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Fall 2025
Lecture 3: A Trash Sorting 
Robot: states and actions



A Trash Sorting Robot
Our first example is a trash sorting robot.

Individual pieces of trash arrive to the 
robot’s work cell on a conveyor belt.
The robot’s task is to place each piece of 
trash in an appropriate bin:
• Glass

• Mixed paper

• Metal
• Nop

Sensors measure various characteristics of 
the trash, which are used to make inferences 
about the object type (perception).

We assume sensor uncertainty, but perfect 
execution of actions.

Over time, sensor models can be refined 
using machine learning methods.



Modeling the 
World State

For this problem, the interesting aspect of the world 
state is the specific material composition of the item 
of trash that is currently in the robot’s work cell.
We consider five possibilities:
• Cardboard
• Paper
• Cans
• Scrap Metal
• Bottles
For this chapter, we assume that there are no other 
possibilities.
You should probably just memorize these now, 
because they’re going to be used a lot in this chapter.



Modeling Uncertainty
We assume that there is uncertainty in sensing, and therefore, it is not possible to 
know with certainty the world state.
We consider the state to be a random quantity, with five possible outcomes:

Ω = {cardboard, paper, cans, scrap metal, boIle}

In probability theory, 
• The set Ω is called the sample space.
• Each 𝜔 ∈ Ω is called an outcome.
• A subset 𝐴 ⊂ Ω is called an event.

Denote by 𝔅 = 𝐴 𝐴 ⊂ Ω} the set of all events.

Probability  distributions map events to probabilities,   𝑷: 	𝕭 → [𝟎, 𝟏]



Examples
Suppose the probabilities associated with the five outcomes are given as:

Category (𝝎) 𝑷({𝝎})

Cardboard 0.20

Paper 0.30

Cans 0.25

Scrap Metal 0.20

Bottle 0.05

Define two events
A' = {cardboard, paper}
A( = {cans, scrap metal}

Compute the following:
• The probability that an item is a paper product:  𝑷({𝑨𝟏})
• The probability that an item is a metal product:  𝑷 𝑨𝟐

Answers:
• 𝑷 𝑨𝟏 = 𝑷 𝒄𝒂𝒓𝒅𝒃𝒐𝒂𝒓𝒅 + 𝑷 𝒑𝒂𝒑𝒆𝒓 = 𝟎. 𝟓
• 𝑷 𝑨𝟐 = 𝑷 𝒄𝒂𝒏𝒔 + 𝑷 𝒔𝒄𝒓𝒂𝒑	𝒎𝒆𝒕𝒂𝒍 = 𝟎. 𝟒𝟓



Some properties of probability distributions
Three Axioms of Probability Theory:
1. For A ⊂ Ω, P(A) ≥ 0
• There’s	no	such	thing	as	negative	probability.

2. P(Ω) =1
• The	probability	that	something	happened	is	1.

3. For A7, A8 ⊂ Ω,	if	A7 ∩ A8 = ∅,	then	 𝑃 𝐴9 ∪ 𝐴: = 𝑃 𝐴9 + 𝑃 𝐴:
• If	two	events	are	disjoint	(aka	mutually	exclusive),	then	the	probability	
that	one	of	the	two	events	occurred	equals	the	sum	of	the	probabilities	for	
the	two	events.
• The	second	and	third	axiom	immediately	imply	that	P(∅) =0.



