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Fall 2025

Lecture 3: A Trash Sorting
Robot: states and actions




A Trash Sorting Robot

Our first example is a trash sorting robot.

Individual pieces of trash arrive to the
robot’s work cell on a conveyor belt.

The robot’s task is to place each piece of
trash in an appropriate bin:

* Glass

* Mixed paper
* Metal

* Nop

Sensors measure various characteristics of
the trash, which are used to make inferences

about the object type (perception).

We assume sensor uncertainty, but perfect
execution of actions.

Over time, sensor models can be refined
using machine learning methods.




Modeling the

World State

For this problem, the interesting aspect of the world
state is the specific material composition of the item
of trash that is currently in the robot’s work cell.

We consider five possibilities:
* Cardboard

* Paper

* Cans

e Scrap Metal

* Bottles

For this chapter, we assume that there are no other
possibilities.

You should probably just memorize these now,
because they’re going to be used a lot in this chapter.



Modeling Uncertainty

We assume that there is uncertainty in sensing, and therefore, it is not possible to
know with certainty the world state.

We consider the state to be a random quantity, with five possible outcomes:
() = {cardboard, paper, cans, scrap metal, bottle}

In probability theory,

* The set () is called the sample space.
 Each w € Qis called an outcome.

e Asubset A c (is called an event.

Denote by B = {A|A c Q} the set of all events.

Probability distributions map events to probabilities, P: 8B — [0,1]



Examples

Suppose the probabilities associated with the five outcomes are given as:

Category (w) P({w}) Compute the following:

Cardboard 0.20 * The probability that an item is a paper product: P({4¢})
Paper 0.30 * The probability that an item is a metal product: P({4,})
Cans 0.25

Scrap Metal 0.20

Bottle 0.05 Answers:

« P({A{}) = P({cardboard}) + P({paper}) = 0.5
« P({A,}) = P({cans}) + P({scrap metal}) = 0.45

Define two events
A, ={cardboard, paper}
A, ={cans, scrap metal}



Some properties of probability distributions

Three Axioms of Probability Theory:
1. ForA c Q,P(A) =0

» There’s no such thing as negative probability.
2. P(Q) =1

» The probability that something happened is 1.

3. ForAyAjc Q,ifA;NA; =@, then P(A; UA;) =P(4) + P(4;)

» [ftwo events are disjoint (aka mutually exclusive), then the probability

that one of the two events occurred equals the sum of the probabilities for
the two events.

» The second and third axiom immediately imply thatP(@) =0.



A handy relationship:

Since ANA = 0and AU A = Q, we can conclude that

P(A) +P4A) =1
which implies
P(A) =1-P(A)

Proof:
1. AnA=0impliesP(AUA) =P(A) +P(4) [Axiom 3]
2 AUA=QimpiesP(AUA) =P(Q) =1 [Axiom 2]

3. Together,1and 2imply P(A) + P(4) =1



Examples

Suppose the probabilities associated with the five outcomes are given as:

Category (w) P({w}) Compute the following:

Cardboard  0.20 * The probability that an item is a paper product: P({4¢})
Paper 0.30 * The probability that an item is a metal product: P({4,})
Cans 0.25 e The probability that an item is not a paper product P({41})

Scrap Metal 0.20

Bottle 0.05 Answers:

 P({A{}) = P({cardboard}) + P({paper}) = 0.5
« P({A,}) = P({cans}) + P({scrap metal}) = 0.45

Define two events « P({A{}) = P(Q — Ay) = P({cans, scrap metal, bottle}) = 0.5
A, ={cardboard, paper}
A, ={cans, scrap metal}



Prior Probability Distributions

What can we say about the probabilities of various outcome before we even invoke
the robot’s sensors?

* Our beliefs about the probabilities of various outcomes can be encoded in a prior
distribution --- i.e., the a priori belief about the world.

* Priors can be estimated using data, or can be inferred using domain knowledge (e.g.,
a fair coin should land on heads 50% of the time).

In the book, we estimate prior probabilities using observed data:

e Cardboard occurs about 200 times for each 1000 item of trash.
* Paper occurs about 300 times for each 1000 item of trash.

* Cans occur about 250 times for each 1000 item of trash.

e Scrap Metal occurs about 200 times for each 1000 item of trash.
* Bottles occur about 50 times for each 1000 item of trash.

