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Reference Frames

• Robotics is all about management 
of reference frames
• Perception is about estimation of 

reference frames
• Planning is how to move reference 

frames
• Control is the implementation of 

trajectories for reference frames

• The relation between references 
frames is essential to a successful 
system



Examples of the types of reference frames 
we’re talking about

We rigidly attach coordinate frames to objects of 
interest. To specify the position and orientation of the 
object, we merely specify the position and orientation 
of the attached coordinate frame.



• The relationship between frames is often very 
simple to define, as in the case when two frames 
are related by the motion of a single 
joint/motor.

• For example, the upper and lower leg of the dog 
robot are related by a single motor at the knee.

Today – we consider only the case of 2D reference frames, 
corresponding to mobile robots moving in the plane.



Specifying Orientation in the Plane

𝜽

𝜽

𝑥!

𝑦!

𝑥"

𝑦" The obvious choice is to merely use the angle 𝜃. 
This isn’t a great idea for two reasons:
• We have problems at 𝜃 = 2	𝜋 − 𝜖.  For 𝜖 near 0, 

we approach a discontinuity: for small change in 𝜖, 
we can have a large change in 𝜃.

• This approach does not generalize to rotations in 
three dimensions (and not all robots live in the 
plane).

Given two coordinate frames with a common origin, how should we describe the 
orientation of Frame 1 w.r.t. Frame 0?



Specifying Orientation in the Plane

𝜽

𝜽

𝑥!

𝑦!

𝑥"

𝑦"

sin 𝜃

cos 𝜃

Given two coordinate frames with a common origin, how should we describe the 
orientation of Frame 1 w.r.t. Frame 0?

A better choice: 
Ø Specify the directions of 𝑥! and 𝑦! with respect to Frame 0 by projecting 

onto 𝑥" and 𝑦". 

𝑥!" =
𝑥! ⋅ 𝑥"
𝑥! ⋅ 𝑦" = cos 𝜃

sin 𝜃
Notation:  𝑥!"	denotes 
the x-axis of Frame 1, 
specified w.r.t Frame 0. 

𝑦!" =
𝑦! ⋅ 𝑥"
𝑦! ⋅ 𝑦" = −sin 𝜃

	 cos 𝜃
We obtain 𝑦!"	in the 
same way. 



Rotation Matrices (rotation in the plane)
We combine these two vectors to obtain a rotation matrix: 𝑅"! =

cos 𝜃
sin 𝜃

−sin 𝜃
	 cos 𝜃	

All rotation matrices have certain properties:
1. The two columns are each unit vectors.
2. The two columns are orthogonal, i.e., 𝑐" ⋅ 𝑐) = 0.
3. det 𝑅 = +1

ØThe first two properties imply that the matrix 𝑅 is orthogonal.
ØThe third property implies that the matrix is special! (After all, there are plenty of 

orthogonal matrices whose determinant is -1, not at all special.)

The collection of 2×2 rotation matrices is called the Special Orthogonal Group of order 2, 
or, more commonly 𝑺𝑶(𝟐).

This concept generalizes to 𝑺𝑶 𝒏  for 𝑛×𝑛 rotation matrices.  

For such matrices	𝑹*𝟏= 𝑹𝑻  



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃" =
𝑝-
𝑝. .

𝑝! 𝑝"

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝-𝑥" + 𝑝.𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥"  and 𝑦" axes:



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃" =
𝑝-
𝑝. .

𝑝! 𝑝"

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝-𝑥" + 𝑝.𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥"  and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

 =
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")	
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")	

=
𝑥! ⋅ 𝑥"	 𝑦! ⋅ 𝑥"	
𝑥! ⋅ 𝑦"	 𝑦! ⋅ 𝑦"	

𝑝#
𝑝$ = 	

𝟎𝑹𝟏 𝟏𝑷



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by "𝑃 =
𝑝-
𝑝. .

𝑝! 𝑝"

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝-𝑥" + 𝑝.𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥"  and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

 =
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")	
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")	

=
𝑥! ⋅ 𝑥"	 𝑦! ⋅ 𝑥"	
𝑥! ⋅ 𝑦"	 𝑦! ⋅ 𝑦"	

𝑝#
𝑝$ = 	

𝟎𝑹𝟏 𝟏𝑷



Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by "𝑃 =
𝑝-
𝑝. .

𝑝! 𝑝"

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝-𝑥" + 𝑝.𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥"  and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

 =
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")	
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")	

=
𝑥! ⋅ 𝑥"	 𝑦! ⋅ 𝑥"	
𝑥! ⋅ 𝑦"	 𝑦! ⋅ 𝑦"	

𝑝#
𝑝$ = 	

𝟎𝑹𝟏 𝟏𝑷



To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥"  and 𝑦" axes:

𝑃" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

 =
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")	
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")	

=
𝑥! ⋅ 𝑥"	 𝑦! ⋅ 𝑥"	
𝑥! ⋅ 𝑦"	 𝑦! ⋅ 𝑦"	

𝑝#
𝑝$ = 𝑹𝟏𝟎 𝑷𝟏

Coordinate Transformations (rotation only)

𝑥!

