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A Trash Sorting Robot: 
Sensing



Sensing

For our trash sorting robot, we’ll consider three 
sensors:

• Conductivity: A binary sensor that outputs True or 
False, based on measurement of electrical 
conductivity.
• Camera w/detection algorithms: This sensor 

outputs bottle, cardboard, or paper, based on a 
detection algorithm (note: it cannot detect scrap 
metal or cans).
• Scale: Outputs a continuous value that denotes the 

measured weight in kg of the object.

These three kinds of measurements are each treated 
using distinct probabilistic models.



Binary Sensors



Binary Sensors

• Consider a simple conductivity sensor.
• In an ideal world, the sensor would return the value True when the object 

category is either scrap metal or can, and the value False for paper, 
cardboard and bottle.
• In the real world, metal cans can be dirty causing the sensor to return False, 

even though metal cans conduct electricity. 
• There are numerous reasons that a binary sensor could return the wrong 

value for any of the five categories, but what is more interesting than the 
cause of the error is the probability associated to the error.
• What is the probability that the sensor will return True for a metal can? 

False for a piece of cardboard? True for a bottle? Etc….
ØIf we know these probabilities, we can reason about the object category 

based on sensor reading!



Conditional probability revisited
• Conditional probabilities quantify the probabilities associated with 

correct/incorrect sensor readings.
• For each category, we estimate the probability of True and False.
• We collect these values into a conditional probability table (CPT):

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

Given that the object is cardboard, the probability of False is 0.99.

Given that the object is scrap metal, the probability of True is 0.85.

Each entry in the table is a conditional probability value. The conditioning event is the category.



Some things to remember
• For a fixed category 𝐶, 𝑃 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦|𝐶  is itself a probability!
• Therefore:

𝑃 𝑇𝑟𝑢𝑒|𝐶 = 1	 − 𝑃 𝐹𝑎𝑙𝑠𝑒|𝐶
ØBecause of this fact, each row in the table sums to one!

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

• We can think of the category 𝐶 as defining a 
particular context.

• The conditional probability for an outcome tells us 
the probability of that outcome in a specific context.

• If the context is “a piece of cardboard is in the work 
cell,” then the probability of False is 0.99.

Ø If we think of 𝒇 𝑪 = 𝑷 𝑪𝒐𝒏𝒅|𝑪  as a function of 𝑪, then 𝒇 𝑪  is NOT a probability.
Ø Note that the columns do Not sum to one. (more about this soon…)



We must estimate the conditional probabilities!

• In practice, it is not possible to know the conditional probabilities.
• It may even be the case that these probabilities change over time.
• We can determine the conditional probability values by:

A. Reasoning about the physics of the sensor, combining intuition with physical laws to 
arrive to reasonable guesses for these values

B. Gathering lots of data, and estimating the conditional probabilities using relative 
frequency (aka histograms):
1. Collect 𝑁 conductivity measurements on pieces of cardboard.
2. Let 𝑁!"#$ be the number of times the sensor returns true.
3. 𝑃 𝑇𝑟𝑢𝑒|𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 = %!"#$

%
, 𝑃 𝐹𝑎𝑙𝑠𝑒|𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 = %&	%!"#$

%
4. Repeat for each category.

C. Reading the data sheet that was shipped with the sensor (in this case, the 
manufacturer used either A or B). 



Multi-valued sensors



Multi-valued sensors
• We could consider a binary sensor as a device that returns a value from a set 

𝑋 ∈ 𝑥!, 𝑥" = 𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒 .

• If we take this view, it’s a simple matter to extend our approach to any set of discrete outcomes: 𝑋 ∈ 𝑥!, … , 𝑥# .
• For our trash sorting robot, we have a computer vision sensor that returns a value 

• X ∈ 𝑏𝑜𝑡𝑡𝑙𝑒, 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟 .

• Each possible outcome gives rise to one column in our CPT for the sensor:

• As before, each entry is 𝑃 𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟𝑅𝑒𝑎𝑑𝑖𝑛𝑔	 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦).
• Do not confuse the Category and the DetectorReading, even if they 

share the same name!
• Note that each row still sums to one.
• For cans and scrap metal, this detection sensor becomes confused, and 

returns one of the three values at random, each with probability of  !
"
. 