Is there any reason to believe that this approach should work in practice?




Borel's law of large numbers

* Let A c Q be an event with probability P(4) = p.

« Suppose we run our experiment n times, and we observe that event A
occurs N,,(4) times.

* Then, with probability one

Ny, (A)
n

>pasn —

» As the number of trials goes to infinity, the proportion of times that an
event occurs approaches the probability of that event.

> If we make enough observations, we can start to trust that we have
good estimates of prior probabilities!

Shamelessly taken from Wikipedia.



Machine Learning

In fact, we have just seen a first, simple example of machine learning:

1. Count the number of occurrences of each category.

2. Use their relative proportions as an estimate of the prior
probability distribution.

We’ll go a bit deeper later in this chapter.



Simulation by sampling

e Often useful to simulate robot systems.
In our case, we might like to simulate
the arrival of trash to our sorting
system, such that it accurately reflects
the prior distribution?

* How can we generate a sequence of
samples, say w{, w,, ..., Wy, such that
w; = cardboard for approximately
20% of the samples, w; = paper for
approximately 30% of the samples, etc.?

Image from here


https://developpaper.com/application-of-3d-simulation-in-smart-city-robot-arm-intelligent-garbage-classification/

Random Variables

A random variable is a mapping from outcomes to real numbers, X: (Q — R.
For example, we can map our categories to integers:

e Cardboard — 0

* Paper — 1

* Can — 2

* Scrap Metal — 3

Bottle — 4

* We typically use upper case letters, e.g., X, to denote a random variable, and lower-
case letters, e.g., x;, to denote the values taken by X.

* In our example, X € {0,1,2,3,4} indicates that X is a random variable that can take
values from the set {0,1,2,3,4}.



Probability Mass Functions (pmf’s)

 When a random variable takes its values from a finite (or possibly countably infinite) set, it
is called a discrete random variable.

* The probability distribution for a discrete random variable is typically defined as a
probability mass function (pmf).

* For random variable X, the pmf is defined as

px(x) £ P(X = x)
For our example,

* px(0) =0.20 cardboard
As we will soon see, random variables can be

1) =0.30 aper
Px( ) pap very useful for outcomes that are naturally
pX(Z) =0.25 can associated to real numbers, e.g., roll of a die,

py(3) = 0.20 scrap metal weight of a person, or, in our case, cost of
py(4) = 0.05 bottle applying an action.
X = 0.



Using pmf’s

Even for this example, where categories don’t naturally have numerical
semantics, we can use the pmf to answer interesting questions.

For example, what is the probability that an object is a paper product?

 Paper products correspond to paper and cardboard, X € {0,1}:
P(X € {0,1}) = px(0) + px(1) = 0.5

Alternatively, we could write:

P(X € {0,1}) =P(X < 1)

This form, P(X < «) turns out to be very useful.



Cumulative Distribution Function

The Cumulative Distribution Function (CDF) is defined as

F@) =PX <@) = ) py(x)

XisX

If we order the x;’s, such that xy < x, ... < x,, we can write this as:

k—1
Fe(@) = PX S @) = ) py(x)
1=0

when we choose k such that x,_1 < a < x.



CDF for our trash categories

It is straightforward to compute the CDF for the r.v.
associated to various trash categories:

A W N = O

k-1
Fe(@) = P(X S @) = ) px(x)
1=0

px(x) Category (w) rv.x Fy(a)

0.20 Cardboard 0 P(X<0)=0.20,a=0
0.30 Paper 1 P(X<1)=050,a=1
0.25 Cans 2 P(X<2)=075a=2
0.20 Scrap Metal 3 P(X <3) =095 a=3
0.05 SOEE 4 P(X < 4) =1.00, a = 4



CDF, Graphically
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Graphs generated by GPT5



Simulation by sampling

* So, how can we generate a sequence of samples, say w4, w,, ..., Wy, such that w; =
cardboard for approximately 20% of the samples, w; = paper for approximately 30%
of the samples, etc.?

* Sadly, most programming languages do not include library functions to sample from
arbitrary probability distributions.

* Happily, the is almost always a random number generator that generates a random
sample from the unit interval, x~U(0,1).