𝑦!

𝑥"

𝑦"

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by "𝑃 =
𝑝-
𝑝. .

𝑝! 𝑝"

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝-𝑥" + 𝑝.𝑦"



𝑥"

𝑦"

Coordinate Transformations (rotation only)

𝑥!

𝑦!

Suppose a point 𝑃 is rigidly attached to coordinate Frame 1, with coordinates given 

by 𝑃" =
𝑝-
𝑝. .

𝑝! 𝑝"

𝑃

We can express the location of the point 𝑃 in terms of its coordinates 
𝑃 = 𝑝-𝑥" + 𝑝.𝑦"

To obtain the coordinates of 𝑃 w.r.t. Frame 0, we project 𝑃 onto the 
𝑥"  and 𝑦" axes:

𝑝" = 𝑃 ⋅ 𝑥"
𝑃 ⋅ 𝑦"

= 
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑥"
(𝑝#𝑥! + 𝑝$𝑦!) ⋅ 𝑦"

 =
𝑝#(𝑥!⋅ 𝑥") + 𝑝$(𝑦! ⋅ 𝑥")	
𝑝#(𝑥!⋅ 𝑦") + 𝑝$(𝑦! ⋅ 𝑦")	

=
𝑥! ⋅ 𝑥"	 𝑦! ⋅ 𝑥"	
𝑥! ⋅ 𝑦"	 𝑦! ⋅ 𝑦"	

𝑝#
𝑝$ = 𝑹𝟏𝟎 𝑷𝟏

𝑷𝟎 	= 𝑹𝟏𝟎 𝑷𝟏



SO(2) is a commutative group

• Group properties:



SO(2) in GTSAM

• Rot2 is a class that internally actually stores sin/cos, but you can 
always get the rotation matrix from it:



Rot2 obeys the group properties

• Rotations in 2D form a commutative group, as demonstrated here:



Rotations act on points:

• Rotations can act on points, which we can do using matrix 
multiplication, or using the Rot2.rotate method:



Specifying Pose in the Plane

𝑥!

Suppose we now translate Frame 1 (no new rotation). 
What are the coordinates of 𝑃 w.r.t. Frame 0? 

Since we merely translated 𝑃 by a fixed 
vector 𝑑, simply add the offset to our 
previous result!

𝑑-

𝒅𝟎 =
𝒅𝒙
𝒅𝒚

𝑦!
𝑃

𝑑

𝑑.

𝑥"

𝑦"

𝑑

𝑷𝟎 	= 𝑹𝟏𝟎 𝑷𝟏 + 𝒅𝟎



Homogeneous Transformations

𝑷𝟎
1

= 𝑹𝟏𝟎𝑷𝟏 + 𝒅𝟎
1

= 𝑹𝟏𝟎 𝒅𝟎
0( 1

𝑷𝟏
1

We can simplify the equation for coordinate transformations 
by augmenting the vectors and matrices with an extra row: 

The set of matrices of the form	 𝑅 𝑑
00 1 , where 𝑅 ∈ 𝑆𝑂(𝑛) and 𝑑 ∈ ℝ0 is called 

the Special Euclidean Group of order 𝒏,  or 𝑆𝐸(𝑛).

in which 0) = 0 0  

This is just our eqn from 
the previous page



Inverse of a Homogeneous Transformation
What is the relationship between 𝑇"! and 𝑇!"?

𝑇"!𝑇!" =
0.5 2 −0.5 2 4
0.5 2 0.5 2 8
0 0 1

0.5 2 0.5 2 −6 2
−0.5 2 0.5 2 −2 2

0 0 1
=

1 0 0
0 1 0
0 0 1

In general,   𝑇!
" = 𝑇"!

#$
 and 𝑹 𝒅

0% 1
#$
= 𝑹𝑻 −𝑹𝑻𝒅

0% 1

This is easy to verify:

𝑹 𝒅
00 1

𝑹𝑻 −𝑹𝑻𝒅
00 1 = 𝑹𝑹𝑻 −𝑹𝑹𝑻𝒅 + 𝒅

00 1 = 𝑰𝒏×𝒏 𝟎𝒏
00 1 = 𝐼(04")×(04")



Composition of Transformations

𝑥!

𝑦"
𝑦)

𝑦!
𝑥"

𝑥)

𝑃

𝑃" = 𝑇)"𝑃)
𝑃! = 𝑇"!𝑃"

From our previous results, we know:

𝑃! = 𝑇"!𝑇)"𝑃)

𝑃! = 𝑇)!𝑃)
𝑇)! = 𝑇"!𝑇)"

But we also know:

𝑇#$
𝑇%#

𝑇%$

This is the composition law for 
homogeneous transformations.



SE(2) is a non-commutative group

• Group properties:



GTSAM Example

• All of this is built into GTSAM, where both 2D poses and 2D rigid 
transforms are represented by the type Pose2:



Pose2 obeys the group properties

• All group properties except not commutative:



Pose2 acts on Point2

• 2D transforms can act on points, which we can do using matrix 
multiplication, or using the Pose2.transformFrom method:


