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Rounding up 
Logistics:
• Recap:

• 2D continuous space
• Omnidirectional motion
• Gaussian motion model
• Complex sensors
• Sophisticated perception

• One approach to path planning:
• Place high reward at the goal configuration.
• Place negative reward along obstacle edges.
• Compute the value function.
• Follow the gradient of the value function 

from the current configuration to the goal.



Value Iteration

Value Iteration is an iterative method to compute the optimal value of a state 𝒙:

𝑽𝒌"𝟏 𝒙 ← 𝒎𝒂𝒙
𝒂

&𝑹(𝒙, 𝒂) 	+ 𝜸.
𝒙!
𝑷(𝒙′|𝒙, 𝒂))𝑽𝒌 𝒙′

• &𝑹(𝒙, 𝒂)	is the expected reward for applying action 𝒂 in state 𝒙.
• 𝑷(𝒙′|𝒙, 𝒂)) is the motion model.
• 𝑽𝒌 𝒙′  is the approximation to the optimal value function at iteration 𝒌.

Ø  For classical path planning, we ignore uncertainty, so that 𝑷(𝒙′|𝒙, 𝒂)) = 𝟏 for the 
deterministic outcome, and 𝑷(𝒙′|𝒙, 𝒂)) = 𝟎 for all other outcomes.

Ø  If we add a bit of uncertainty, we increase robustness of the plan (e.g., decrease the 
probability that the robot might accidentally collide with an obstacle).



Value Iteration in the Warehouse
• In our warehouse example, we set the reward to 100 for the goal, and to -50 for obstacle edges, and used value 

iteration to compute the value function:

• To move from any point in the warehouse toward the goal, simply follow the gradient of the value function!



Value Iteration at Work
• Value iteration is expensive.

• At each iteration, we must compute 𝑁 updates (one for each possible state).

• For the warehouse, we have 𝑁 = 50×100 = 5000.
• Many problems have much larger state spaces, which makes value iteration impractical (and possibly intractable).

Ø   At each iteration, every grid cell updates its estimate of the optimal value function.



Kinematics of Differential Drive Robots

Our logistics robot had super simple kinematics:

• Thanks to omni-wheels, the logistics robot could roll in any 
direction at any time.

• Because of this, there was no need to pay attention to the 
orientation of the robot.

• We didn’t really worry about a body-attached coordinate frame, 
since the robot frame was always parallel to the world frame.

Differential Drive Robots don’t have omni-wheels…

• The kinematics (relationship between input commands and robot 
motion) are more interesting.

• We need to explicitly pay attention to the orientation.



Mobile Robots
• There are many kinds of wheeled mobile robots.
• We have seen omni-directional robots.
• Now we’ll study differential drive robots.

Mobile Robot Kinematics
• Relationship between input commands (e.g., wheel velocity) and pose of the 

robot, not considering forces.  If the wheels turn at a certain rate, what is the 
resulting robot motion?

• No direct way to measure pose (unless we sensorize the environment), but we can 
integrate velocity (odometry) to obtain a good estimate.
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More Modern AGVs



Differential Drive Robots

Two wheels with a common axis, and that can spin independently



The Duckiebot Platform

A typical DDR, with two actuated wheels in front, and a passive castor wheel in the back.

actuated wheels
castor wheel



Differential Drive Robots
Differential drive robots (aka DDRs):
• Two actuated wheels that share an axis
• A castor wheel that rotates freely, mainly to stabilize the robot (three points define a 

plane – castor wheel keeps the robot from tipping over).

actuated wheel

actuated wheel
castor wheel

Wheel axis
A castor wheel is able to spin 
freely about the vertical axis.



Differential Drive Robots

𝒙
𝒚

To specify the position and orientation of the DDR, 
we attach a coordinate frame to the robot.
• This frame is called the body-attached frame, or 

the robot frame.
• The body attached frame is rigidly attached to the 

robot: it translates and rotates with the robot.
• The origin of the body-attached frame is located 

at the midpoint between the two wheels along 
their axis of rotation.

• The 𝑥-axis is the steering (or driving) direction of 
the robot.

• The y	-axis is coincident with the common axis.𝑶



Configuration Space
• A configuration is a complete specification of the position of every point in a robot system.
• The configuration space is the set of all configurations.
• We use 𝑞 to denote a point in a configuration space 𝒬.

Example:  
• Our logistics robot was able to translate in the plane.
• It’s orientation never changed (i.e., it could not rotate).
• We can attach a coordinate frame with origin at the center of the robot, and 

axes parallel to the world 𝑥- and 𝑦-axes.
• If we know the 𝑥, 𝑦 coordinates of this coordinate frame, we can easily 

determine the location of any desired point on the robot w.r.t. the world 
coordinate frame (in the 𝑥- 𝑦 plane).