The value of multiple sensors
• The Conductivity sensor 
• does a good job of discriminating between the events 

𝑏𝑜𝑡𝑡𝑙𝑒, 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟  and 𝑠𝑐𝑟𝑎𝑝	𝑚𝑒𝑡𝑎𝑙, 𝑐𝑎𝑛 ,
• but is unable to resolve ambiguity in either of these events.

• The computer vision sensor 
• does a good job of discriminating between 𝑏𝑜𝑡𝑡𝑙𝑒, 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟 ,
• but is useless for 𝑠𝑐𝑟𝑎𝑝	𝑚𝑒𝑡𝑎𝑙, 𝑐𝑎𝑛 .

Category (C) P(False|C) P(True|C)

Cardboard 0.99 0.01

Paper 0.99 0.01

Cans 0.1 0.9

Scrap Metal 0.15 0.85

Bottle 0.95 0.05

We’ll see how to combine 
information from 
different sensors soon.

Conductivity Sensor Computer Vision Sensor



The weight sensor (aka scale)



Continuous random variables
• Recall the cumulative distribution function (CDF):

𝐹3 𝛼 = 𝑃(𝑋 ≤ 𝛼)

• If 𝐹3 is continuous everywhere, then 𝑋 is a continuous random variable.

• If 𝑋 is a continuous random variable with CDF 𝐹3 𝛼 , then the probability 
density function (pdf) for 𝑋 is given by

𝑓3 𝑥 =
𝑑
𝑑𝑥
𝐹3 𝑥

If we think of 𝐹# 𝛼  as probability mass for event 𝑋 ≤ 𝛼, we can think of the derivative of mass as density. 



The uniform distribution
• The uniformly distribution is the simplest example of a continuous 

random variable.
• We saw this distribution in our sampling algorithm.
• We use the notation 𝑋~𝑈(𝑎, 𝑏) to denote that 𝑋 is a continuous 

random variable with uniform distribution on the interval 𝑎, 𝑏 .
• The pdf for such an RV is given by:

pdf for the uniform distribution



Computing probabilities
Applying the fundamental theorem of calculus, we obtain:

3
(

)
𝑓* 𝑢 𝑑𝑢 = 𝐹* 𝛽 − 𝐹*(𝛼)

	 = 𝑃 𝑋 ≤ 𝛽 − 𝑃 𝑋 ≤ 𝛼

	 = 𝑃 𝛼 ≤ 𝑋 ≤ 𝛽
which gives

𝑷 𝜶 ≤ 𝑿 ≤ 𝜷 = 3
𝜶

𝜷
𝒇𝑿 𝒖 𝒅𝒖

The probability that 𝜶 ≤ 𝑿 ≤ 𝜷 is equal to the area under  the pdf 𝒇𝑿 between 𝜶 and 𝜷.



In pictures:
• 𝑋 takes on values in the continuum.

• 𝑝(𝑥), is a probability density function.

What happens when 𝑎 = 𝑏?

Since 𝑓 is continuous

L
"

"
𝑓 𝑢 𝑑𝑢 = 0

This leads to the possibly surprising result:

𝑃 𝑋 = 𝑎 = 0	

for any scalar 𝑎.



More about pdf’s

2
89

9
𝑓3 𝑢 𝑑𝑢 = 𝐹3 ∞ − 𝐹3 −∞ = 1 − 0 = 1

But the magnitude of 𝑓# 𝑢  can take any non-negative value – so long as the total 
area under the curve integrates to one! 

x

f(x)
Magnitude of curve could be greater 
than 1 in some areas.  The total area 
under the curve must add up to 1.

The total area under a pdf equals 1, always, for every pdf.



The uniform distribution (again)
• It is now easy to understand why the “height” of the pdf is   :

;8<
:

𝟏 = 𝑷 𝒂 ≤ 𝑿 ≤ 𝒃 = L
𝒂

𝒃
𝑲	𝒅𝒖 = 𝑲𝒃 −𝑲𝒂 → 𝑲 =

𝟏
𝒃 − 𝒂

In this case, the geometry of rectangles is 
enough to tell us the answer:

𝐴𝑟𝑒𝑎 = 𝐾 𝑏 − 𝑎

So, if 𝐴𝑟𝑒𝑎 = 1, then we must have

 𝑲 = 𝟏
𝒃'𝒂

𝑲



The uniform distribution’s CDF
• It’s easy to compute the CDF for the uniform distribution given its pdf. 
• For 𝑎 ≤ 𝛽 ≤ 𝑏 , simply evaluate the integral

𝐹* 𝛽 = 𝑃 𝑋 ≤ 𝛽 = 3
.