A handy relationship:

𝑺𝒊𝒏𝒄𝒆	𝑨 ∩ ]𝑨 = ∅ and 𝑨 ∪ ]𝑨 = 𝛀, we can conclude that 

𝑷 𝑨 + 𝑷 ]𝑨 = 𝟏
which implies

𝑷 ]𝑨 = 𝟏 − 𝑷 𝑨

Proof:
1. 𝑨 ∩ ]𝑨 = ∅ implies 𝐏 𝑨 ∪ ]𝑨 = 𝐏 𝐀 + 𝐏(𝑨)          [Axiom 3]
2. 𝑨 ∪ ]𝑨 = 𝛀 impies 𝐏 𝑨 ∪ ]𝑨 = 𝑷(𝛀) = 𝟏                [Axiom 2]
3. Together, 1 and 2 imply 𝐏 𝐀 + 𝐏(𝑨) = 𝟏



Examples
Suppose the probabilities associated with the five outcomes are given as:

Category (𝝎) 𝑷({𝝎})

Cardboard 0.20

Paper 0.30

Cans 0.25

Scrap Metal 0.20

Bottle 0.05

Define two events
A' = {cardboard, paper}
A( = {cans, scrap metal}

Compute the following:
• The probability that an item is a paper product:  𝑷({𝑨𝟏})
• The probability that an item is a metal product:  𝑷 𝑨𝟐
• The probability that an item is not a paper product 𝑷({]𝑨𝟏})

Answers:
• 𝑷 𝑨𝟏 = 𝑷 𝒄𝒂𝒓𝒅𝒃𝒐𝒂𝒓𝒅 + 𝑷 𝒑𝒂𝒑𝒆𝒓 = 𝟎. 𝟓
• 𝑷 𝑨𝟐 = 𝑷 𝒄𝒂𝒏𝒔 + 𝑷 𝒔𝒄𝒓𝒂𝒑	𝒎𝒆𝒕𝒂𝒍 = 𝟎. 𝟒𝟓
• 𝑷 ;𝑨𝟏 = 𝑷 𝛀 − 𝐀𝟏 = 𝐏 𝐜𝐚𝐧𝐬, 𝐬𝐜𝐫𝐚𝐩	𝐦𝐞𝐭𝐚𝐥, 𝐛𝐨𝐭𝐭𝐥𝐞 = 𝟎. 𝟓

Answers:
• 𝑷 𝑨𝟏 = 𝑷 𝒄𝒂𝒓𝒅𝒃𝒐𝒂𝒓𝒅 + 𝑷 𝒑𝒂𝒑𝒆𝒓 = 𝟎. 𝟓
• 𝑷 𝑨𝟐 = 𝑷 𝒄𝒂𝒏𝒔 + 𝑷 𝒔𝒄𝒓𝒂𝒑	𝒎𝒆𝒕𝒂𝒍 = 𝟎. 𝟒𝟓



Prior Probability Distributions
What can we say about the probabilities of various outcome before we even invoke 
the robot’s sensors? 
• Our beliefs about the probabilities of various outcomes can be encoded in a prior 

distribution --- i.e., the a priori belief about the world.
• Priors can be estimated using data, or can be inferred using domain knowledge (e.g., 

a fair coin should land on heads 50% of the time).

In the book, we estimate prior probabilities using observed data:
• Cardboard occurs about 200 times for each 1000 item of trash.
• Paper occurs about 300 times for each 1000 item of trash.
• Cans occur about 250 times for each 1000 item of trash.
• Scrap Metal occurs about 200 times for each 1000 item of trash.
• Bottles occur about 50 times for each 1000 item of trash.

Is there any reason to believe that this approach should work in practice?



Borel’s law of large numbers
• Let 𝐴 ⊂ Ω be an event with probability P 𝐴 = 𝑝.
• Suppose we run our experiment 𝑛 times, and we observe that event 𝐴 

occurs 𝑁! 𝐴  times.
• Then, with probability one

𝑁! 𝐴
𝑛

→ 𝑝	as	𝑛 → ∞

Ø   As the number of trials goes to infinity, the proportion of times that an 
event occurs approaches the probability of that event.

Ø  If we make enough observations, we can start to trust that we have 
good estimates of prior probabilities!

Shamelessly taken from Wikipedia.



Machine Learning

In fact, we have just seen a first, simple example of machine learning:

1. Count the number of occurrences of each category.
2. Use their relative proportions as an estimate of the prior 

probability distribution.

We’ll go a bit deeper later in this chapter.



