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Lecture 20:
State: Pose in the Plane




Reference Frames

* Robotics is all about management
of reference frames y

* Perception is about estimation of A
reference frames

* Planning is how to move reference
frames

e Control is the implementation of
trajectories for reference frames

* The relation between references
frames is essential to a successful

system




Examples of the types of reference frames
we're talking about

We rigidly attach coordinate frames to objects of
interest. To specify the position and orientation of the
object, we merely specify the position and orientation
of the attached coordinate frame.

{rrb}

{ttp}



e The relationship between frames is often very
simple to define, as in the case when two frames
are related by the motion of a single
joint/motor.

* For example, the upper and lower leg of the dog
robot are related by a single motor at the knee.

Today — we consider only the case of 2D reference frames,
corresponding to mobile robots moving in the plane.




Specifying Orientation in the Plane

Given two coordinate frames with a common origin, how should we describe the
orientation of Frame 1 w.r.t. Frame 0?

Yo
V1 ;) The obvious choice is to merely use the angle 6.
This isn’t a great idea for two reasons:
* We have problems at @ = 2 m — €. For € near 0,
we approach a discontinuity: for small change in €,
X1 we can have a large change in 6.
* This approach does not generalize to rotations in
three dimensions (and not all robots live in the
plane).



Specifying Orientation in the Plane

Given two coordinate frames with a common origin, how should we describe the
orientation of Frame 1 w.r.t. Frame 0?

A better choice:
» Specify the directions of x; and y; with respect to Frame 0 by projecting
onto x, and y,.

Yo

V1

0 X1 * Xg cos O Notation: x denotes
X1 = [ ] — [ : the x-axis of Frame 1
X1 ° ’
1" Vo sin 0 specified w.r.t Frame 0.
sin 6
X0 0 __ Y1 Xo . —sin 6 We obtain y? in the
cos 6 Ly - vol cos @ same way.



Rotation Matrices (rotation in the plane)

cos@ —sin@

We combine these two vectors to obtain a rotation matrix: Rf = [ .
sin 0 cos 6

All rotation matrices have certain properties:

1. The two columns are each unit vectors.

2. The two columns are orthogonal, i.e., ¢y - ¢, = 0. | For such matrices R_" = RT_l
3. detR =+1

» The first two properties imply that the matrix R is orthogonal.
» The third property implies that the matrix is special! (After all, there are plenty of
orthogonal matrices whose determinant is -1, not at all special.)

The collection of 2X2 rotation matrices is called the Special Orthogonal Group of order 2,
or, more commonly SO(2).

This concept generalizes to SO(n) for nXn rotation matrices.



V1

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by P! = 5x] _ We can express the location of the point P in terms of its coordinates
g P =pyx1 +pyy1

Yo

To obtain the coordinates of P w.r.t. Frame 0, we project P onto the
Xo and yg axes:



V1

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by P! = 5x] _ We can express the location of the point P in terms of its coordinates
g P =pyx1 +pyy1

Yo
To obtain the coordinates of P w.r.t. Frame 0, we project P onto the
Xo and yg axes:
P
. PO — P . xo]:
Px Py X1 P Yo



V1

Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 1P = [gx] . | We can express the location of the point P in terms of its coordinates
g P =pyx1 +pyy1

Yo
To obtain the coordinates of P w.r.t. Frame 0, we project P onto the
Xo and yg axes:
P
® po — P - Xolz \(pxxl + pyyl) ) xol ]
Px Py X1 P-yol |(xX1 + Pyy1) * Yo



Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 1P = gx] . | We can express the location of the point P in terms of its coordinates
g P =pyx1 +pyy1

Yo
V1 To obtain the coordinates of P w.r.t. Frame O, we project P onto the
Xo and yg axes:
P
® o _ [P xO]_ \(pxxl +Dyy1) - xo} B {px(xl- X0) + Py (V1 Xo)]
P Py X1 P yol | (Pxxs +pyy1) s ¥o|  |Px(x1 Yo) + 2y (V1 Vo)



Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by 1P = gx] . | We can express the location of the point P in terms of its coordinates
g P =pyx1 +pyy1

Yo
V1 To obtain the coordinates of P w.r.t. Frame O, we project P onto the
Xo and yg axes:
P
® po _ [P xO]_ \(Px% +Pyy1) - xo} - {px(xl' Xo) + Py (Y1 * Xo) ]
P Py X1 P yol | (Pxxs +pyy1) s ¥o|  |Px(x1 Yo) + 2y (V1 Vo)

[0 3130l o)



Coordinate Transformations (rotation only)

Suppose a point P is rigidly attached to coordinate Frame 1, with coordinates given

by P! = gx] _ We can express the location of the point P in terms of its coordinates
g P =pyx1 +pyy1

Yo
V1 To obtain the coordinates of P w.r.t. Frame O, we project P onto the
Xo and yg axes:
P
® . [P xol_ \(pxxl +Dyy1) - xo} B {px(xl- X0) + py(V1 - Xo)]
P by xp BT PyelT (e +oyvn) W] T [pe G vo) 2y (0 30)
X1 Xo Y1 Xo7][Px
:[xl-yo yl-yo] P;v] =Ry P!
X0

P° =R P!




