Welcome to CS 3630!

Fall 2025

Course Instructors

Frank Dellaert, Professor
School of Interactive Computing
Stints at Skydio, Facebook, Holomatic,
Google, Verdant Robotics

TAs:

Andrew Wong (Head TA)
Anusree Chittineni
Johann-Antony Silvetti-Schmitt
Leonid Alexeyev
Nhi Nguyen
Rahul Rustagi
Samuel Taubman
Shalin Jain
Harsh Muriki
Yipu Chen

Frank intro

• Georgia Tech + industry

• See separate slide deck..

Robots are useful!

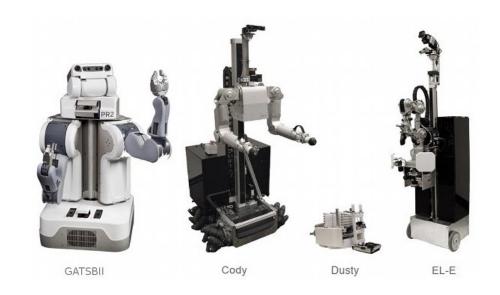
- Manufacturing
- Logistics (inventory, warehouse logistics, packaging)
- Transportation (self-driving cars)
- Consumer and professional services (cleaning, mowing)
- Health, independence and quality of life (exoskeletons, semi-autonomous wheelchairs)
- Agriculture

Robot Hardware and SW is evolving FAST

• Unitree Quadruped: https://www.youtube.com/watch?v=ve9USu7zpLU

Unitree Humanoid: https://www.youtube.com/watch?v=GzX1qOIO1bE

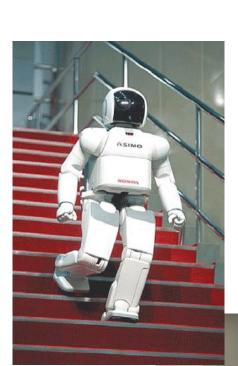
Neo: Humanoid: https://www.youtube.com/watch?v=uVcBa6NXAbk


Figure Helix: https://www.youtube.com/watch?v=Z3yQHYNXPws

- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles

http://www.kuka.com

- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles



- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles

http://www.frc.ri.cmu.edu/robots/

- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles

- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles

- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles

- Industrial Robots
- Service Robots
- Field Robots
- Humanoid Robots
- Medical Robots
- Self-Driving Cars
- Aerial Vehicles

In this class...

- We will not deal specifically with each of these robots.
- However, the mathematical and computational tools that we introduce can be applied to all the above robots.
- Likewise, the sensors and sensing methods that we will introduce can be applied to all the problems described above.

Class Website

Class Website

- Mostly externally facing
- Communication in class is via
 - Piazza (Q&A)
 - Canvas (esp. grades)
 - Gradescope

The course web site will always have the most up-to-date version of the schedule (next!).

https://dellaert.github.io/25F-3630/

Introduction to Perception and Robotics

Georgia Tech CS 3630 Fall 2022 edition

Instructor: Frank Dellaert in Interactive Computing

TAs: Matthew King-Smith, Isabella Poage, Srihari Subramanian, Abhineet Jain, Allison Fister, Aswin Prakash, Nitin Vegesna, Asha Gutlapalli, John Yi, Meher Nigam, Avinash Prabhu, Adwait Deshpande, Vivek Mallampati, Priyal Chhatrapati, Prannoy Jada

Welcome to the homepage of CS3630, Fall 2022!

Course Description

This course covers fundamental problems and leading solutions to autonomous robot navigation – what and how must a robot perceive the world, and how can it use that information to navigate effectively.

Maintained by Frank Dellaert and the TAs of CS 3630

Based on a theme by orderedlist

Schedule

Class Schedule

There will almost certainly be changes to precise lecture topics, but quiz and project dates are unlikely to change.

The course web site will always have the most up-to-date version of the schedule.