𝑥

𝑦

𝑂



Configuration Space
• A configuration is a complete specification of the position of every point in a robot system.
• The configuration space is the set of all configurations.
• We use 𝑞 to denote a point in a configuration space 𝒬.

Example:  
• Our logistics robot was able to translate in the plane.
• It’s orientation never changed (i.e., it could not rotate).
• We can attach a coordinate frame with origin at the center of the robot, and 

axes parallel to the world 𝑥- and 𝑦-axes.
• If we know the 𝑥, 𝑦 coordinates of this coordinate frame, we can easily 

determine the location of any desired point on the robot w.r.t. the world 
coordinate frame (in the 𝑥- 𝑦 plane).

• For example, if the robot has radius 𝑅, then the center of wheel 2 is:

𝑥!
𝑦! = 𝑥"#$#% + 𝑅 cos 𝜃!

𝑦"#$#% + 𝑅 sin 𝜃!

𝑥

𝑦

𝑂

𝜃!

𝑥!
𝑦!

𝑅



Configuration Space
• A configuration is a complete specification of the position of every point in a 

robot system.
• The configuration space is the set of all configurations.
• We use 𝑞 to denote a point in a configuration space 𝒬.

In this example, the configuration space is easy to characterize:

𝒬 = 𝔇 ⊂ ℝ!
𝑞 = 𝑥, 𝑦 ∈ 𝔇

where 𝔇 is the floor space of the warehouse.

Ø Given 𝑞 = 𝑥, 𝑦 , we can calculate the position of any point on the robot.
Ø Note: This assumes, of course, that we have a model of our robot, which we do.

𝑥

𝑦

𝑂

𝜃!

𝑥!
𝑦!

𝑅



Configuration Space for a DDR

𝒙
𝒚

Because our DDR can rotate in the plane, it is 
necessary to know both the position and the 
orientation of the body-attached frame to specify a 
configuration:

𝒬 = ℝ!× 0,2𝜋

𝑞 = 𝑥, 𝑦, 𝜃 ∈ 𝒬

𝑶

𝜃

𝒙𝒘𝒐𝒓𝒍𝒅

𝒚𝒘𝒐𝒓𝒍𝒅

𝒙𝒘𝒐𝒓𝒍𝒅

If we know the configuration, 𝑞 = 𝑥, 𝑦, 𝜃 , we can 
compute the location of any point on the robot.

Let’s start with the wheel centers.



Configuration Space for a DDR

𝒙
𝒚

𝑶

𝜃

𝒙𝒘𝒐𝒓𝒍𝒅

𝒚𝒘𝒐𝒓𝒍𝒅

If the robot is in configuration 𝑞 = 𝑥, 𝑦, 𝜃 , the 
left and right wheel centers are located at:

𝑥&'(%
𝑦&'(% =

𝑥 −
𝐿
2
sin 𝜃

𝑦 +
𝐿
2
cos 𝜃

and

𝑥")*+%
𝑦")*+% =

𝑥 +
𝐿
2
sin 𝜃

𝑦 −
𝐿
2
co𝑠 𝜃

𝐿
𝒙𝒘𝒐𝒓𝒍𝒅

𝑥'()*
𝑦'()*

𝑥+,-.*
𝑦+,-.*



Kinematics of DDRs

𝑥
𝑦

𝜃

𝒙𝒘𝒐𝒓𝒍𝒅

𝒚𝒘𝒐𝒓𝒍𝒅

• We can generalize this to any point 𝑝 on the DDR.
• Suppose the coordinates of 𝑝 in the body frame 

are given by

𝑝$#,- =
𝑝.
𝑝-

• If the robot is in configuration 𝑞 = 𝑥, 𝑦, 𝜃 , the 
coordinates of 𝑝 in the world frame are given by:

𝑝/#"&, =
𝑥 + 𝑝. 𝑐𝑜𝑠	 𝜃 − 𝑝- 𝑠𝑖𝑛 𝜃
𝑦 + 𝑝. 𝑠𝑖𝑛 𝜃 + 𝑝- 𝑐𝑜𝑠 𝜃

𝐿
𝒙𝒘𝒐𝒓𝒍𝒅

𝑝/012 =
𝑝3
𝑝2

Soon, we will generalize this technique using homogeneous 
coordinate transformations… but not today.

𝑝3

𝑝2



Linear Velocity of the DDR

𝒙𝒘𝒐𝒓𝒍𝒅

𝒚𝒘𝒐𝒓𝒍𝒅

Differential Drive Robots are very different from robots with 
omni-wheels:
• The wheels roll without slipping – no sideways motion.
• The instantaneous velocity of the robot is always in the 

steering direction.
• The velocity perpendicular to the steering direction is 

always zero.
𝑣

Ø If the robot follows the curve 𝛾(𝑠), the instantaneous 
velocity 𝑣 is tangent to 𝛾.