Simulation by sampling

• Often useful to simulate robot systems. 
In our case, we might like to simulate 
the arrival of trash to our sorting 
system, such that it accurately reflects 
the prior distribution?
• How can we generate a sequence of 

samples, say 𝜔M, 𝜔N, … , 𝜔O, such that 
𝜔9 = 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 for approximately 
20% of the samples, 𝜔9 = 𝑝𝑎𝑝𝑒𝑟 for 
approximately 30% of the samples, etc.?

Image from here

https://developpaper.com/application-of-3d-simulation-in-smart-city-robot-arm-intelligent-garbage-classification/


Random Variables
A random variable is a mapping from outcomes to real numbers,  𝑋:Ω → ℝ.
For example, we can map our categories to integers:
• Cardboard ⟶ 0
• Paper ⟶ 1
• Can ⟶ 2
• Scrap Metal ⟶ 3
• Bottle ⟶ 4

• We typically use upper case letters, e.g., 𝑋, to denote a random variable, and lower-
case letters, e.g., 𝑥!, to denote the values taken by 𝑋.
• In our example, 𝑋 ∈ 0,1,2,3,4  indicates that 𝑋 is a random variable that can take 

values from the set 0,1,2,3,4 .



Probability Mass Functions (pmf’s)
• When a random variable takes its values from a finite (or possibly countably infinite) set, it 

is called a discrete random variable.
• The probability distribution for a discrete random variable is typically defined as a 

probability mass function (pmf).
• For random variable 𝑋, the pmf is defined as

𝑝! 𝑥 ≜ 𝑃(𝑋 = 𝑥)
For our example,
• 𝑝! 0 = 0.20	 cardboard
• 𝑝! 1 = 0.30						paper
• 𝑝! 2 = 0.25						can
• 𝑝! 3 = 0.20						scrap	metal
• 𝑝! 4 = 0.05      bottle

As we will soon see, random variables can be 
very useful for outcomes that are naturally 
associated to real numbers, e.g., roll of a die, 
weight of a person, or, in our case, cost of 
applying an action.



Using pmf’s
Even for this example, where categories don’t naturally have numerical 
semantics, we can use the pmf to answer interesting questions.
For example, what is the probability that an object is a paper product?
• Paper products correspond to paper and cardboard, 𝑋 ∈ 0,1 :

𝑃 𝑋 ∈ 0,1 = 𝑝P 0 + 𝑝P 1 = 0.5

Alternatively, we could write:

𝑃(𝑋 ∈ 0,1 ) = 𝑃(𝑋 ≤ 1)

This form, 𝑃 𝑋 ≤ 𝛼  turns out to be very useful. 



Cumulative Distribution Function

𝐹P 𝛼 = 𝑃 𝑋 ≤ 𝛼 = J
Q!RS

𝑝P(𝑥9)

The Cumulative Distribution Function (CDF) is defined as

If we order the 𝑥!’s, such that 𝑥" < 𝑥#… < 𝑥$ we can write this as:

𝐹P 𝛼 = 𝑃 𝑋 ≤ 𝛼 = J
9TU

VWM

𝑝P(𝑥9)

when we choose 𝑘 such that 𝑥%&' ≤ 𝛼 < 𝑥%.



CDF for our trash categories

Category (𝝎) r.v. 𝒙 𝑭𝑿(𝜶)
Cardboard 0 𝑃 𝑋 ≤ 0 =	0.20, 𝜶 = 0
Paper 1 𝑃 𝑋 ≤ 1 =	0.50, 𝜶 = 1
Cans 2 𝑃 𝑋 ≤ 2 =	0.75, 𝜶 = 2
Scrap Metal 3 𝑃 𝑋 ≤ 3 =	0.95, 𝜶 = 3
Bottle 4 𝑃 𝑋 ≤ 4 =	1.00, 𝜶 = 4

𝐹8 𝛼 = 𝑃 𝑋 ≤ 𝛼 = s
!9"

%&'

𝑝8(𝑥!)