) 1
𝑏 − 𝑎 𝑑𝑢

1. For 𝑎 ≤ 𝛽 ≤ 𝑏  the integral evaluates to  𝜷&𝒂	
𝒃&𝒂

.
2. For 𝛽 ≤ 𝑎 , we have 𝐹* 𝛽 = 0.
3. For 𝑏 ≤ 𝛽 , we have 𝐹* 𝛽 = 1.

𝜷

Notice that the CDF is continuous everywhere, even 
though the pdf has discontinuities at 𝒂 and 𝒃. 



The Gaussian(aka normal) distribution

The Gaussian distribution is the most 
famous of all probability distributions, so 
famous that the Germans put Gauss and his 
pdf on their money!

Even if you haven’t seen this in a probability 
theory or statistics class, you have likely seen 
the famous Bell Curve.



The Gaussian distribution
• The Gaussian has two defining parameters.
• The mean, 𝜇 
• Defines the “location” of the pdf.
• The pdf is symmetric about the mean.

• The variance, 𝜎= 
• Defines the “spread” of the pdf.
• Can be specified also in terms of standard deviation, 𝜎.

• The defining equation is given by:

𝑓3 𝑥 =
𝟏

𝝈 𝟐𝝅
𝒆8

𝒙8𝝁 𝟐

𝟐𝝈𝟐 =
1

𝜎 2𝜋
𝑒8

:
=
B8C
D

"



The Gaussian distribution

Let’s take a closer look:

• The leading term, :
D =E

, is a normalizing term, so that ∫89
9 :

D =E
𝑒8

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓3 𝑥 = 𝐾𝑒8
:
=D" B8C "



The Gaussian distribution
Let’s take a closer look:

• The leading term, :
D =E

, is a normalizing term, so that ∫89
9 :

D =E
𝑒8

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓3 𝑥 = 𝐾𝑒8
:
=D" B8C "

𝒇𝑿is a decreasing exponential function.



The Gaussian distribution
Let’s take a closer look:

• The leading term, :
D =E

, is a normalizing term, so that ∫89
9 :

D =E
𝑒8

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓3 𝑥 = 𝐾𝑒8
:
=D" B8C "

𝒇𝑿 decreases exponentially with the square of the distance to the mean.



The Gaussian distribution
Let’s take a closer look:

• The leading term, :
D =E

, is a normalizing term, so that ∫89
9 :

D =E
𝑒8

#$% "

"&" 𝑑𝑥 = 1.

• So, let’s simplify notation by writing

𝑓3 𝑥 = 𝐾𝑒8
:
=D" B8C "

The “rate” of decrease depends on 𝝈𝟐:
• If 𝝈𝟐 is very large, 𝑓# decreases slowly, thus, a wide spread.
• If 𝝈𝟐 is very small, 𝑓# decreases quickly, thus, a narrow peak.



The Gaussian Distribution

𝒇𝑿 𝒙 =
𝟏

𝝈 𝟐𝝅
𝒆8

𝒙8𝝁 𝟐

𝟐𝝈𝟐

• Since the Gaussian is parameterized by its mean and variance, we often write 𝑁(𝜇, 𝜎+) to 
denote the Gaussian distribution.

• The special case when 𝝁 = 𝟎, 𝝈𝟐 = 𝟏 is called the standard normal distribution (the red 
curve in the figure).



The Gaussian distribution
The standard deviation is a handy way to characterize probabilities.
• 68% of probability mass lies within one standard deviation of 𝜇.
• 99.99966% of the probability mass lies within 6 standard deviations 

of the mean (for business majors, six sigma is a big thing).



The weight sensor (aka scale)
• Weight of an object = a continuous random variable.
• We’ll use the Gaussian distribution to model weight.
• Annoyance: actually: weight can never be less than zero. Still.

• Each object has its own Gaussian distribution:

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Cardboard:
• Distribution centered at 𝜇 = 20.
• Very narrow distribution.
• Notice truncation at zero.