Week	Mth	Date	Day	Module	Topic	Slides	Reading	Quizzes	Projects
1	Aug	19	Tue		Introduction	L1_Course_Overview	1	Quiz 1	P1: Intro to Python
1	Aug	21	Thu	Sorting	Six aspects of robotics systems	L2_Intro_to_Robot_Systems	1		
2	Aug	26	Tue	Sorting	State, probability, and actions	L3_Trash_Robot_1	2.1-2.2		P2: Probability and Decision Theory
2	Aug	28	Thu	Sorting	Sensor Models	L4_Trash_Robot_2	2.3		
3	Sep	2	Tue	Sorting	Perception and Planning	L5_Trash_Robot_3	2.4-2.7		
3	Sep	4	Thu	Vacuum	Probabilistic Actions	L6_Vacuuming_Robot_1	3.1-3.2	Quiz 2	
4	Sep	9	Tue	Vacuum	Controlled Markov Chains	L7_Vacuuming_Robot_2	3.2-3.3		P3: HMM and MDP
4	Sep	11	Thu	Vacuum	Sensors and Bayes Nets	L8_Vacuuming_Robot_3	3.3-3.4		
5	Sep	16	Tue	Vacuum	Inference in HMMs	L9_Vacuuming_Robot_4	3.4		
5	Sep	18	Thu	Vacuum	Markov Decision Processes	L10_Vacuuming_Robot_5	3.5-3.7	Quiz 3	
6	Sep	23	Tue	Logistics	Continuus State and Action	L11_Logistics_Robot_1	4.1-4.2		P4: Particle Filters
6	Sep	25	Thu	Logistics	Continuous Motion and Sensing	L12_Logistics_Robot_2	4.3		
7	Sep	30	Tue	Logistics	Markov Localization and MCL	L13_Logistics_Robot_3	4.4		
7	Oct	2	Thu	Logistics	More MCL and MDPs	L14_Logistics_Robot_4	4.5-4.7	Quiz 4	P4 due, pause on projects until Oct 21
8	Oct	7	Tue	Duckiebot	Fall Break	-	-		
8	Oct	9	Thu	Duckiebot	Differential Drive	L15_DDRs_1	5.1-5.2		
9	Oct	14	Tue	Duckiebot	Cameras and Image Processing	L16_DDRs_2	5.3		
9	Oct	16	Thu	Duckiebot	Computer Vision 101	L17_DDRs_3_vision	5.4		
10	Oct	21	Tue	Duckiebot	Inference with Deep Nets	L18_DDRs_4_RRTs	5.5		P5: Deep Learning
10	Oct	23	Thu	Duckiebot	Deep Learning	L19_DDRs_5_learning	5.6-5.7	Quiz 5	
11	Oct	28	Tue	Vehicles	Autonomous Vehicles and SE(2)	L20_Driving_1_SE2	6.1		
11	Oct	30	Thu	Vehicles	Ackerman steering	L21_Driving_2_Kinematics	6.2		
12	Nov	4	Tue	Vehicles	LIDAR sensors	L22_Driving_3_LIDAR	6.3		P6: Pose SLAM and LIDAR
12	Nov	6	Thu	Vehicles	ICP and Pose SLAM	L23_Driving_4_SLAM	6.4		
13	Nov	11	Tue	Vehicles	Planning for Driving	L24_Driving_5_Planning	6.5-6.7	Quiz 6	
13	Nov	13	Thu	Drone	SE(3)	L25_Drones_1_SE3	7.1		
14	Nov		Tue	Drone	Actions for Drones	L26_Drones_2_Actions	7.2		P7: RRT and/or Trajectory Optimization
14	Nov	20	Thu	Drone	Drone sensors	L27_Drones_3_Sensing	7.3		
15	Nov	25	Tue	Thanksgiving			_		
15	Nov	27	Thu	Drone	Trajectory Optimization & RRT	L28_Drones_4_Planning	7.5	Quiz 7	
16	Dec	2	Tue	Drone	Visual SLAM	L29_Drones_4_VisualSLAM	7.4, 7.6-7.7		P7 due, all quizzes graded!