It is straightforward to compute the CDF for the r.v. 
associated to various trash categories:

r.v. 𝒙 𝒑𝑿(𝒙)

0 0.20

1 0.30

2 0.25

3 0.20

4 0.05



CDF, Graphically

Remember {cardboard, paper, cans, scrap metal, bottle} -> {0.2, 0.3, 0.25, 0.20, 0.05}

Graphs generated by GPT5



Simulation by sampling
• So, how can we generate a sequence of samples, say 𝜔', 𝜔#, … , 𝜔$, such that 𝜔! =
𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 for approximately 20% of the samples, 𝜔! = 𝑝𝑎𝑝𝑒𝑟 for approximately 30% 
of the samples, etc.?
• Sadly, most programming languages do not include library functions to sample from 

arbitrary probability distributions.
• Happily, the is almost always a random number generator that generates a random 

sample from the unit interval, 𝑥~𝑈(0,1).
• The notation 𝑥~𝑈(0,1) indicates that 𝑥 is a number chosen at random from the 

interval [0,1], and that all possible outcomes are equally likely.
ØLet’s see how to use this…



Simulation by sampling
Suppose we generate the samples 𝑠M = 0.97 and 𝑠N = 0.29

r.v. 𝒙 𝒑𝑿(𝒙) 𝑭𝑿 𝜶 ,	
𝜶 = 𝟎, 𝟏, 𝟐, 𝟑, 𝟒

0 0.20 0.20

1 0.30 0.50

2 0.25 0.75

3 0.20 0.95

4 0.05 1.00

• Note that 0.95 < 𝑠_1 = 0.97 ≤ 1.
• The probability that this occurs is exactly 0.05, since the probability 

of 𝑥 ∈ 𝑎, 𝑏 = (𝑏 − 𝑎) for the uniform distribution on 0,1 .
• 𝑃(𝑏𝑜𝑡𝑡𝑙𝑒) = 0.05 …. Return category bottle.

We can generalize this to develop an algorithm that draws a sample from an arbitrary 
distribution.
1. Generate a sample 𝑥~𝑈(0,1).
2. Determine 𝑘 such that 𝐹8 𝑥%&' < 𝑥 ≤ 𝐹8(𝑥%).
3. Select category 𝜔%

• Similarly, 0.20 < 𝑠# = 0.29 ≤ 0.50
• The probability that this occurs is exactly 0.30.
• 𝑃(𝑝𝑎𝑝𝑒𝑟) = 0.30 … Return category paper.



Sampling, CDF method

Gif generated by GPT5-Thinking



Use the book!
Now is the time to visit the online book, explore 
the concepts, and play with the code to ensure 
that you understand what we have just 
discussed.
• Try different prior distributions, and build the 

corresponding CDF.
• Be sure that your hand calculations match the 

results from the code.
• Generate many samples. Compare the sample 

distribution (i.e., the proportion of occurrences of 
each category) to the true prior.
• Increase the number of samples. You should 

notice that the sampling distribution becomes 
increasingly similar to the true prior as you 
increase the number of samples.



Actions

For this problem, the robot either places an item of 
trash into one of three bins, or lets the item pass 
through the work cell. 
This gives four possible actions:
• 𝑎':  Glass Bin
• 𝑎#: Metal Bin
• 𝑎A: Paper Bin
• 𝑎B: Nop (let object pass through the workcell)

For this chapter, we assume that actions are executed 
without error, every time.
However, since we don’t know with certainty the 
category for an item of trash in the work cell, the 
efficacy of an action is also uncertain.



Assessing Risk

COST cardboard paper can scrap 
metal

bottle

glass bin 2 2 4 6 0

metal bin 1 1 0 0 2

paper bin 0 0 5 10 3

nop 1 1 1 1 1

• Because there is uncertainty in the category of a piece of trash, the robot risks making 
mistakes when choosing actions.