The weight sensor (aka scale)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Paper:
• Distribution centered at 𝜇 = 5.
• Very narrow distribution.
• Notice truncation at zero.

• Weight of an object = a continuous random variable.
• We’ll use the Gaussian distribution to model weight.
• Annoyance: actually: weight can never be less than zero. Still.

• Each object has its own Gaussian distribution:



The weight sensor (aka scale)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Can:
• Distribution centered at 𝜇 = 15.
• Very narrow distribution.
• Notice truncation at zero 

doesn’t really chop off much 
probability mass.

• Weight of an object = a continuous random variable.
• We’ll use the Gaussian distribution to model weight.
• Annoyance: actually: weight can never be less than zero. Still.

• Each object has its own Gaussian distribution:



The weight sensor (aka scale)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Scrap Metal:
• Distribution centered at 𝜇 = 150.
• Wide distribution.
• Notice truncation at zero chops 

off significant probability mass.

• Weight of an object = a continuous random variable.
• We’ll use the Gaussian distribution to model weight.
• Annoyance: actually: weight can never be less than zero. Still.

• Each object has its own Gaussian distribution:



The weight sensor (aka scale)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

Bottle:
• Distribution centered at 𝜇 = 300.
• Wide distribution.
• Notice truncation at zero doesn’t 

exclude much probability mass.
• Truncation on the right is merely 

an artifact of the display. This pdf 
continues all the way to +∞.

• Weight of an object = a continuous random variable.
• We’ll use the Gaussian distribution to model weight.
• Annoyance: actually: weight can never be less than zero. Still.

• Each object has its own Gaussian distribution:



Conditional distributions
• Instead of thinking about five individual pdfs for the different 

objects, we can think of weight as a random variable characterized 
by conditional probability distributions:

Category (C) 𝒇𝑾|𝑪(𝑾|𝑪)

Cardboard 𝑵(𝟐𝟎, 𝝈 = 𝟏𝟎)

Paper 𝑵(𝟓, 𝝈 = 𝟓)

Can 𝑵(𝟏𝟓, 𝝈 = 𝟓)

Scrap metal 𝑵(𝟏𝟓𝟎, 𝝈 = 𝟏𝟎𝟎)

Bottle 𝑵(𝟑𝟎𝟎, 𝝈 = 𝟐𝟎𝟎)

Category Mean 𝝁 Std dev 𝝈

Cardboard 20 10

Paper 5 5

Can 15 5

Scrap metal 150 100

Bottle 300 200

𝑓3|H 𝑥|𝐶 = 𝑆𝑐𝑟𝑎𝑝	𝑀𝑒𝑡𝑎𝑙 =
1

10 2𝜋
𝑒8

B8:IJ "

=	:JJ"



Simulation by sampling

• We can simulate the sensor readings that will occur during operation of 
our trash sorting robot.
• The idea is a simple extension of the sampling algorithm we developed in 

Section 2.1.
1. Generate a sample category 𝑐~	𝑃(𝐶) using the algorithm from Section 2.1.
2. Generate a sample sensor value by sampling the conditional distribution 

𝑠~𝑓#|C 𝑥|𝐶 = 𝑐 , where 𝑓#|C is the conditional density (or pmf) associated to the 
desired sensor.



Next Lecture:  Perception, Planning, and Learning
• Bayes Theorem

• Allows us to “invert” sensor models to obtain probabilities about the world state (and robot state).

• Maximum Likelihood Estimation
• How to use the sensor model directly to estimate the world (or robot) state
• A good choice if we have no prior knowledge about the world

• MAP Estimation
• Incorporates prior knowledge
• Provides a posterior probability distribution over world (or robot) states that takes into account 

both evidence (sensors) and prior knowledge.

• Decision Theory:
• Simple risk minimization

• Learning:
• Estimating parameters of the Gaussian distribution



Bonus: Three 
concepts 
from 
probability 
theory

In this lecture, we used a lot of conditional 
distributions. In probability theory the 
following three concepts are closely related:
• Joint Distributions
• Conditional Probability
• Independence

The following slides should deepen your 
understanding of conditional probabilities.



Joint Probability
Consider two events, 𝑋, 𝑌 ⊂ Ω. The joint probability of 𝑋	𝑎𝑛𝑑	𝑌 is the 
probability that both events occur.