Six Modules

The class is organized into six modules, each of which focuses on a specific robot performing a specific application:

- A Trash Sorting Robot
- A Vacuum Cleaning Robot
- A Robot for Logistics (e.g., warehouse operations)
- The Duckiebot (a simple wheeled mobile robot)
- Autonomous Cars
- Drones

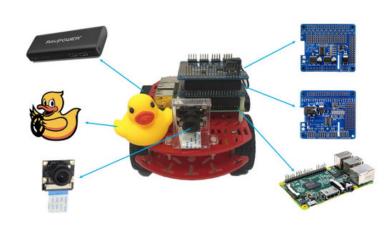
Trash Sorting Robot

- Pieces of trash arrive to a robot work cell.
- The robot's job is to classify each piece of trash and move it to an appropriate bin.
- Simple, deterministic, high-level actions.
- Simple sensors.
- Uncertainty in sensor readings introduces probability into perception.
- Planning is the problem of choosing actions to minimize average costs over a long horizon.

Vacuum Cleaning Robot

- Robot actions are uncertain: command to move to living room might take the robot to the kitchen.
- Sensing is uncertain.
- Perception is addressed using Hidden Markov Models (HMMs).
- Planning is addressed using Markov Decision Processes (MDPs).

Simple Logistics Robot


- Mobile robot platform that moves in a warehouse.
- Omnidirectional wheels, so the robot can move in any direction at any time (not like a car).
- LIDAR sensing (includes uncertainty)
- Monte Carlo localization to deal with uncertainty when determining the robot's location.
- Planning is not so difficult, because warehouses are fairly regular and well organized.

Duckiebots

- The Duckiebot has two wheels (differential drive), and can only move "forward/backward" (can change the direction of "forward/ backward" by rotating).
- Rotation complicates the geometry of motion.
 We'll introduce the appropriate mathematics to deal with rotations.
- For perception, we'll introduce deep learning methods (very casual and superficial – not a deep dive into deep learning).
- In a post-pandemic world, with smaller lecture sizes, we hope one day to use the Duckiebots in the lab portion of this course.

Autonomous Cars

- The robot is a fully instrumented autonomous (aka self-driving) car).
- The car has a non-zero turning radius (unlike the Duckiebot), and cannot move sideways.
- We'll use LIDAR sensors to determine the world state.
- Project will involve a large, real-world data set used for autonomous driving research.

Drones

- Drones fly in 3D.
- Dealing with rotations in 3D is tricky, but we'll introduce the math to deal with this.
- Motion planning is tricky point the vehicle in the wrong direction, and it will dive and crash. We'll introduce state-of-the-art motion planning methods to deal with this.
- We'll use visual odometry (i.e., using computer vision to measure travelled distances) to determine the drone's position and orientation.
- Planning includes dealing with the dynamics of the drone's motion. We'll deal with this using trajectory optimization methods.

Class Schedule Revisited

Projects will focus on specific aspects of the problems associated to one of the modules.

Each project will be assigned on a Tuesday, and will be due at midnight two weeks later.