SO(2) is a commutative group

* Group properties:

1. Closure: For all rotations R, R’ € SO(2), their product is also in SO(2), i.e., RR' € SO(2).

2. Identity Element: The 2 X 2 identity matrix I is included in the group, and for all R € SO(2) we have
RI =1R = R.

3. Inverse: For every R € SO(2) there exists R™! € SO(2) suchthat R"'R=RR ! =1I.

4. Associativity: For all R1, Ra, R3 € 50(2), (Rle)Rg = R, (R2R3).

In addition (only in 2D!) rotations in SO(2) commute:

1. Commutativity: For all R1, Ry € SO(2), R1R; = RyR;.



SO(2) in GTSAM

* Rot2 is a class that internally actually stores sin/cos, but you can
always get the rotation matrix from it:

theta = math.radians(30)
R = gtsam.Rot2(theta)
print(R.matrix())

[[ 0.8660254 -0.5 ]
[ 0.5 0.8660254] ]



Rot2 obeys the group properties

* Rotations in 2D form a commutative group, as demonstrated here:

print(isinstance(R * R, gtsam.Rot2)) # closure

I2 = gtsam.Rot2.identity()

print(R.equals(R x I2, 1e-9)) # identity

print((R * R.inverse()).equals(I2, 1e-9)) # inverse

R1, R2, R3 = gtsam.Rot2(1), gtsam.Rot2(2), gtsam.Rot2(3)
print(((R1 * R2)x R3).equals(R1 x (R2 x R3), 1e-9)) # associative
print((R1 x R2).equals(R2 *x R1l, 1e-9)) # commutative

True
True
True
True
True



Rotations act on points:

* Rotations can act on points, which we can do using matrix
multiplication, or using the Rot2.rotate method:

RO01 = gtsam.Rot2(math.radians(20))
P1 = gtsam.Point2(4,3)

print(f"P@ = {R@l.matrix() @ P1}")
print(f"P@ = {RO1.rotate(P1)}")
PO [2.73271005 4.18715844]

[2.73271005 4.18715844]

PO



Specifying Pose in the Plane

Suppose we now translate Frame 1 (no new rotation).

What are the coordinates of P w.r.t. Frame 0?
Since we merely translated P by a fixed

V1 :
vector d, simply add the offset to our
p previous result!

X1

P’ =R} P! +d°

d
= o)
d,




Homogeneous Transformations

We can simplify the equation for coordinate transformations
by augmenting the vectors and matrices with an extra row:

This is just our egn from 3 0 )
the previous page [PO — [R(l)Pl + do-‘ — R1 d [P1]
L11 1 1 1 0, 1111

in which0, = [0 0]

The set of matrices of the form [§ ﬂ, where R € SO(n) and d € R" is called
n

the Special Euclidean Group of order n, or SE(n).




Inverse of a Homogeneous Transformation

What is the relationship between T and T ?

T’Ty = [05vZ  05v2  8|l-05vZ 05vZ —2v2|=

05vZ —05vZ 4|[ 05vZ 05vVZ —6v2 [1 0 0]
0 0 11l o 0 1 |

. _ -1 T _ pT
In general, Tk] = (T]k) ' and [(i Cll] = [I(-)? Ii d]
n

This is easy to verify:

R dl[RT —R'd] [RRT —-RR'd+d]_ [lIuxn On _
0 1 On 1 o On 1 — 10 11~ (n+1)xX(n+1)



Composition of Transformations

Y2
Y1 P
X1 Tz1
T10 \/ \/\
> X2
M o

From our previous results, we know:

Yo

—

This is the composition law for

T1 0pl homogeneous transformations.
T X 0 —

T T4 P?
E——) T2 — T10T2

But we also know: PO — T



SE(2) is a non-commutative group

* Group properties:

1. Closure: For all transforms T', T € SE(2), their product is also in SE(2), i.e., TT' € SE(2).

2. Identity Element: The 3 X 3 identity matrix [ is included in the group, and for all T' € SE(2) we have
Tl=JT=T;

3. Inverse: For every T' € SE(2) there exists T ! € SE(2) suchthat T 'T =TT ! = I.

4. Associativity: For all T, Ty, T3 € SE(2), (T113)T5 = T1(T5T3).

However, in contrast to 2D rotations, 2D rigid transforms do not commute. Also, The inverse T 1is not just the

e e
0, 1 0, 1

transpose; instead, we have:



GTSAM Example

 All of this is built into GTSAM, where both 2D poses and 2D rigid
transforms are represented by the type Pose2:

theta = math.radians(30)

T = gtsam.Pose2(3, -2, theta)
print(f"2D Pose (x, y, theta) = {T}corresponding to transformation matrix:\n{T.matrix()}")

2D Pose (x, y, theta) = (3, -2, 0.523599)
corresponding to transformation matrix:
[[ 0.8660254 -0.5 33 ]

[ 0.5 0.8660254 -2. ]

[ 0. 0. 1 11



Pose? obeys the group properties

* All group properties except not commutative:

print(isinstance(T *x T, gtsam.Pose2)) # closure

I3 = gtsam.Pose2.identity()

print(T.equals(T x I3, 1e-9)) # identity

print((T * T.inverse()).equals(I3, 1e-9)) # inverse

T1, T2, T3 = gtsam.Pose2(1,2,3), gtsam.Pose2(4,5,6), gtsam.Pose2(7,8,9)
print(((T1 * T2)* T3).equals(T1l x (T2 x T3), 1e-9)) # associative
print((T1 % T2).equals(T2 *x T1, 1e-9)) # NOT commutative

True
True
True
True
False



Pose? acts on Point2

e 2D transforms can act on points, which we can do using matrix
multiplication, or using the Pose2.transformFrom method:

TO01 = gtsam.Pose2(1, 2, math.radians(20))

P1 = gtsam.Point2(4,3)

print(f"P0 = {TO0l.matrix() @ [4, 3, 1]}") # need to make PO homogeneous
print(f"P@ = {T@1l.transformFrom(P1)}")

[3.73271005 6.18715844 1. ]
[3.73271005 6.18715844]

PO
PO