• When we talk about a joint probability distribution, we use the 
notation P(𝑋, 𝑌), indicating that 𝑋	𝑎𝑛𝑑	𝑌 are random events.

• When we talk about the joint probability for two specific events, we 
write

𝑃 𝑋 = 𝑥	and	𝑌 = 𝑦 = 	𝑃 𝑥, 𝑦

ü Recall, upper case denotes a random event, and lower case denotes 
a specific value.



An Example
Roll two dice, observe 𝑥Dand 𝑥+.
We know that there are 36 possible outcomes, all of which are equally likely (assuming the 
dice are fair).
It’s easy to compute probabilities by simply counting outcomes:
• Probability 𝑥D = 6: 

6,1 , 6,2 , 6,3 , 6,4 , 6,5 , (6,6) → 𝑃 =
6
36

=
1
6

• Probability 𝑥:is even:

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6) 
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) 
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) 

→ 𝑃 =
18
36

=
1
2



An Example
Roll two dice, observe 𝑥Dand 𝑥+.
Now suppose we want to know the probability that two events occur.
Again, we can compute probabilities simply by counting outcomes (since all outcomes are 
equally probable).

• Probability 𝑥D = 6 and 𝑥+ is even:
6,2 , 6,4 , (6,6) → 𝑃 =

3
36

=
1
12

• Probability 𝑥Dis even and 𝑥D > 3:
 

(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) 
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) 

→ 𝑃 =
12
36 =

1
3



Conditional Probability
• When two events are related to one another, observing the occurrence of one of the 

events can influence what we believe about the other.

• In this case, we talk about the conditional probability of x given y, denoted 𝑃(𝑥	|	𝑦).

• This conditional probability is defined in terms of the joint probability of 𝑥	𝑎𝑛𝑑	𝑦:
  

𝑃(𝑥	|	𝑦) 	=
𝑃 𝑥, 𝑦
𝑃 𝑦  

   Assuming 𝑃 𝑦 ≠ 0

• We can rewrite this expression as:

  𝑃(𝑥, 𝑦) 	 = 	𝑃(𝑥	|	𝑦)	𝑃(𝑦)

    This form will come in handy a bit later in the class 



Independence

• If X and Y are independent, then 
  𝑃 𝑥, 𝑦 = 	𝑃 𝑥 𝑃 𝑦

• If X and Y are independent, then

  𝑃(𝑥	|	𝑦) 	= E F,G
E G = E F E G

E G = 	𝑃(𝑥)

• Sensors are useful because their measurements depend on the world state.

• However, if we have multiple sensors, quite often there are independence properties for 
various combinations of sensors. For example, a color sensor might give a measurement 
that is independent of the measurement given by a scale.

Definition of Independence 



Let’s apply rules of conditional and joint probabilities:
From the previous page, we easily compute the following:

𝑃 𝑥D	𝑒𝑣𝑒𝑛 =
1
2
, 𝑃 𝑥D == 6 =

1
6
, 𝑃 𝑥+	𝑒𝑣𝑒𝑛 =

1
2
.

Let’s look at some combinations of events:

• 𝑃 𝑥D	𝑒𝑣𝑒𝑛, 𝑥D == 6 = D
H
≠ 𝑃 𝑥D	𝑒𝑣𝑒𝑛 𝑃 𝑥D == 6 = D

H
× D
+
= D

D+
→	 NOT independent

• 𝑃 𝑥D	𝑒𝑣𝑒𝑛, 𝑥+	𝑒𝑣𝑒𝑛 = I
JH
= 𝑃 𝑥D	𝑒𝑣𝑒𝑛 𝑃 𝑥+	𝑒𝑣𝑒𝑛 = D

+
× D
+
→   independent



Let’s apply rules of conditional and joint probabilities:

𝑃 𝑥! == 6|𝑥!	𝑒𝑣𝑒𝑛 = "($7	&'&(,	$7**+)
"($7	&'&()

=
7
8
7
9
= !

-
 

This agrees with our intuition, since xD = 6 in one third of the cases 
of xD being even:

(2,1), (2,2), (2,3), (2,4), (2,5), (2,6) 
(4,1), (4,2), (4,3), (4,4), (4,5), (4,6) 
(6,1), (6,2), (6,3), (6,4), (6,5), (6,6) 

 