Week	Mth	Date	Day	Module	Topic	Slides	Reading	Quizzes	Projects
1	Aug	19	Tue		Introduction	L1_Course_Overview	1	Quiz 1	P1: Intro to Python
1	Aug	21	Thu	Sorting	Six aspects of robotics systems	L2_Intro_to_Robot_Systems	1		
2	Aug	26	Tue	Sorting	State, probability, and actions	L3_Trash_Robot_1	2.1-2.2		P2: Probability and Decision Theory
2	Aug	28	Thu	Sorting	Sensor Models	L4_Trash_Robot_2	2.3		
3	Sep	2	Tue	Sorting	Perception and Planning	L5_Trash_Robot_3	2.4-2.7		
3	Sep	4	Thu	Vacuum	Probabilistic Actions	L6_Vacuuming_Robot_1	3.1-3.2	Quiz 2	
4	Sep	9	Tue	Vacuum	Controlled Markov Chains	L7_Vacuuming_Robot_2	3.2-3.3		P3: HMM and MDP
4	Sep	11	Thu	Vacuum	Sensors and Bayes Nets	L8_Vacuuming_Robot_3	3.3-3.4		
5	Sep	16	Tue	Vacuum	Inference in HMMs	L9_Vacuuming_Robot_4	3.4		
5	Sep	18	Thu	Vacuum	Markov Decision Processes	L10_Vacuuming_Robot_5	3.5-3.7	Quiz 3	
6	Sep	23	Tue	Logistics	Continuus State and Action	L11_Logistics_Robot_1	4.1-4.2		P4: Particle Filters
6	Sep	25	Thu	Logistics	Continuous Motion and Sensing	L12_Logistics_Robot_2	4.3		
7	Sep	30	Tue	Logistics	Markov Localization and MCL	L13_Logistics_Robot_3	4.4		
7	Oct	2	Thu	Logistics	More MCL and MDPs	L14_Logistics_Robot_4	4.5-4.7	Quiz 4	P4 due, pause on projects until Oct 21
8	Oct	7	Tue	Duckiebot	Fall Break	-	-		
8	Oct	9	Thu	Duckiebot	Differential Drive	L15_DDRs_1	5.1-5.2		
9	Oct	14	Tue	Duckiebot	Cameras and Image Processing	L16_DDRs_2	5.3		
9	Oct	16	Thu	Duckiebot	Computer Vision 101	L17_DDRs_3_vision	5.4		
10	Oct	21	Tue	Duckiebot	Inference with Deep Nets	L18_DDRs_4_RRTs	5.5		P5: Deep Learning
10	Oct	23	Thu	Duckiebot	Deep Learning	L19_DDRs_5_learning	5.6-5.7	Quiz 5	
11	Oct	28	Tue	Vehicles	Autonomous Vehicles and SE(2)	L20_Driving_1_SE2	6.1		
11	Oct	30	Thu	Vehicles	Ackerman steering	L21_Driving_2_Kinematics	6.2		
12	Nov	4	Tue	Vehicles	LIDAR sensors	L22_Driving_3_LIDAR	6.3		P6: Pose SLAM and LIDAR
12	Nov	6	Thu	Vehicles	ICP and Pose SLAM	L23_Driving_4_SLAM	6.4		
13	Nov	11	Tue	Vehicles	Planning for Driving	L24_Driving_5_Planning	6.5-6.7	Quiz 6	
13	Nov	13	Thu	Drone	SE(3)	L25_Drones_1_SE3	7.1		
14	Nov	18	Tue	Drone	Actions for Drones	L26_Drones_2_Actions	7.2		P7: RRT and/or Trajectory Optimization
14	Nov	20	Thu	Drone	Drone sensors	L27_Drones_3_Sensing	7.3		
15	Nov	25	Tue	Thanksgiving					
15	Nov	27	Thu	Drone	Trajectory Optimization & RRT	L28_Drones_4_Planning	7.5	Quiz 7	
16	Dec	2	Tue	Drone	Visual SLAM	L29_Drones_4_VisualSLAM	7.4, 7.6-7.7		P7 due, all quizzes graded!

Class Schedule Revisited

Projects will focus on specific aspects of the problems associated to one of the modules.

There will be a quiz at the end of each module.

The module ends on a Tuesday, and the quiz will be in class the following Thursday.