* The notation x~U(0,1) indicates that x is a number chosen at random from the
interval [0,1], and that all possible outcomes are equally likely.

> Let’s see how to use this...



Simulation by sampling

Suppose we generate the samples s; = 0.97 and s, = 0.29

rv. x  px(x) Fx(a), Note that 0.95 < (s_1 = 0.97) < 1.

a=0,12234 * The probability that this occurs is exactly 0.05, since the probability
0 0.20 0.20 of x € [a, b] = (b — a) for the uniform distribution on [0,1].
1 030  0.50 * P(bottle) = 0.05 .... Return category bottle.
2 025 075 * Similarly, 0.20 < (s, = 0.29) < 0.50
3 0.20 0.95 * The probability that this occurs is exactly 0.30.
4 0.05 1.00  P(paper) = 0.30 ... Return category paper.

We can generalize this to develop an algorithm that draws a sample from an arbitrary
distribution.
1. Generate a sample x~U(0,1).

2. Determine k such that Fy(x;_1) < x < Fx(xy).
3. Select category wy




Sampling, CDF method
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Use the book!

Now is the time to visit the online book, explore
the concepts, and play with the code to ensure
that you understand what we have just
discussed.

* Try different prior distributions, and build the
corresponding CDF.

* Be sure that your hand calculations match the
results from the code.

* Generate many samples. Compare the sample
distribution (i.e., the proportion of occurrences of
each category) to the true prior.

* Increase the number of samples. You should
notice that the sampling distribution becomes
increasingly similar to the true prior as you
increase the number of samples.



Actions

For this problem, the robot either places an item of
trash into one of three bins, or lets the item pass
through the work cell.

This gives four possible actions:
* aq: Glass Bin
* a,: Metal Bin
* a3: Paper Bin

* a,: Nop (let object pass through the workcell)

For this chapter, we assume that actions are executed
without error, every time.

However, since we don’t know with certainty the
category for an item of trash in the work cell, the
efficacy of an action is also uncertain.



Assessing Risk

* Because there is uncertainty in the category of a piece of trash, the robot risks making
mistakes when choosing actions.

* Different mistakes have different costs.
* Placing metal in the paper bin might seriously damage paper processing equipment.
* Placing paper in the metal bin is unlikely to cause much harm.

COST cardboard paper can scrap bottle To account for these variations,
metal we can define a table of costs for
glass bin 2 2 4 6 0 applying each action (rows) to
each category (columns).
metal bin 1 1 0 0 2
paper bin 0 0 5 10 3

nop 1 1 1 1 1




Assessing Risk

* Because there is uncertainty in the category of a piece of trash, the robot risks making
mistakes when choosing actions.
* Different mistakes have different costs.
* Placing metal in the paper bin might seriously damage paper processing equipment.
* Placing paper in the metal bin is unlikely to cause much harm.

COST cardboard | paper can scrap bottle We assign zero costs to correct
metal .
actions.
glass bin 2 2 4 6 0
metal bin 1 1 0 0 2
paper bin 0 0 5 10 3
nop 1 1 1 1 1




Assessing Risk

Because there is uncertainty in the category of a piece of trash, the robot risks making
mistakes when choosing actions.
Different mistakes have different costs.
* Placing metal in the paper bin could cause serious damage of paper processing
equipment.
* Placing paper in the metal bin is unlikely to cause much harm.

COST cardboard | paper can scrap bottle We assign zero costs to correct
metal .
actions.
glass bin 2 2 4 6 0
etal bin 1 1 0 0 5 The cost of Nop is due to the
need for human labor to sort the
paper bin 0 0 5 10 3 item of trash.
nop 1 1 1 1 1




Cost as a Random Variable

Since we only have probabilistic knowledge of an item’s category, we can
regard the cost of executing an action as a discrete random variable.

Consider action a5, place the item in the mixed paper bin.
* Let X be the r.v. that denotes the cost of applying action as.

* From the table of costs, we see that X € {0,5,10,3}, since these are the
only possible costs for this action.

»What can we say about the probability distribution for X?



Computing pmf’s
To compute the pmf, recall that the random variable is a mapping from

outcomes to real numbers.

There are five possible outcomes. The object is one of five categories,
each of which has a cost associated with putting it in the paper bin.