𝛾(𝑠)



Velocity of the DDR

𝒙𝒘𝒐𝒓𝒍𝒅

𝒚𝒘𝒐𝒓𝒍𝒅

• Since the robot cannot move in the direction of the 
body-attached 𝑦-axis, its linear velocity, when 
expressed with respect to the body frame is:

𝑣/012,',5(6+ = 𝑣3
0

• The steering direction, expressed w.r.t. the world 
frame, is given by:

cos 𝜃
sin 𝜃

• Therefore, when the robot is in configuration 
𝑞(𝑠) = 𝑥, 𝑦, 𝜃 , its linear velocity is expressed 
with respect to the world frame by:

𝑣70+'1,',5(6+ = 𝑣3 cos 𝜃
𝑣3 sin 𝜃

𝑣

𝛾(𝑠)𝜃

𝒙𝒘𝒐𝒓𝒍𝒅



Angular Velocity of the DDR

𝒙𝒘𝒐𝒓𝒍𝒅

𝒚𝒘𝒐𝒓𝒍𝒅

• The orientation of the robot is given by the angle 𝜃.
• Since this robot is able to rotate, 𝜃 can be 

considered as a function of time.
• We define the robot’s angular velocity as

𝜔 =
𝑑
𝑑𝑡 𝜃 = 𝜃̇

• Note that the positive sense for 𝜔 is defined using 
the right-hand rule: point the thumb of your right 
hand in the direction of the world 𝑧-axis, and your 
fingers will curl in the positive 𝜃 direction.

𝑣

𝛾(𝑠)

𝜔 = 𝜃̇



Total Velocity of the DDR

• The velocity of the DDR includes both the linear and angular velocities.
• We stack these into a single vector to describe the robot’s instantaneous velocity 

w.r.t. the body frame of the world frame:

𝑣ABCD =
𝑣E
0
𝜃̇

, 	 𝑣FBGHC =
𝑣E cos 𝜃
𝑣E sin 𝜃
𝜃̇

Ø  Note that the 𝑧-axis of the body-attached frame is the same as the 𝑧-axis of the 
world frame, so that the angular velocity is given by 𝜃̇ for both of these coordinate 
frames.



Wheel Actuation and DDR Velocity
• The two wheels of the DDR are independently actuated, and able to spin in both directions.

• Let 𝜙0 and 𝜙1 denote the instantaneous orientation of the right and left wheels (e.g., the angle 
from the world 𝑧-axis to some identifiable mark on the wheel.

• The angular speeds of the wheels are therefore given by 𝜙̇0 and 𝜙̇1.

𝜙8

𝑧

As we saw with the omni-directional robot, the relationship between 
forward speed of the wheel and its angular speed is given by

d
dt
𝑥 = 𝑟𝜙̇

and therefore, since the wheel rolls without slipping, and 𝑣- = 0, we 
have

𝜙̇ =
𝑣.
𝑟𝑟



Wheel Actuation and DDR Velocity
When the two wheels turn with the same angular speed, 𝜙̇0 = 𝜙̇1, the robot moves with pure translation.

In this case, 
• 𝑣&'(% = 𝑣")*+%
• Both 𝑣&'(% and  𝑣")*+% are parallel to 

the steering direction.
• The robot’s angular velocity is zero 

(i.e., 𝜔 = 0).
• The angular wheel speed is related 

to the robot’s linear velocity by

𝜙̇0 = 𝜙̇1 =
𝑣.
𝑟

𝑣

𝑣'()*

𝑣+,-.*



Total DDR Velocity

In this case, 
• 𝑣&'(% = − ̇𝑟𝜙1   and   𝑣")*+% = ̇𝑟𝜙0
• Both 𝑣&'(% and  𝑣")*+% are tangent to the circle centered 

at the origin of the body-attached frame w/radius 0.5𝐿.
• The robot’s angular velocity satisfies the eqn for circular 

motion:
𝐿
2𝜔 = 𝑣")*+% = 𝑟𝜙̇0

and
𝐿
2
𝜔 = −𝑣&'(%= −𝑟𝜙̇1

• Rearranging terms, we obtain:

𝜙̇0 =
𝐿
2
𝜔
𝑟 	 and	 𝜙̇1 = −

𝐿
2
𝜔
𝑟

𝑣

𝑣'()* 𝑣+,-.*𝐿

When the two wheels turn with the opposite angular velocity, 𝜙̇0 = −𝜙̇1, the robot moves with pure rotation.