Week	Mth	Date	Day	Module	Topic	Slides	Reading	Quizzes	Projects
1	Aug	19	Tue		Introduction	L1_Course_Overview	1	Quiz 1	P1: Intro to Python
1	Aug	21	Thu	Sorting	Six aspects of robotics systems	L2_Intro_to_Robot_Systems	1		
2	Aug	26	Tue	Sorting	State, probability, and actions	L3_Trash_Robot_1	2.1-2.2		P2: Probability and Decision Theory
2	Aug	28	Thu	Sorting	Sensor Models	L4_Trash_Robot_2	2.3		
3	Sep	2	Tue	Sorting	Perception and Planning	L5_Trash_Robot_3	2.4-2.7		
3	Sep	4	Thu	Vacuum	Probabilistic Actions	L6_Vacuuming_Robot_1	3.1-3.2	Quiz 2	
4	Sep	9	Tue	Vacuum	Controlled Markov Chains	L7_Vacuuming_Robot_2	3.2-3.3		P3: HMM and MDP
4	Sep	11	Thu	Vacuum	Sensors and Bayes Nets	L8_Vacuuming_Robot_3	3.3-3.4		
5	Sep	16	Tue	Vacuum	Inference in HMMs	L9_Vacuuming_Robot_4	3.4		
5	Sep	18	Thu	Vacuum	Markov Decision Processes	L10_Vacuuming_Robot_5	3.5-3.7	Quiz 3	
6	Sep	23	Tue	Logistics	Continuus State and Action	L11_Logistics_Robot_1	4.1-4.2		P4: Particle Filters
6	Sep	25	Thu	Logistics	Continuous Motion and Sensing	L12_Logistics_Robot_2	4.3		
7	Sep	30	Tue	Logistics	Markov Localization and MCL	L13_Logistics_Robot_3	4.4		
7	Oct	2	Thu	Logistics	More MCL and MDPs	L14_Logistics_Robot_4	4.5-4.7	Quiz 4	P4 due, pause on projects until Oct 21
8	Oct	7	Tue	Duckiebot	Fall Break	-	-		
8	Oct	9	Thu	Duckiebot	Differential Drive	L15_DDRs_1	5.1-5.2		
9	Oct	14	Tue	Duckiebot	Cameras and Image Processing	L16_DDRs_2	5.3		
9	Oct	16	Thu	Duckiebot	Computer Vision 101	L17_DDRs_3_vision	5.4		
10	Oct	21	Tue	Duckiebot	Inference with Deep Nets	L18_DDRs_4_RRTs	5.5		P5: Deep Learning
10	Oct	23	Thu	Duckiebot	Deep Learning	L19_DDRs_5_learning	5.6-5.7	Quiz 5	
11	Oct	28	Tue	Vehicles	Autonomous Vehicles and SE(2)	L20_Driving_1_SE2	6.1		
11	Oct	30	Thu	Vehicles	Ackerman steering	L21_Driving_2_Kinematics	6.2		
12	Nov	4	Tue	Vehicles	LIDAR sensors	L22_Driving_3_LIDAR	<u>6</u> .3		P6: Pose SLAM and LIDAR
12	Nov	6	Thu	Vehicles	ICP and Pose SLAM	L23_Driving_4_SLAM	6.4		
13	Nov	11	Tue	Vehicles	Planning for Driving	L24_Driving_5_Planning	6.5-6.7	Quiz 6	
13	Nov		Thu	Drone	SE(3)	L25_Drones_1_SE3	7.1		
14	Nov		Tue	Drone	Actions for Drones	L26_Drones_2_Actions	7.2		P7: RRT and/or Trajectory Optimization
14	Nov	20	Thu	Drone	Drone sensors	L27_Drones_3_Sensing	7.3		
15	Nov	25	Tue	Thanksgiving					
15	Nov	27	Thu	Drone	Trajectory Optimization & RRT	L28_Drones_4_Planning	7.5	Quiz 7	
16	Dec	2	Tue	Drone	Visual SLAM	L29_Drones_4_VisualSLAM	7.4, 7.6-7.7		P7 due, all quizzes graded!

