CS 3630,
Fall 2025

Lecture 5:

A Trash Sorting Robot:
Perception, Planning, and

“Learning”




Project 2 and Quiz 2

» All details for this will be announced via Piazza. If you don’t monitor Piazza for course
announcements, now is the time to start doing so.
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Lecture 4 Recap




Sensing

For our trash sorting robot, we defined three sensors:

e Conductivity: A binary sensor that outputs True or
False, based on measurement of electrical
conductivity.

* Camera w/detection algorithms: This sensor
outputs bottle, cardboard, or paper, based on a
detection algorithm (note: it cannot detect scrap
metal or cans).

e Scale: Outputs a continuous value that denotes the
measured weight in kg of the object.

These three kinds of measurements are each treated
using distinct probabilistic models.



Fusing multiple sensors

* The Conductivity sensor

* does a good job of discriminating between the events
{bottle, cardboard, paper} and {scrap metal, can},

* but is unable to resolve ambiguity in either of these events.

* The computer vision sensor

* does a good job of discriminating between {bottle, cardboard, paper},

* but is useless for {scrap metal, can}.

Category (C)  P(False|C) P(True|C) Category
Cardboard 0.99 0.01 cardbosrd
Paper 0.99 0.01 i i
Cans 0.1 0.9 can
scrap metal
Scrap Metal 0.15 0.85 -
otlie
Bottle 0.95 0.05

Conductivity Sensor

bottle cardboard paper
0.02 0.88 0.1
0.02 0.2 0.78

0.333333  0.333333 0.333333
M333333 0333333 8333333

0.95 0.02 0.03

Computer Vision Sensor

We’ll see how to combine
information from
different sensors soon.



Conditional densities

* Weight sensor values can be modeled as a random variable
characterized by conditional probability densities:

Category Mean u Std dev o Category (C) fwic(W|C)
Cardboard 20 10 Cardboard N(20,0 = 10)
Paper 5 5 Paper N(5,0 =5)
— = 5 E— Can N(15,6 = 5)
Scrap metal 150 100 Scrap metal N(150,0 = 100)
Bottle 300 200 Bottle N(300,0 = 200)

1 _(x—150)*
x|C = Scrap Metal) = e 21007
fX|c( | p ) L0V




* The Gaussian has two defining parameters.

* The mean, u

he Gaussian distribution

* Defines the “location” of the pdf.
* The pdf is symmetric about the mean.

 The variance, g*

* Defines the “spread” of the pdf.

e Standard deviation is o.

* The defining equation is given by:
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Perception

Perception is the process of inferring the state of the
world (and possibly of the robot itself) using sensor
measurements and other contextual information.

In this chapter, we consider two approaches to
perception that use conditional probability
distributions:

e Maximum Likelihood Estimation
* MAP Estimation

We will also see how to combine measurements from
multiple sensors (sometimes called sensor fusion) in a
probabilistic framework.



Sensing vs perception

* Sensor models are forward models.
* Given a description of the world and a model of the sensor,
» Determine the conditional probability

P(Observation O | State S)

* Perception is concerned with the inverse problem.
* Given a set of observations and (possibly extra contextual information),
» Infer the probability map associated to the world state

P(State S | Observation O, Context)

e Context could include previous sensor readings, knowledge about the robot’s
actions, etc.



Bayes theorem

We want to compute:

q_r 2f ieat N 0
\u .(m‘ A \r
Dn\llm ok, ’.

\6 tu u
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P(State S | Observation O, Context)

But we are given

P(Observation 0| State S)

Bayes derived his famous inversion equation for just this purpose

Bayes is probably buried here
(Bunhill Fields Cemetery, London).



Bayes Theorem

We know that conjunction is commutative:
P(S,0) =P(0,S)

Using the definition of conditional probability:

P(S|0)P(0) = P(S,0) = P(0,S) = P(O|S)P(S)

N\ “

P(S|0)P(0) = P(0|S)P(S)

P(0|S)P(S)

P(S|0) = P(0)




Bayes Theorem

We know that conjunction is commutative:

P(0|S)P(S)
P(0)




Example

We roll one die, and an observer tells us things about the outcome.
We want to know if X = 4.

