CS 3630,
Fall 2025

Lecture 4:

A Trash Sorting Robot:
Sensing




Sensing

For our trash sorting robot, we’ll consider three
Sensors:

e Conductivity: A binary sensor that outputs True or
False, based on measurement of electrical
conductivity.

* Camera w/detection algorithms: This sensor
outputs bottle, cardboard, or paper, based on a
detection algorithm (note: it cannot detect scrap
metal or cans).

* Scale: Outputs a continuous value that denotes the
measured weight in kg of the object.

These three kinds of measurements are each treated
using distinct probabilistic models.



Binary Sensors




Binary Sensors

* Consider a simple conductivity sensor.

* In anideal world, the sensor would return the value True when the object
category is either scrap metal or can, and the value False for paper,
cardboard and bottle.

* In the real world, metal cans can be dirty causing the sensor to return False,
even though metal cans conduct electricity.

* There are numerous reasons that a binary sensor could return the wrong
value for any of the five categories, but what is more interesting than the
cause of the error is the probability associated to the error.

* What is the probability that the sensor will return True for a metal can?
False for a piece of cardboard? True for a bottle? Etc....

»If we know these probabilities, we can reason about the object category
based on sensor reading!



Conditional probability revisited

* Conditional probabilities quantify the probabilities associated with
correct/incorrect sensor readings.

* For each category, we estimate the probability of True and False.
* We collect these values into a conditional probability table (CPT):

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01 Given that the object is cardboard, the probability of False is 0.99.
Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85 Given that the object is scrap metal, the probability of True is 0.85.
Bottle 0.95 0.05

Each entry in the table is a conditional probability value. The conditioning event is the category.



Some things to remember

* For a fixed category C, P(Conductivity|C) is itself a probability!

e Therefore:
P(True|C) =1 — P(False|C)

»Because of this fact, each row in the table sums to one!

Category (C)  P(False|C) P(True|C)  We can think of the category C as defining a
Cardboard 0.99 0.01 particular context.

Paper 0.99 0.01 * The conditional probability for an outcome tells us
Cans 0.1 0.9 the probability of that outcome in a specific context.
Scrap Metal 0.15 0.85 * |fthe context is “a piece of cardboard is in the work
Bottle 0.95 0.05 cell,” then the probability of False is 0.99.

> If we think of f(C) = P(Cond|C) as a function of C, then f(C) is NOT a probability.
» Note that the columns do Not sum to one. (more about this soon...)




We must estimate the conditional probabilities!

* In practice, it is not possible to know the conditional probabilities.

* It may even be the case that these probabilities change over time.

* We can determine the conditional probability values by:

A. Reasoning about the physics of the sensor, combining intuition with physical laws to
arrive to reasonable guesses for these values

B. Gathering lots of data, and estimating the conditional probabilities using relative
frequency (aka histograms):

1. Collect N conductivity measurements on pieces of cardboard.
2. Let N¢pye be the number of times the sensor returns true.

3. P(True|cardboard) = Ntrue, P(False|cardboard) = ~— II\\'I“”“e
4. Repeat for each category.

C. Reading the data sheet that was shipped with the sensor (in this case, the
manufacturer used either A or B).




Multi-valued sensors




Multi-valued sensors

* We could consider a binary sensor as a device that returns a value from a set

X € {x{,x,} = {True, False}.
* If we take this view, it’s a simple matter to extend our approach to any set of discrete outcomes: X € {x, ..., x,,}.
* For our trash sorting robot, we have a computer vision sensor that returns a value

« X € {bottle, cardboard, paper}.

* Each possible outcome gives rise to one column in our CPT for the sensor:

Category bottle cardboard paper . .
* As before, each entry is P(DetectorReading | Category).

cardboard  0.02 08 o * Do not confuse the Category and the DetectorReading, even if they
paper N e b share the same name!
can 0333333 0333333 0333333 * Note that each row still sums to one.
scrap metal 0333333 0.333333  0.333333 * For cans and scrap metal, this detection sensor becomes confused, and
bottle 0.95 0.02 0.03 returns one of the three values at random, each with probability of %



The value of multiple sensors

* The Conductivity sensor

* does a good job of discriminating between the events
{bottle, cardboard, paper} and {scrap metal, can},

* but is unable to resolve ambiguity in either of these events.

* The computer vision sensor

* does a good job of discriminating between {bottle, cardboard, paper},

* but is useless for {scrap metal, can}.