• Different mistakes have different costs. 
• Placing metal in the paper bin might seriously damage paper processing equipment.
• Placing paper in the metal bin is unlikely to cause much harm.

To account for these variations, 
we can define a table of costs for 
applying each action (rows) to 
each category (columns).



Assessing Risk

COST cardboard paper can scrap 
metal

bottle

glass bin 2 2 4 6 0

metal bin 1 1 0 0 2

paper bin 0 0 5 10 3

nop 1 1 1 1 1

• Because there is uncertainty in the category of a piece of trash, the robot risks making 
mistakes when choosing actions.

• Different mistakes have different costs. 
• Placing metal in the paper bin might seriously damage paper processing equipment.
• Placing paper in the metal bin is unlikely to cause much harm.

We assign zero costs to correct 
actions.



Assessing Risk

COST cardboard paper can scrap 
metal

bottle

glass bin 2 2 4 6 0

metal bin 1 1 0 0 2

paper bin 0 0 5 10 3

nop 1 1 1 1 1

• Because there is uncertainty in the category of a piece of trash, the robot risks making 
mistakes when choosing actions.

• Different mistakes have different costs. 
• Placing metal in the paper bin could cause serious damage of paper processing 

equipment.
• Placing paper in the metal bin is unlikely to cause much harm.

We assign zero costs to correct 
actions.

The cost of Nop is due to the 
need for human labor to sort the 
item of trash.



Cost as a Random Variable

Since we only have probabilistic knowledge of an item’s category, we can 
regard the cost of executing an action as a discrete random variable.

Consider action 𝑎p, place the item in the mixed paper bin. 
• Let 𝑋 be the r.v. that denotes the cost of applying action 𝑎p.
• From the table of costs, we see that 𝑋 ∈ {0,5,10,3}, since these are the 

only possible costs for this action.

ØWhat can we say about the probability distribution for 𝑋?



Computing pmf’s
To compute the pmf, recall that the random variable is a mapping from 
outcomes to real numbers.
There are five possible outcomes. The object is one of five categories, 
each of which has a cost associated with putting it in the paper bin.
ØCompute 𝑝P 𝑥  for each 𝑥.

Category P(C) Cost

cardboard 0.20 0

paper 0.30 0

can 0.25 5

scrap 
metal

0.20 10

bottle 0.05 3

• 𝑋 = 0 for cardboard and paper.
• 𝑃 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑, 𝑝𝑎𝑝𝑒𝑟 = 𝑃 𝑐𝑎𝑟𝑑𝑏𝑜𝑎𝑟𝑑 + 𝑃 𝑝𝑎𝑝𝑒𝑟 = 0.5
Ø 𝑝" 0 = 0.5

• 𝑋 = 5 for can.
• 𝑃 𝑐𝑎𝑛 = 0.25
Ø 𝑝" 5 = 0.25

• 𝑋 = 3 for bottle.
• 𝑃 𝑏𝑜𝑡𝑡𝑙𝑒 = 0.05
Ø 𝑝" 3 = 0.05

• 𝑋 = 10 for scrap metal.
• 𝑃 𝑠𝑐𝑟𝑎𝑝	𝑚𝑒𝑡𝑎𝑙 = 0.20
Ø 𝑝" 10 = 0.20



Expectation

• Probabilities tell us something about a single outcome, but this isn’t 
really very useful.  Gamblers who make one-time bets based on 
probabilities can lose a lot of money.
• Most robots operate for prolonged periods of time.
• The notion of average cost over many trials seems like a useful thing 

to know.

ØThis is exactly the concept of expectation in probability theory.



Expectation

𝐸 𝑋 =J
9TM

O

𝑥9	𝑝P(𝑥9)

If a r.v. 𝑋 takes its values from a finite set, 𝑋 ∈ {𝑥', … , 𝑥$}, the expected value of 𝑋, 
denoted 𝑬 𝑿 , is defined by:  

• Expectation is a property of a probability distribution
• 𝑬 𝑿  is not the value you should expect to see for any specific 

outcome!!