» Before we know anything, we believe P(X = 4) = %. PRIOR

* Now, suppose the observer tells us that X is even. EVIDENCE

1
P(X even | X=4)P(X=4) _ IxZ
P(X even) %

P(X =4]|Xeven) =

1
=3 Bayes

* We could also use Bayes to infer P(X = even | X = 4):

1 1
= _X_ L[] .
P(X even | X = 4) = 2 4”:&';3;“ even) — 2 =1 Somewhat less interesting
6




Interpreting Bayes theorem

* The individual terms on the right-hand side have intuitive interpretations

* We observe 0, and we want to update our belief about S based on this
observation.

* |n this case,

* We can think of 0 as evidence and P(0) is the probability of observing this particular
piece of evidence.

 The function L(S;0) « P(0]|S) is called the likelihood of the state S given o.
* The probability P(S) is the prior probability for S.

likelihood - prior  P(0[S)P(S)

P(Slo) = evidence P(0)

P(S|lo) «x L(S;0)P(S) = likelihood - prior




About likelihoods...

Why do we call the conditional probabilityL(S; 0) « p(0|S) a likelihood, but
we call p(5|o) the posterior??

* We define the likelihood L(S; 0) to be a function of S, not a function of o,
i.e., the likelihood is a function of the condition, not the observed event:

L(S;0) o< p(o]S)

* Note:L(S; 0) is not a probability.
* In particular, ), L(S =s;0) 1



Example

* For our conductivity sensor, we defined the conditional probabilities p(0|C) for each category C.

* The rows in this table represent conditional probabilities of sensor readings given object category.

* The columns in this table represent the likelihood of each category for a given sensor measurement.

Category (C)
Cardboard
Paper

Cans

Scrap Metal
Bottle

Likelihoods of categories — they do not sum to one!

P(False|C) P(True|C)
0.99 0.01
0.99 0.01
0.1 0.9
0.15 0.85
0.95 0.05

L(C; False) L(C; True)

Conditional probabilities — they sum to one!
p(O|Cardboard)

p(O|Paper)

p(O|Cans) A function of observation 0!
p(O|Metal)

p(O|Bottle)

A function of C, parameterized by
the particular sensor reading, o!



Perception

We’ve seen a lot of probability theory in the last minutes. How can we
use these results to make inferences about the state of the world?

* Maximum Likelihood Estimation — simply use the likelihood

* MAP (Maximum A Posteriori) Estimation — Maximize the posterior
given the sensor reading.

We’ll look now at each of these.



Maximum likelihood estimation

Recall Bayes law:

P(0|C)P(C)
P(o) '

» Recall that P(0) does not depend on the category of the object. It merely acts to normalize the posterior
distribution.

P(Clo) = o = sensor reading, C = object category

« Suppose all categories are equally probably, i.e., P(C) = %for each of our n Categories.

* We can now write Bayes law in a simple form:

P(Clo) < P(0o|C) « L(C; 0),

> In this special case, maximizing the likelihood L(C; o) is equivalent to maximizing the posterior probability
P(Category|observation)!



Maximum likelihood Estimation

We typically write the MLE problem as an optimization:

C* = argmng(C; 0)
in which the maximization is done w.r.t. the set
C = {Cardboard, Paper, Can, Scrap Metal, Bottle}

NOTE: For a given measurement, this maximization is super easy — only
five values to examine.



Likelihood for continuous measurements

Recall that our weight sensor returns a continuous r.v. from a Gaussian distribution:

_(w—p)?
e 2072

fW|c(W|C) =

oV2Tm
The likelihood function for category c is given by:

Category (C)  fuc(WIC)

1 _(W_Iic)z
Cardboard N(20,10) L(c;w) = e  20¢
Paper N(5,5) O'C\/ 21T
Can N(15,5)
Scrap metal N(150,100)
For example,
Bottle N(300,200) 1 (W—150)?

L(Scrap Metal;w) = e 21002

10vV21



Example

weight 50
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Likelihood

* In Section 2.4, you will find code to
compute the likelihoods for all five
categories, given a value for weight.

* You can play with this using the
slider for weight.

For this example, we have chosen
w = 50.

* On the left are the five conditional
probabilities for the categories

* On the right are the likelihood
values for w = 50.

In this example, the maximum
likelihood estimate is Scrap Metal.



Example (cont)

* As the weight increases, the maximum likelihood
category changes from Paper to Can to Cardboard
to Scrap Metal to Bottle.

* For example, Scrap Metal wins out for a long
interval between approx. 45g and 270g

* Bottle becomes the MLE above 270g.

