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Lecture 15:

Differential Drive Robots:
Kinematics




Rounding up
Logistics:

* Recap:

* 2D continuous space
Omnidirectional motion
Gaussian motion model
Complex sensors
Sophisticated perception

* One approach to path planning: |
* Place high reward at the goal configuratio '
* Place negative reward along obstacle edg
« Compute the value function. 3

* Follow the gradient of the value functlon\&\
from the current configuration to the goal J



Value |teration

Value Iteration is an iterative method to compute the optimal value of a state x:

VErl(x) « max {T?(x, a) + yz: P(x'|x, a))Vk(x’)}

* R(x, a) is the expected reward for applying action a in state x.
* P(x'|x,a)) is the motion model.

« VE(x") is the approximation to the optimal value function at iteration k.

> For classical path planning, we ignore uncertainty, so that P(x'|x, a)) = 1 for the
deterministic outcome, and P(x’|x, a)) = 0 for all other outcomes.

» |If we add a bit of uncertainty, we increase robustness of the plan (e.g., decrease the
probability that the robot might accidentally collide with an obstacle).



Value Iteration in the Warehouse

* In our warehouse example, we set the reward to 100 for the goal, and to -50 for obstacle edges, and used value
iteration to compute the value function:

* To move from any point in the warehouse toward the goal, simply follow the gradient of the value function!



Value Iteration at Work

* Value iteration is expensive.
* At each iteration, we must compute N updates (one for each possible state).
* For the warehouse, we have N = 50100 = 5000.

* Many problems have much larger state spaces, which makes value iteration impractical (and possibly intractable)
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» At each iteration, every grid cell updates its estimate of the optimal value function.



Kinematics of Differential Drive Robots

Our logistics robot had super simple kinematics:

* Thanks to omni-wheels, the logistics robot could roll in any
direction at any time.

* Because of this, there was no need to pay attention to the
orientation of the robot.

 We didn’t really worry about a body-attached coordinate frame,
since the robot frame was always parallel to the world frame.

Differential Drive Robots don’t have omni-wheels...

* The kinematics (relationship between input commands and robot
motion) are more interesting.

* We need to explicitly pay attention to the orientation.




Mobile Robots

* There are many kinds of wheeled mobile robots.
* We have seen omni-directional robots.
* Now we’ll study differential drive robots.

Mobile Robot Kinematics
e Relationship between input commands (e.g., wheel velocity) and pose of the
robot, not considering forces. If the wheels turn at a certain rate, what is the

resulting robot motion?
 No direct way to measure pose (unless we sensorize the environment), but we can

integrate velocity (odometry) to obtain a good estimate.
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he Duckiebot Platform

actuated wheels
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A typical DDR, with two actuated wheels in front, and a passive castor wheel in the back.



Differential Drive Robots

Differential drive robots (aka DDRs):

* Two actuated wheels that share an axis
e A castor wheel that rotates freely, mainly to stabilize the robot (three points define a

plane — castor wheel keeps the robot from tipping over).

actuated wheel \A

Wheel axis

/y

/&
castor wheel

actuated wheel

A castor wheel is able to spin
freely about the vertical axis.




Differential Drive Robots

To specify the position and orientation of the DDR,
we attach a coordinate frame to the robot.

This frame is called the body-attached frame, or
the robot frame.

The body attached frame is rigidly attached to the
robot: it translates and rotates with the robot.
The origin of the body-attached frame is located
at the midpoint between the two wheels along
their axis of rotation.

The x-axis is the steering (or driving) direction of
the robot.

The y -axis is coincident with the common axis.



Configuration Space

* A configuration is a complete specification of the position of every point in a robot system.

* The configuration space is the set of all configurations.

* We use g to denote a point in a configuration space Q.

Example:

* Our logistics robot was able to translate in the plane.

* |t’s orientation never changed (i.e., it could not rotate).

* We can attach a coordinate frame with origin at the center of the robot, and
axes parallel to the world x- and y-axes.

* If we know the x, y coordinates of this coordinate frame, we can easily
determine the location of any desired point on the robot w.r.t. the world
coordinate frame (in the x- y plane).
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Configuration Space

* A configuration is a complete specification of the position of every point in a robot system.