Category (C)  P(False|C) P(True|C) Category
Cardboard 0.99 0.01 cardbosrd
Paper 0.99 0.01 i i
Cans 0.1 0.9 can
scrap metal
Scrap Metal 0.15 0.85 -
otlie
Bottle 0.95 0.05

Conductivity Sensor

bottle cardboard paper
0.02 0.88 0.1
0.02 0.2 0.78

0.333333  0.333333 0.333333
M333333 0333333 8333333

0.95 0.02 0.03

Computer Vision Sensor

We’ll see how to combine
information from
different sensors soon.



he weight sensor (aka scale)
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Continuous random variables

e Recall the cumulative distribution function (CDF):

Fy(a) =P(X < )

* If Fy is continuous everywhere, then X is a continuous random variable.

* If X is a continuous random variable with CDF Fy(a), then the probability
density function (pdf) for X is given by

d
() = —— Fx (x)

If we think of Iy, («) as probability mass for event X < a, we can think of the derivative of mass as density.



he uniform distribution

* The uniformly distribution is the simplest example of a continuous
random variable.

* We saw this distribution in our sampling algorithm.

* We use the notation X~U(a, b) to denote that X is a continuous
random variable with uniform distribution on the interval |a, b].

* The pdf for such an RV is given by:
f(X)

pdf for the uniform distribution b-a




Computing probabilities

Applying the fundamental theorem of calculus, we obtain:

p
| e = ) - Fe@

=PX<B)-PX <a)

=Pla<X<p)
which gives

B
Pla<X<p) = f fx(uwdu

The probability that a < X < f is equal to the area under the pdf f x between a and f.



In pictures:

X takes on values in the continuum.

* p(x), is a probability density function.

What happens when a = b?

Since f is continuous

faf(u)du =0

a

This leads to the possibly surprising result:

PX=a)=0

for any scalar a.




More about pdf’s

The total area under a pdf equals 1, always, for every pdf.

foofx(u)du = Fy(0) = Fx(=0)=1-0=1

But the magnitude of fy(u) can take any non-negative value — so long as the total
area under the curve integrates to one!

A Magnitude of curve could be greater
f(x) than 1in some areas. The total area

/ under the curve must add up to 1.

X ®




he uniform distribution (again)

* It is now easy to understand why the “height” of the pdf is —:

f(x)

b
1=P(aSXSb)=j Kdu=Kb—-Ka—- K =
a

1
b—a

b—a

In this case, the geometry of rectangles is
enough to tell us the answer:

Area =K (b — a)

So, if Area = 1, then we must have

1
K=—
b—a



he uniform distribution’s CDF

* |It’s easy to compute the CDF for the uniform distribution given its pdf.

* For (a < B < b), simply evaluate the integral

B
BB =P <= ;e Fw
. b—a
1. For (a < B < b) the integral evaluates to i:i
2. For (B < a),wehave Fx(B) = 0.
3. For (b < pB),wehave Fx(B) = 1.
0

Notice that the CDF is continuous everywhere, even
though the pdf has discontinuities at a and b.



The Gaussian(aka normal) distribution

The Gaussian distribution is the most
famous of all probability distributions, so
famous that the Germans put Gauss and his
pdf on their money!
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Even if you haven’t seen this in a probability 005 ...
theory or statistics class, you have likely seen 0 .
the famous Bell Curve.
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he Gaussian distribution

* The Gaussian has two defining parameters. e

N398
“LeftoverCurrency.com

* The mean, u
* Defines the “location” of the pdf.

* The pdf is symmetric about the mean.

 The variance, o

* Defines the “spread” of the pdf.
* Can be specified also in terms of standard deviation, o.

* The defining equation is given by:

_(x—p)? 1 1/x— )2
fX(x) — e 202 = e 2( )
o

V2T o\2r




GN398287278

he Gaussian distribution

Let’s take a closer look:

1 oo 1 ___(:xu_"t)zz
is a normalizing term, so that e 202 dx =
" ov2n’ ’ —0 g2

* The leading term
* So, let’s simplify notation by writing

1
fie(x) = Ke~ 20707
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he Gaussian distribution

Let’s take a closer look: bt e

renc

_G=w?
__isa normalizing term, so that ® e 202 dx=1
" ov2r’ ’ —00 g+/21 '

* The leading term

* So, let’s simplify notation by writing

1 52
fi(x) = Ké22o? 7

f xis a decreasing exponential function.
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he Gaussian distribution