The transition points are known as decision
boundaries.

These represent the locations in measurement space
where our ML estimator changes its estimate.
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VILE solution as a function of weight:
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On the graph above you should see that, at as the weight increases, the maximum likelihood category changes
respectively from paper t0 can to cardboard, then scrap metal wins out for a long interval between approx.
45¢g and 270g, after which finally bott1e becomes the MLE above 270g. The transition points are known as
decision boundaries, and represent the locations in measurement space where our ML estimator changes its
estimate.



MAP estimation

* The MAP estimate is the category that maximizes the posterior probability of the
category, C, given the observation, o, i.e., C* = arg max P(Clo)

P(o|C)P(C)
P(0)

* Recall that Bayes gives the posterioras P(C|o) = o« L(C;0)P(C)

* Hence, maximizing the posterior is

arg max P(clo) =arg max L(c;0)P(c)

* and the maximum a posteriori (MAP) estimate is

c* =argmaxL(c;0)P(c)
ceC



Sensor fusion

* Suppose we have measurements from two sensors, say z; and z,.
* How can we combine these measurements?

* We can still apply Bayes law:

P(z4,2z,|C)P(C)
P(leZZ)

P(C|z1,2,) = = nP(z4,2,|C)P(C)

But what do we do with P(z¢, z,|C)?

* We haven’t seen anything like conditional joint probabilities yet...



Conditional independence

* If we don’t know the category, then measuring Z; might influence what we expect for Z,.

* For example, if the object weight is small, we might expect that the object conductivity will be
False, since Paper or Cardboard would be likely in this case.

* However, if we knew the object category, then observing Z;would not influence what we
expect for Z,

If we know the object is paper, it’s weight will not change our expectation that conductivity
will be False.

* This property is known as conditional independence.

We say that two random variables, say Z; and Z,, are conditionally independent given C, if

P(Z1»Zz|C) — P(Z1|C)P(ZZ|C)



Sensor fusion

* Itis straightforward to combine sensor measurements z; and z, if they are
conditionally independent:

P(C|zy,23) = nP(z11C)P(2;|C)P(C)
= L(C; z,)L(C; z;)P(C)

* The posterior is proportional to the product of the likelihoods, weighted by the prior.

* The MAP estimate is now given by:

C* = arg max L(C;z)L(C; z,)P(C)

» This idea can be extended to arbitrarily many sensor measurements.



Planning

Planning is easy for the trash sorting robot.
* Any action can be executed at any time.
* Execution of actions has no effect on future actions.

» A “plan” is merely a single action, taken right now.

We'll see four approaches:

* Maximize probability of making the right action
using only prior information

* Minimizing worst-case cost using only prior
information

* Minimizing expected cost using only prior
information

* Incorporating sensor data



Relying on priors

* If we don’t have any sensors available, the simplest decision-making strategy is to
merely maximize the probability of choosing the right action.

Category | P(C) | Right Based on our priors:
Action * Placing trash in the paper bin would be the right

cardboard 0.20  Paper Bin action 50% of the time.
* Placing trash in the metal bin would be the right

RISl 0.30  Paper Bin action 45% of the time.
can 0.25 Metal Bin * Placing trash in the glass bin would be the right action
scrap 0.20 Metal Bin 5% of the time.
metal

» Always place trash in the paper bin to maximize the
bottle 0.05  Glass Bin probability of doing the right thing.

* BUT... this approach doesn’t take costs into account.
e Suppose putting paper in the metal bin could destroy trash sorting equipment.
»  We can do better...



Minimizing worst-case outcomes

In order to account for the cost of taking the wrong actions, we assigned a cost to each
action for each category:

COST

cardboard

paper

can

scrap
metal

bottle

glass bin

metal bin

paper bin

10

nop

A conservative approach to decision making is to choose an
action that minimizes the worst-case costs.

From the table, we see that the worst-case costs are as
follows:

 Glass bin: 6

* Metal bin: 2

e Paper bin: 10

* Nop:1

If we want to minimize the worst-case cost, we simply
choose Nop, whose cost never exceeds 1.

This approach is very conservative indeed. Now, rather than take any risk, the robot
merely stands motionless, letting each piece of trash pass along to human operators.



Minimizing expected cost

 If the robot will operate for a prolonged period of time, we might prefer to minimize the average cost

over a long time horizon.

* We've seen how to do this using the concept of expectation.