Syllabus Let's go to the website

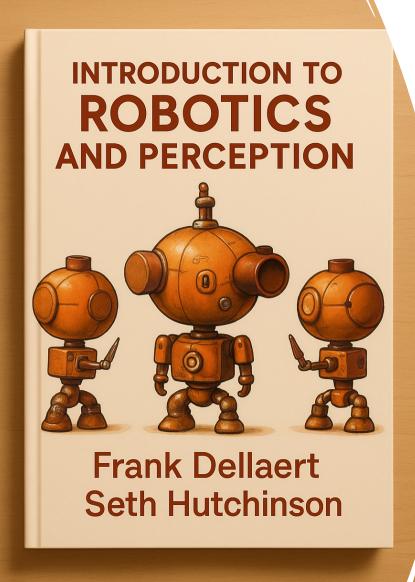
Syllabus

Introduction to Perception and Robotics

Georgia Tech CS 3630 Fall 2025 edition

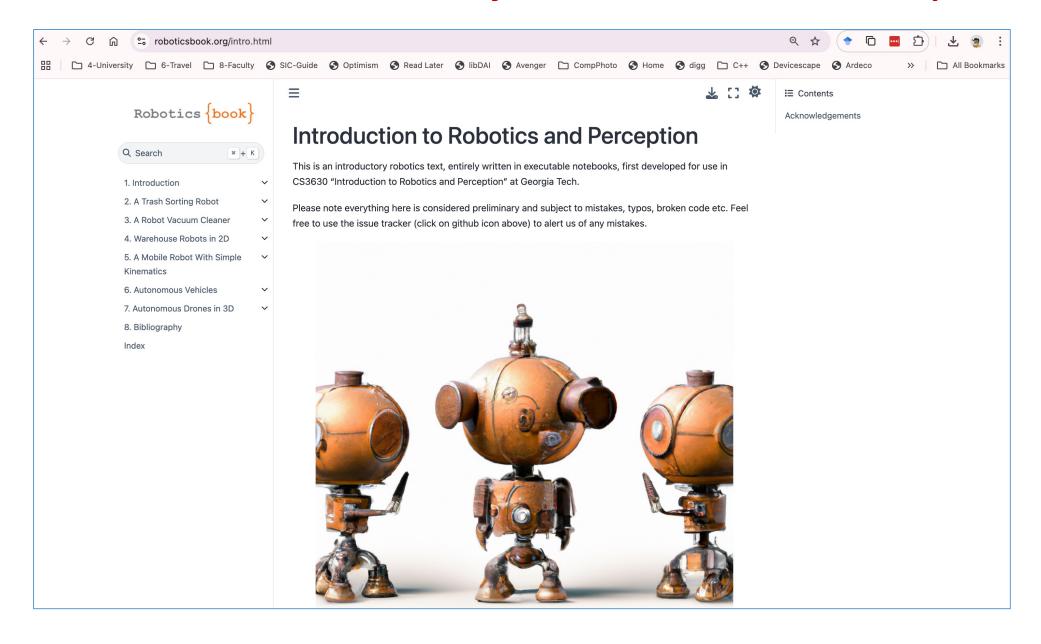
Home	Book	Resources
Syllabus	Schedule	Projects

Syllabus

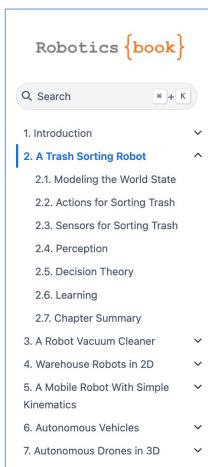

Learning Objectives

Upon completion of this course, students will be able to:

- Describe and explain what robots are and what they can do
- Describe mathematically the position and orientation of objects and how they move
- Develop a control architecture for a mobile robotic system
- Implement navigation and localization algorithms based on sensor fusion and environment representation
- Write moderately involved programs in Python and Java to control a robotic system
- Construct, program, and test the operation of a robotic system to perform a specified task


Prerequisites

The only formal prerequisite is CS1332 Data Structures & Algorithms. Prior knowledge of fundamentals of linear algebra and probability is helpful, but not required. Background in Al and Machine Learning is not assumed. The course requires access to a laptop. If you don't have access to a laptop, please contact the instructor ASAP. All programming assignments will be completed in Python.