Let’s take a closer look: mte o (R

1 00

° . . . . _—2 —
The leading term, 7 is a normalizing term, so that J_ ame 202 dx

Normal distributions with different means

* So, let’s simplify notation by writing
_ 1 g 0.002
fX (x) — Ke 20- ;‘g 0.001

500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600

= M=900 == M=1100 M = 1300

f x decreases exponentially with the square of the distance to the mean.
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he Gaussian distribution

Let’s take a closer look: bt e
* The leading term 1 is a normalizing term, so that g e
5 " o221’ 5 ! —00 g+/27

* So, let’s simplify notation by writing

Distributions

—w)* —
fx(x) = Ke x k) g

The “rate” of decrease depends on o*:

« [If a? is very large, fx decreases slowly, thus, a wide spread.
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The Gaussian Distribution

Deutsche Bundesbark

e Since the Gaussian is parameterized by its mean and variance, we often write N (i, 0%) to
denote the Gaussian distribution.

* The special case when u = 0, 0% = 1 is called the standard normal distribution (the red
curve in the figure).
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he Gaussian distribution

The standard deviation is a handy way to characterize probabilities. Pl
* 68% of probability mass lies within one standard deviation of y. -
e 99.99966% of the probability mass lies within 6 standard deviations

of the mean (for business majors, six sigma is a big thing).

- Normal Distribution

34.1% 34.1%




he weight sensor (aka scale)

* Weight of an object = a continuous random variable.

* We'll use the Gaussian distribution to model weight.
* Annoyance: actually: weight can never be less than zero. Still.

* Each object has its own Gaussian distribution:

Category
Cardboard
Paper

Can

Scrap metal

Bottle

Mean u
20
5
15
150
300

Std dev o
10
5
5
100
200

Cardboard:

Distribution centered at u = 20.
Very narrow distribution.
Notice truncation at zero.

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

100

200

300

400



he weight sensor (aka scale)

* Weight of an object = a continuous random variable.

* We'll use the Gaussian distribution to model weight.
* Annoyance: actually: weight can never be less than zero. Still.

* Each object has its own Gaussian distribution:

Category | paper v

0.08

0.07

Category Mean u Std dev o Paper: o
Cardboard 50 - * Distribution centered at u = 5.
araboar * \Very narrow distribution. "
Paper 5 5 * Notice truncation at zero. -0
Can 15 5
Scrap metal 150 100 0.01 \

Bottle 300 200 ’

0 100 200 300 400



he weight sensor (aka scale)

* Weight of an object = a continuous random variable.

* We'll use the Gaussian distribution to model weight.
* Annoyance: actually: weight can never be less than zero. Still.

* Each object has its own Gaussian distribution:

Category | can v

0.08

Category Mean u Std dev o Can: 0.07

* Distribution centered at u = 15. oos

Cardboard 20 Lg e Very narrow distribution. Dios

Paper 5 5 * Notice truncation at zero C oos
doesn’t really chop off much

Can 15 5 probability mass. 0'03

Scrap metal 150 100 w

0.01

Bottle 300 200 0

0 100 200 300 400




he weight sensor (aka scale)

* Weight of an object = a continuous random variable.

* We'll use the Gaussian distribution to model weight.
* Annoyance: actually: weight can never be less than zero. Still.

* Each object has its own Gaussian distribution:

Category | scrap metal v

0.004

Category Mean u Std dev o Scrap Metal: 0.0035
* Distribution centered at u = 150. ;4

CEIelsENe e 10 + Wide distribution.
Paper 5 5 * Notice truncation at zero chops

off significant probability mass.
Can 15 5 0.0015
Scrap metal 150 100 o

0.0005

Bottle 300 200

0
0 100 200 300 400



he weight sensor (aka scale)
* Weight of an object = a continuous random variable.

* We'll use the Gaussian distribution to model weight.
* Annoyance: actually: weight can never be less than zero. Still.

* Each object has its own Gaussian distribution:

Category | bottle v

0.002

Category Mean u Std dev o Bottle: s
« Distribution centered at u = 300.

CEIloeae 20 e . Wide distribution.

Paper 5 5 * Notice truncation at zero doesn’t oo
exclude much probability mass.

Can 15 5 * Truncation on the right is merely o

Scrap metal 150 100 an artifact of the display. This pdf o
continues all the way to +oo. 0.0008

Bottle 300 200

0.0006
0 100 200 300 400



Conditional distributions

* Instead of thinking about five individual pdfs for the different
objects, we can think of weight as a random variable characterized
by conditional probability distributions:

Category Mean u Std dev o Category (C) fwic(W|C)
Cardboard 20 10 Cardboard N(20,0 = 10)
Paper 5 5 Paper N(5,0 =5)
— = 5 E— Can N(15,6 = 5)
Scrap metal 150 100 Scrap metal N(150,0 = 100)
Bottle 300 200 Bottle N(300,0 = 200)

1 _(x—150)*
x|C = Scrap Metal) = e 21007
fX|C( | p ) L0V




Simulation by sampling

* We can simulate the sensor readings that will occur during operation of
our trash sorting robot.

* The idea is a simple extension of the sampling algorithm we developed in
Section 2.1.

1. Generate a sample category c~ P(C) using the algorithm from Section 2.1.

2. Generate a sample sensor value by sampling the conditional distribution
s~fxic(x|C = c), where fx|c is the conditional density (or pmf) associated to the
desired sensor.



Next Lecture: Perception, Planning, and Learning

Bayes Theorem
* Allows us to “invert” sensor models to obtain probabilities about the world state (and robot state).

Maximum Likelihood Estimation

* How to use the sensor model directly to estimate the world (or robot) state
* A good choice if we have no prior knowledge about the world

MAP Estimation

* Incorporates prior knowledge

* Provides a posterior probability distribution over world (or robot) states that takes into account
both evidence (sensors) and prior knowledge.

Decision Theory:
e Simple risk minimization

Learning:
* Estimating parameters of the Gaussian distribution



Bonus: Three
concepts
from

probability
theory

In this lecture, we used a lot of conditional

distributions. In probability theory the

following three concepts are closely related:

* Joint Distributions
e Conditional Probability
* Independence

The following slides should deepen your

understanding of conditional probabilities.

> 4

/

I



Joint Probability

Consider two events, X,Y c (). The joint probability of X and Y is the
probability that both events occur.

* When we talk about a joint probability distribution, we use the
notation P(X,Y), indicating that X and Y are random events.

 When we talk about the joint probability for two specific events, we

write
P(X=xandY =y) = P(x,y)

v’ Recall, upper case denotes a random event, and lower case denotes
a specific value.



An Example

Roll two dice, observe x;and x».

We know that there are 36 possible outcomes, all of which are equally likely (assuming the
dice are fair).
It’s easy to compute probabilities by simply counting outcomes:
* Probability x; = 6:
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6) > P = % = %

* Probability x;is even:

(2.1), (2,2), (2,3), (2,4), (2,5), (2,6) 8 1
(4.1), (4,2), (4,3), (4.4), (45), (4.6) — P=—=—
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) 36 2



An Example

Roll two dice, observe x;and x».
Now suppose we want to know the probability that two events occur.

Again, we can compute probabilities simply by counting outcomes (since all outcomes are
equally probable).

* Probability x; = 6 and x-, is even:

3 1
(6'2)l (6)4)1 (6;6) — P —_ % p— E

* Probability x;is even and x; > 3:

(4,1), (4,2), (4,3), (4,4), (4,5), (46) _ p_ 12

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) 36

W =



Conditional Probability

 When two events are related to one another, observing the occurrence of one of the
events can influence what we believe about the other.

* In this case, we talk about the conditional probability of x given y, denoted P(x | y).

* This conditional probability is defined in terms of the joint probability of x and y:

Assuming P(y) # 0

* We can rewrite this expression as:

P(x,y) = P(x|y)P(y)

This form will come in handy a bit later in the class



Independence

If Xand Y are independent, then
P(x,y) = P(x)P(y)

Definition of Independence

If Xand Y are independent, then

P(xy) _ PGP
P1Y) =507 =55y = PO

Sensors are useful because their measurements depend on the world state.

However, if we have multiple sensors, quite often there are independence properties for
various combinations of sensors. For example, a color sensor might give a measurement

that is independent of the measurement given by a scale.



Let’s apply rules of conditional and joint probabilities:

From the previous page, we easily compute the following:
P(x, even) = = P(xy ==6) = - P(x, even) = >

Let’s look at some combinations of events:

 P(xq; even,x; == 6) = ﬁ *+ P(x; even)P(x; == 6) = %x% = % — NOT independent

9 11 .
* P(xq even,x, even) = = P(x; even)P(x, even) = SX 5= independent




Let’s apply rules of conditional and joint probabilities:

P(x, even,x1==6)

P(x; == 6|x; even) = P even) =

1

NlR|o -

This agrees with our intuition, since x; = 6 in one third of the cases
of x4 being even:

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6)

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)

(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)