* Let cost(a, c) denote the cost of applying action a to an object of category c.

Elcost(a,C)] = 2 cost(a,c)P(C = ¢)

COST

Card
board

paper

can

scrap
metal

bottle

Expected
Cost

glass
bin

0

3.2

metal
bin

2

paper
bin

10

3

3.4

nop

1

1.0

P(w)

0.20

0.30

0.25

0.20

0.05

c€E)

Simply compute the expected cost for applying each action
under the prior distribution on categories, as we have seen in
a previous lecture.

Now it’s a simple matter to see that placing the object in the
metal bin is the action that minimizes the expected cost.



Incorporating sensor data

To incorporate sensor data, we merely modify the expectation above so to use P(C = ¢|0 = 0)
instead of the prior P(C = c¢). This is called the conditional expectation.

E[cost(a,C)|0 = o] = 2 cost(a,c)P(C = c|0 = o)

ce
Choosing the best action can now be framed as a minimization problem:

a* = argmin E[cost(a,C)|0 = o]
a

Note that the observation S = o, is given, and the expectation is taken with
respect to the random category C.



Multiple sensors

If we have multiple sensor readings, say Z; = 74, ... Z,, = Z, we merely condition
on the joint event:

Elcost(a,C)|Zy = z1, .2y = z,] = z cost(a,c)P(C =cl|Zy =2y, ... 2y = Zy)

cell
Choosing the best action can again be framed as a minimization problem:

a* = argmin E|cost(a,C)|Z, = z4, ... Z,, = zy,]
a

If the sensor data are conditionally independent given the category C, this
computation can be factored, as we saw earlier.



In this chapter, all of the useful information is
characterized using probability distributions.

We’'ll see how to use statistical methods to estimate
parameters of probability distributions:

Lea N | ng * General definitions for mean and variance (not just
for the Gaussian case)

* Estimating the mean and variance

 Unbiased estimators




Learning probability distributions

If the real world can be characterized by probability distributions, the obvious
question is

“How do we know what is the right probability distribution?”

We'll answer this in two steps:
1. Develop a set of parameters that characterizes a probability distribution.

2. Develop methods to estimate those parameters from data.



he mean, u

* For a discrete probability distribution with pmf py, the mean, u, is defined as

n

p=EX] = ) xpx(x)

=1

* For a continuous distribution, the mean is defined as

i = E[X] = j xfie () dx

 For a Gaussian distribution, we have

(x—w)* With a little help from a friend in

Xfy(x)dx = Jx e 20° dx=u an advanced calculus class.
f oV2m

> For a Gaussian distribution, the parameter u, the mean, is equal to E[X]!



Estimating the mean

* The mean is one of the two parameters of a Gaussian distribution.
* |n fact, the mean is a valuable piece of information about every distribution we will encounter.

» It's worth spending some time developing a method to estimate .
You all know the usual estimator. For a data set {x;};=1 y, the estimate fi is given by

A 1
==X

Is this a good estimator?
How can we know if it’s a good estimator?
What properties should a good estimator have?



Unbiased estimators

Definition: The estimator {1 is said to be an unbiased estimator of the mean yu if E[fi] = u.
On average, over many trials, {i will be a good approximation of u.

Is our estimator unbiased? Let’s see.

ey,
Ela] = E[ XXi] There’s a lot of

good news on
this slide!

Luckily, Expectation is linear!
E[Ya;X;] = Yo, E[X;]

Therefore:
E[l X]——l E[X]——1 u——lNu——u
NZ‘ NZ ' NZ N

~ 1 . . . - L. .
> U= ﬁin is an unbiased estimator of the mean of a distribution!

* We never used any property of the specific distribution.

» This works for both continuous and discrete random variables (replace sums by integrals)!



Expectation is linear (an aside)

Expectation is linear: E|[Ya;X;| = Y o;E[X|]
Sketch of proof (for two rv’s):
E[aX + Y] = ZiZj(axi + By)pxy (x;, %)) Two random variables, X and Y, with joint pmf pyy

= ZiZj “xiPXY(xi»J’j) + ZiZj IBYijY(xi;:Vj) Apply distributivity

=a ;X %iPxy(xi,¥j) + B2 Yj LiPxy(Xi,Yj)  Factor the sums

= aE|X] + BE[Y] Apply the definition of expectation.

We can easily extend this to continuous r.v.’s by replacing summations with integrals, and pmf’s by pdf’s.