Wheel Actuation and DDR Velocity

• For pure translation we have:

𝜙̇0 =
𝑣.
𝑟
	 and	 𝜙̇1 =

𝑣.
𝑟

• For pure rotation we have:

𝜙̇0 =
𝐿
2
𝜔
𝑟 	 and	 𝜙̇1 = −

𝐿
2
𝜔
𝑟

• Combining (adding) the two equations for 𝜙̇0 and 𝜙̇1 
we obtain:

𝜙̇0 =
𝐿
2
𝜔
𝑟
+
𝑣.
𝑟
	 and	 𝜙̇1 = −

𝐿
2
𝜔
𝑟
+
𝑣.
𝑟

Ø These two equations tell us how to choose 𝝓̇𝑹 and 𝝓̇𝑳 
to achieve a desired velocity 𝒗,𝝎.

𝑣

𝑣'()*

𝑣+,-.*

𝐿

All other velocities are linear combinations of these two cases, and therefore we can apply superposition.



Wheel Actuation and DDR Velocity

• The equations

𝜙̇0 =
𝐿
2
𝜔
𝑟
+
𝑣.
𝑟
	 and	 𝜙̇1 = −

𝐿
2
𝜔
𝑟
+
𝑣.
𝑟

are sometimes called inverse equations, since they 
solve the inverse problem: “what wheel speed (input) 
to I need to achieve a desired robot behavior 
(output)?”

• We can easily compute the forward mapping, from 𝝓̇𝑹 
and 𝝓̇𝑳 to 𝒗,𝝎 using simple algebra:

𝜙̇0 + 𝜙̇1 = 2
𝑣.
𝑟
⇒ 𝑣. =

𝑟
2
𝜙̇0 + 𝜙̇1

𝜙̇0 − 𝜙̇1 =
𝐿𝜔
𝑟
⇒ 𝜔 =

𝑟
𝐿
𝜙̇0 − 𝜙̇1

𝑣

𝑣'()*

𝑣+,-.*

𝐿

All other velocities are linear combinations of these two cases, and therefore we can apply superposition.



“Forward Kinematics”, in vector-form
We can express these equations relative to the body-
attached frame or the world frame:

𝑣$#,- =

𝑣.

𝑣-

𝜔

=

𝑟
2
(𝜙̇0 + 𝜙̇1)

0
𝑟
𝐿
(𝜙̇0 − 𝜙̇1)

and

𝑣/#"&, =

𝑣. cos 𝜃

𝑣. sin 𝜃

𝜃̇

=

𝑟
2
(𝜙̇0 + 𝜙̇1) cos 𝜃

𝑟
2
(𝜙̇0 + 𝜙̇1) sin 𝜃

𝑟
𝐿 (𝜙̇0 − 𝜙̇1)

𝑣

𝑣'()*

𝑣+,-.*

𝐿



Forward Kinematics Jacobians
We can express these equations relative to the body-
attached frame or the world frame:

𝑣$#,- =

𝑣.
$#,-

𝑣-
$#,-

𝜔$#,-

=
𝑟
2

1 1
0 0
T2 𝐿 − T2 𝐿

𝜙̇0
𝜙̇1

and

𝑣/#"&, =

𝑣./#"&,

𝑣-/#"&,

𝜔/#"&,

=
𝑟
2

cos 𝜃 cos 𝜃
sin 𝜃 sin 𝜃
T2 𝐿 − T2 𝐿

𝜙̇0
𝜙̇1

𝑣

𝑣'()*

𝑣+,-.*

𝐿

These are 3x2 Jacobians



“Inverse Kinematics” Jacobians
Forward:

𝑣$#,- =

𝑣.
$#,-

𝑣-
$#,-

𝜔$#,-

=
𝑟
2

1 1
0 0
T2 𝐿 − T2 𝐿

𝜙̇0
𝜙̇1

Inverse:

𝜙̇0
𝜙̇1

=
1
𝑟
1 T𝐿 2
1 − T𝐿 2

𝑣.
$#,-

𝜔$#,-

𝑣

𝑣'()*

𝑣+,-.*

𝐿

Inverse is 2x2: no side-slip allowed!

𝜙̇8 =
𝐿
2
𝜔
𝑟 +

𝑣3
𝑟 	 and	 𝜙̇9 = −

𝐿
2
𝜔
𝑟 +

𝑣3
𝑟

Both Jacobians are constant in body frame !



“Inverse Kinematics” Jacobians in world frame
Forward:

𝑣/#"&, =

𝑣./#"&,

𝑣-/#"&,

𝜔/#"&,

=
𝑟
2

cos 𝜃 cos 𝜃
sin 𝜃 sin 𝜃
T2 𝐿 − T2 𝐿

𝜙̇0
𝜙̇1

Inverse:

𝑣

𝑣'()*

𝑣+,-.*

𝐿

Nonlinear in 𝜃

Does not exist!
Not all world velocities
can be realized using a DDR!