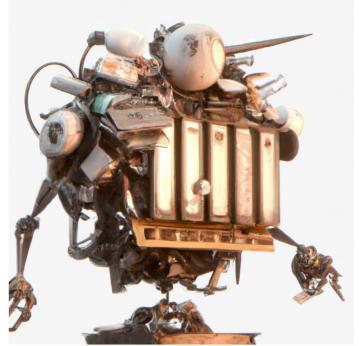
Book

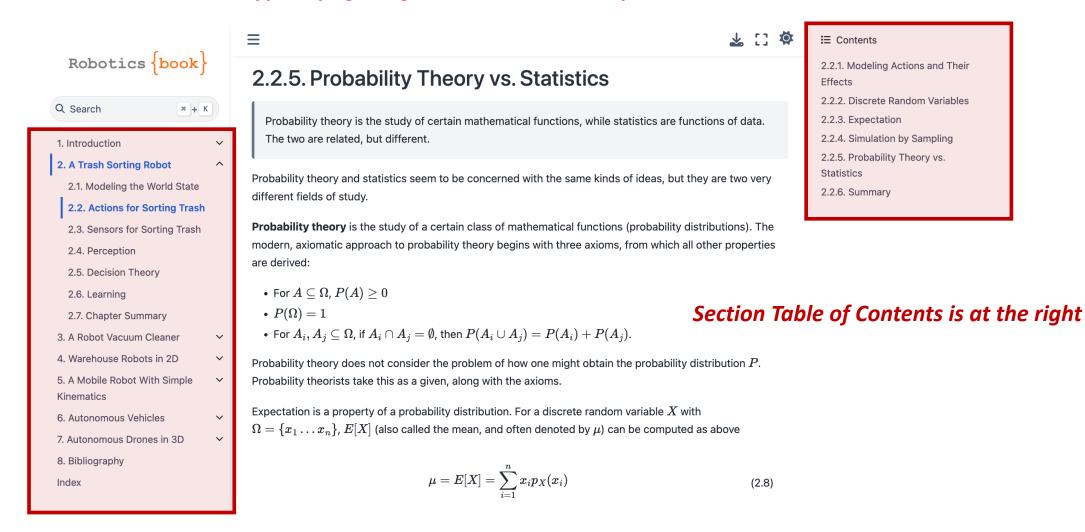
We'll use the online "textbook" for the course, soon to be in print.

Typical page view for page of text.

8. Bibliography

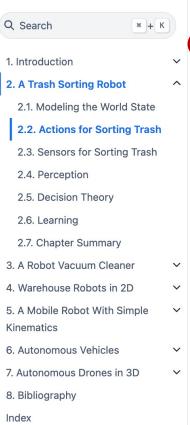
Index




2. A Trash Sorting Robot

A simple robot that sorts trash into appropriate bins can be used to introduce many of the concepts that we will teach in this book.

In this chapter we introduce the main concepts that will be covered in this book using a simple trash sorting robot as an example. Imagine, if you will, a trash sorting facility that has installed a robot at one of its conveyor belts to help out with the sorting of trash, in order to increase the proportion of trash that can be sustainably recycled. Imagine also that you are tasked with creating the software that will govern the robot's actions. How would you go about this? Even this simple robot will be sufficiently rich to tease out the main sense-think-act cycle that governs most, if not all, robot systems.


A typical page might include text and equations.