Variance

* Consider a random variable with mean (.
* The variance, o2, is defined as the expected value of the squared distance to the mean:
0 =E[(X — w?]

* For a Gaussian distribution, we have

5 5 1 _(x_ﬁé)z 5 With a lot of help from a friend in
(x — ,Ll) fx(x)dx = (x — ﬂ) e 20° dx=o0 an advanced calculus class.
oV 2T

» For a Gaussian distribution, it’s not a coincidence that we use the term variance for the
parameter o



Estimating the variance

* The obvious way to estimate the variance is to merely calculate the average of the squared
distance of the x; from fi:

1
oy = ~ L% — )?

* |s this an unbiased estimate? (Hint: Notice the subscript.)

N-—-1
N

El6,%] = E [ X — 2] =~ 0% < o

* This estimate is biased, but it’s easy to fix:

1
6% = RS f)?



Biased estimate of variance (an aside)

Use every algebra trick you know...

1 ) 2_1" ‘__2 T
el X, S_nZ(X, X)

n

X =

=1
then S2 is a biased estimator of 2, because ‘

E[$?] = E[%'XZ; (X, _)—{)2] _E l%g ((X:‘ - _#))2] E[S’| =E % Z:;(X,- p)? - —(X #)z —p)° ]

T _ _ Sk P = Z(X —p) e (X =)+ (X -
B[ 3 (6 - 2(X - )+ (X )| Z - g ’ "]

i=1
n ) n 5 i = E — — 2 X ﬂ) -+ (X ,u,)
5| (xi—mz—%(X—u)z(x,-—u)+1(X—u)~21] Z ]
- i=1 i=1 i=1
_ 1 n ) 92 n 1 ) — E — Z X I-l') ]
=B L K- - 2 YK )+ (Ko

=B |3 (- u)Q] - | (X -y

B [ 30— 2 ) 3+ (X ]

= 1 = —E[(X-p)?|=(1-=)0* <o’
To continue, we note that by subtracting p from both sides of X = — Z X, we get [( “) ] ( n)
n “

n

SRR S

*See Wikipedia Bias of an estimator, or your favorite statistics book.

=) im1 Meaning, (by cross-multiplication) n - (X — W) = Z(Xf — ). Then, the previous becomes:



Biased estimate of variance (an aside)

L Use every algebra trick you know...

X==-Yxi &==3(x-x) - "
n 3 n Meaning, (by cross-multiplication) n - (X — p) = Z(X.,- — p). Then, the previous becomes:
then S2 is a biased estimator of 2, because ? =
5 1 T N 2 o mn - 5
1 & _ ] " - 2 ES*|=E|— ) (Xij—p)" — —(X—p) (X-—#)+(X—#)“}
E[S?] = E [— 3 (X S — :
n

B E l n ( ‘
T n & ( Expectation is linear.

]. Val . .
=E|~ _Z(X‘ The term (x; — f1)? is not linear.

_p |} i(xi And that’s why we need all of this algebra....

i=1 i=1

. y 1 ‘ .
_ , _ = 1 = —E|(X-p?|=(1-=]0* <o
To continue, we note that by subtracting p from both sides of X = — E X, we get n
n 4
1=1
. 1 i n

n n n
Xop= 2> Ximu= o3 Xi- 2y = Y (K- ).
=1 i=1 i=1 =1

*See Wikipedia Bias of an estimator, or your favorite statistics book.




Learning a Gaussian distribution

e A Gaussian distribution is completely specified by its mean and variance, which is why we can
write N(u, 6%). Once we know u, 6%, there is nothing more to know.

* In this case, fi and 6 are said to be sufficient statistics.

* For a Gaussian distribution, there’s simply nothing more to know, so estimating other
guantities will not increase or knowledge about the underlying distribution.

1 X 1 )
==X O-ZZNTZ('XL'_M)Z

* |In a typical statistics class, you’ll spend some time studying various distributions, determining sufficient
statistics for those distributions, deriving the corresponding unbiased estimators.
» Not in this class.




Next Lecture: A Vacuum Cleaning Robot

* Simple state space: collection of rooms in a house

Uncertainty in actions: Markov Decision Process (MDP)

Uncertainty in sensing for a sequence of measurements: Hidden Markov Model (HMM)
* Planning using Value Iteration

* Reinforcement Learning (RL)