Examples

Let  𝑋 ∈ 𝑥M, … , 𝑥O  be a discrete r.v. that corresponds to the number of 
dots shown on a fair die.

• 𝑋 ∈ 1,2,3,4,5,6  and 𝑝8 𝑥! = '
S	for all 𝑖

Ø Compute 𝐸 𝑋 .

𝐸 𝑋 =J
9TM

O

𝑥9	𝑝P 𝑥9 =J
9TM

q
1
6
𝑖 =

1
6
+
2
6
+
3
6
+
4
6
+
5
6
+
6
6
=
21
6
= 3.5



Trash Sorting…

We can now easily evaluate the expected cost for each action under 
the prior probability distribution.

Expected
Cost
3.2

0.6

3.4

1.0

COST Card
board

paper can scrap 
metal

bottle

glass 
bin

2 2 4 6 0

metal 
bin

1 1 0 0 2

paper 
bin

0 0 5 10 3

nop 1 1 1 1 1

𝑷(𝝎) 0.20 0.30 0.25 0.20 0.05

2×0.5 + 4×0.25 + 6×0.2 = 3.2

1×0.5 + 2×0.05 = 0.6

5×0.25 + 10×0.2 + 3×0.05 = 3.4

1×0.5 + 1×0.25 + 1×0.2 + 1×0.05 = 1.0



Simulation by sampling

Earlier, we simulated our trash sorting system using a sampling 
algorithm.  Let’s apply those ideas here.
1. Generate 𝑁 samples from the prior distribution on categories.
2. Compute the cost 𝑐9  for each sample for action 𝑎V.
3. Compute the average cost as:

𝑐𝑜𝑠𝑡V =
1
𝑁
	J
9TM

r

𝑐9

4. Compare 𝑐𝑜𝑠𝑡V  to 𝐸 𝑋  for action 𝑎V  (where 𝑋 is the r.v. for cost).



Probability vs Statistics
• Probability theory is the study of a certain class of mathematical 

functions (probability distributions).

• A statistic is any function of data (including the identity function), and 
statistics is the study of such functions.

𝐸 𝑋 =s
!9'

$

𝑥!	𝑝8(𝑥!) 𝑐𝑜𝑠𝑡% =
1
𝑁
	s
!9'

W

𝑐!

𝐸 𝑋  is a property of 𝑝8 𝑥!
ØProbability Theory

𝑐𝑜𝑠𝑡%	is a function of data, 𝑐!
Ø Statistics



Probability Theory and Statistics
If it happens that certain probability distributions do a good job of describing how 
the world behaves, then probability theory can provide a rigorous basis for a 
system of inference about data.

The Weak Law of Large Numbers:
Consider a data set drawn from probability distribution 𝑝8, with expected value 𝐸 𝑋 = 𝜇.
For any 𝜖 > 0, if 𝑥̅W	denotes the average of a data set of size 𝑁 , then

lim
$→Y

𝑃 𝑥̅W − 𝜇 < 𝜖 = 1

As the size of the data set increases, with probability one the average is arbitrarily close to 
the mean.



Probability Theory and Statistics
The connections between probability theory and statistics are often 
formalized by theorems that express variations on a simple concept:

 As the size of a data set becomes large, the statistics of that data set 
will become increasingly good approximations for various properties of 
the underlying probability distribution from which the data set was 
generated.

• This is one of the reasons simulation by sampling works.
• These theorems are important for statistical inference, machine learning, 

and many other problems that involve data drawn from stochastic 
systems. 



Next Lecture: Sensing and Perception

• Conditional probability:
• How do sensor observations affect our beliefs about the world? 
• A key tool for data-based inference

• Continuous random variables:
• Unlike our five categories of trash,  some things are best described along a 

continuum.
• Things like weight, distance are described using continuous measurements.
• Gaussian Distributions

• Maximum likelihood inference
• Making decisions using conditional probabilities
• Combining information from multiple sensors