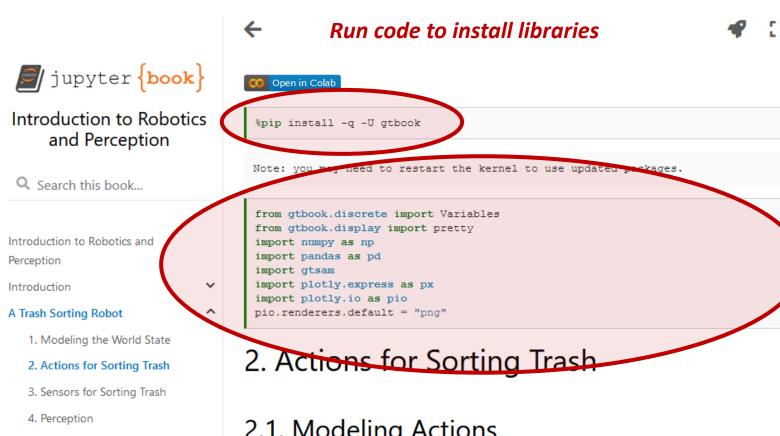
Book Table of Contents is at the left

The book is a collection of Jupyter Notebooks.

Open the Notebook in Colab

2.2. Actions for Sorting Trash

Robots change the world through their actions. Action models capture their salient aspects.



Robots decide how to act in the world by reasoning about how their actions can be used to achieve their goals, given the current state of the world. At a high level, actions can be represented by symbolic descriptions of their effects (changes that will occur in the world state when the action is executed) and by their preconditions (things that must be true in the current state in order to execute the action). The robot's goals can be encoded as a symbolic description of the desired world state, or, as we will do now, by associating a cost with executing an action in a particular world state. Note that assigning a cost to an action is equivalent to assigning a reward (merely multiply the cost by -1 to obtain a reward). If we use a cost-based approach, we generally frame the planning problem as a decision problem: choose the action that minimizes cost. If we are interested in long time horizons, we would choose the sequence of actions that minimize cost over the chosen time period. If there are uncertainties, either in the world state or in the effects of actions, we would minimize the expected value of the cost.

4 []

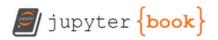
- 2.2.1. Modeling Actions and Their Effects
- 2.2.2. Discrete Random Variables
- 2.2.3. Expectation
- 2.2.4. Simulation by Sampling
- 2.2.5. Probability Theory vs. Statistics
- 2.2.6. Summary

The book is a collection of Jupyter Notebooks

: ■ Contents

- 2.1. Modeling Actions
- 2.2. Modeling Actions and Their Effects
- 2.3. Discrete Random Variables
- 2.4. Expectation
- 2.5. Simulation by Sampling
- 2.6. Probability Theory vs. Statistics

2.1. Modeling Actions


: Robots change the world through their actions. Action models capture the salient aspects of those changes.

Robots decide how to act in the world by reasoning about how their actions can be used to achieve their goals, given the current state of the world. At a high level, actions can be represented by symbolic descriptions of their effects (changes that will occur in the world state when the action is executed) and by their preconditions (things that must be true in the current state in order to execute

- 5. Decision Theory
- 6. Learning

Powered by Jupyter Book

- Fedit and run python code inline to illustrate concepts.
- > By hacking the code, you can try out new ideas and improve your understanding.

Introduction to Robotics and Perception

Q Search this book...

Introduction to Robotics and Perception

Introduction

A Trash Sorting Robot

- 1. Modeling the World State
- 2. Actions for Sorting Trash
- 3. Sensors for Sorting Trash
- 4. Perception
- 5. Decision Theory
- 6. Learning

Powered by Jupyter Book

2.5. Simulation by Sampling

:It is easy to demonstrate the relationship between expectation and the average over many trials - simply sample and average!

The code below computes the average cost over N samples for a specified action. Try various values for N, and notice that as N increases, the average tends to be an increasingly better approximation of the expected cost.

```
# Sample N times, and evaluate the cost of executing the given action:
total_cost = 0
N = 100
action = 0
for i in range(N):
    category = category_prior.sample()
    total_cost += cost[action, category]
print(total_cost/N)
```

3.36

For example, one experiment with 100 samples yielded:

```
cost_estimate = [3.14, 0.6, 4.01, 1.0]
```

- 2.1. Modeling Actions
- 2.2. Modeling Actions and Their Effects
- 2.3. Discrete Random Variables
- 2.4. Expectation
- 2.5. Simulation by Sampling
- 2.6. Probability Theory vs. Statistics

Questions?