»Compute py (x) for each x.

e X = 0 for cardboard and paper.
 P({cardboard,paper}) = P({cardboard}) + P({paper}) = 0.5

cardboard 0.20 0 > px(0) =0.5
paper 0.30 0

e X = 5forcan. « X = 3 for bottle.
can — = « P({can}) = 0.25 « P({bottle}) = 0.05
scrap 0.20 10 » px(5) =0.25 » px(3) = 0.05
metal
bottle 0.05 3 e X = 10 for scrap metal.

 P({scrap metal}) = 0.20
> py(10) = 0.20



Expectation

* Probabilities tell us something about a single outcome, but this isn’t
really very useful. Gamblers who make one-time bets based on
probabilities can lose a lot of money.

* Most robots operate for prolonged periods of time.

* The notion of average cost over many trials seems like a useful thing
to know.

» This is exactly the concept of expectation in probability theory.



Expectation

If a r.v. X takes its values from a finite set, X € {x4, ..., x,,}, the expected value of X,
denoted E|X], is defined by:

n

EIX] = ) xpx(x)

=1

 Expectation is a property of a probability distribution
« E|X]is not the value you should expect to see for any specific
outcome!!



Examples

Let X € {x4, ..., x,,} be adiscrete r.v. that corresponds to the number of
dots shown on a fair die.

L) [
) ; "l
O 0
+ X €{1,2,3,4,5,6} and px(x;) = < forall i

» Compute E[X].



Trash Sorting...

We can now easily evaluate the expected cost for each action under
the prior probability distribution.

COST Card | paper can scrap | bottle
board metal

glass 2 2 4 6 0
bin

metal 1 1 0 0 2
bin

paper 0 0 5 10 3
bin

nop 1 1 1 1 1
P(w) 0.20 0.30 0.25 0.20 0.05

Expected
Cost

3.2 2%0.5 + 4%x0.25 + 6x0.2 = 3.2

0.6 1x0.5 + 2x0.05 = 0.6

3.4 5%0.25 + 10X0.2 + 3X0.05 = 3.4

1.0 1x0.5 +1x%x0.25 + 1x0.2 + 1x0.05 =1.0



Simulation by sampling

Earlier, we simulated our trash sorting system using a sampling
algorithm. Let’s apply those ideas here.

1. Generate N samples from the prior distribution on categories.
2. Compute the cost ¢; for each sample for action a;,.
3. Compute the average cost as:

CoSt), =

I_\qﬁz

1
N

Il
—

L

4. Compare cost,; to E|X] for action a; (where X is the r.v. for cost).



Probability vs Statistics

* Probability theory is the study of a certain class of mathematical
functions (probability distributions).

A statistic is any function of data (including the identity function), and
statistics is the study of such functions.

n 1 N
EIX) = ) xipx(x) st =y )¢
i=1 =1
E[X] is a property of py(x;) cost, is a function of data, c;

» Probability Theory > Statistics



Probability Theory and Statistics

If it happens that certain probability distributions do a good job of describing how
the world behaves, then probability theory can provide a rigorous basis for a
system of inference about data.

The Weak Law of Large Numbers:
Consider a data set drawn from probability distribution py, with expected value E[X] = wu.
Forany € > 0, if X, denotes the average of a data set of size N, then

lim P(lxy —u|l <e)=1
Nn—o00

As the size of the data set increases, with probability one the average is arbitrarily close to
the mean.



Probability Theory and Statistics

The connections between probability theory and statistics are often
formalized by theorems that express variations on a simple concept:

As the size of a data set becomes large, the statistics of that data set
will become increasingly good approximations for various properties of

the underlying probability distribution from which the data set was
generated.

 This is one of the reasons simulation by sampling works.

» These theorems are important for statistical inference, machine learning,
and many other problems that involve data drawn from stochastic
systemes.



Next Lecture: Sensing and Perception

* Conditional probability:
* How do sensor observations affect our beliefs about the world?
* A key tool for data-based inference

 Continuous random variables:

* Unlike our five categories of trash, some things are best described along a
continuum.

* Things like weight, distance are described using continuous measurements.
e Gaussian Distributions

* Maximum likelihood inference
* Making decisions using conditional probabilities
* Combining information from multiple sensors



