, 𝑋" = 𝐻,𝑋# = 𝐿)

Key Observation:
Ø   If we know that the robot is in the Living Room at time 𝑡 = 2 and executes the action 𝑎# = 𝑟𝑖𝑔ℎ𝑡, 

our belief about 𝑋$ is completely independent of where the robot may have been at times 𝑡 = 0,1 
or of the actions taken at times 𝑡 = 0,1.

Ø   More generally, if we know the current room (aka , 𝑋%) then the history of how the robot came to 
be in that room will not affect our belief about what happens when the robot executes its next 
action.

Ø  This is an example of a Markov property.



The Markov property
• Using this Markov property, we can write

𝑃 𝑋W = 𝑥W	 𝑟𝑖𝑔ℎ𝑡, 𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑋X = 𝑂,𝑋Q = 𝐻,𝑋Y = 𝐿) = 𝑃 𝑋W = 𝑥W	 𝑟𝑖𝑔ℎ𝑡, 𝑋Y = 𝐿)



The Markov property
• Using this Markov property, we can write

𝑃 𝑋W = 𝑥W	 𝑟𝑖𝑔ℎ𝑡, 𝑢𝑝, 𝑟𝑖𝑔ℎ𝑡, 𝑋X = 𝑂,𝑋Q = 𝐻,𝑋Y = 𝐿) = 𝑃 𝑋W = 𝑥W	 𝑟𝑖𝑔ℎ𝑡, 𝑋Y = 𝐿)

Where the robot has 
been before time 𝑡.

What the robot has 
done before time 𝑡.

Where the robot is 
now, at time 𝑡.

What the robot 
does now, at time 𝑡.

Our Markov assumption:

𝑷 𝑿𝒕P𝟏 = 𝒙𝒕P𝟏	 𝒂𝟎, …𝒂𝒕, 𝑿𝟎 = 𝒙𝟎, … , 𝑿𝒕 = 𝒙𝒕) = 𝑷 𝑿𝒕P𝟏 = 𝒙𝒕P𝟏 𝒂𝒕, 	𝑿𝒕= 𝒙𝒕	)



Next Lecture:  More 
Vacuum Cleaning 
Robot Stuff

• Uncertainty in actions: Markov 
Decision Process (MDP)
• Uncertainty in sensing for a 

sequence of measurements: 
Hidden Markov Model (HMM)
• Planning using Value Iteration
• Reinforcement Learning (RL)