* The configuration space is the set of all configurations.

* We use g to denote a point in a configuration space Q.

Example:

Our logistics robot was able to translate in the plane.

It’s orientation never changed (i.e., it could not rotate).

We can attach a coordinate frame with origin at the center of the robot, and
axes parallel to the world x- and y-axes.

If we know the X, y coordinates of this coordinate frame, we can easily
determine the location of any desired point on the robot w.r.t. the world
coordinate frame (in the x- y plane).

For example, if the robot has radius R, then the center of wheel 2 is:

x2] _ [xrobot + R cos 92]

v




Configuration Space

* A configuration is a complete specification of the position of every pointin a

robot system.
* The configuration space is the set of all configurations.

* We use g to denote a point in a configuration space Q.

In this example, the configuration space is easy to characterize:

0=9cR?
q=(xy)€ED

where D is the floor space of the warehouse.

> Given g = (x,y), we can calculate the position of any point on the robot.
» Note: This assumes, of course, that we have a model of our robot, which we do.




Configuration Space for a DDR

Because our DDR can rotate in the plane, it is
necessary to know both the position and the
orientation of the body-attached frame to specify a

configuration:
Q = R?x[0,2m)

q=(xy0)€EQ

Yworld y If we know the configuration, g = (x, y, 0), we can

compute the location of any point on the robot.

Let’s start with the wheel centers.
Xworld



Configuration Space for a DDR

If the robot is in configuration g = (x,y,0), the
left and right wheel centers are located at:
L 0
[xleft] ~ X — > sin
Yiertl L
y + —cosf
A 2 i
and
L 0
[xright] B X+ > Sin
Yright]l L
Yy — > cos 6




Kinematics of DDRs

* We can generalize this to any point » on the DDR.

p
phedy = [p;] e Suppose the coordinates of p in the body frame
are given by
Px
body _
p [py]

» If the robot is in configuration g = (x,y, 8), the
coordinates of p in the world frame are given by:

X + px cos 6 —p, sinb

world — [
Yy + pyxSinf + py, cos 6

p =

Soon, we will generalize this technique using homogeneous
coordinate transformations... but not today.




Linear Velocity of the DDR

Differential Drive Robots are very different from robots with
omni-wheels:

* The wheels roll without slipping — no sideways motion.

* The instantaneous velocity of the robot is always in the
steering direction.

The velocity perpendicular to the steering direction is
always zero.

Y(s)

velocity v is tangent to y.

> If the robot follows the curve y(s), the instantaneous
Yworld

Xworld



Velocity of the DDR

* Since the robot cannot move in the direction of the
body-attached y-axis, its linear velocity, when
expressed with respect to the body frame is:

vbody,linear — [vxl
L0

* The steering direction, expressed w.r.t. the world
frame, is given by:
[cos 0
sin 6

Y(s)

* Therefore, when the robot is in configuration
q(s) = (x,y,0), its linear velocity is expressed
with respect to the world frame by:

Yworld pworld,linear — Uy COS 0
v, Sin 6

Xworld



Angular Velocity of the DDR

* The orientation of the robot is given by the angle 6.

* Since this robot is able to rotate, 8 can be
considered as a function of time.

* We define the robot’s angular velocity as

* Note that the positive sense for w is defined using
the right-hand rule: point the thumb of your right
hand in the direction of the world z-axis, and your
fingers will curl in the positive 8 direction.

Yworld y

Xworld



otal Velocity of the DDR

* The velocity of the DDR includes both the linear and angular velocities.

* We stack these into a single vector to describe the robot’s instantaneous velocity
w.r.t. the body frame of the world frame:

Uy v, Cos 6
phody — [O ] , pworld — lvx sin 9]
0 6

» Note that the z-axis of the body-attached frame is the same as the z-axis of the
world frame, so that the angular velocity is given by 6 for both of these coordinate
frames.




Wheel Actuation and DDR Velocity

* The two wheels of the DDR are independently actuated, and able to spin in both directions.

* Let ¢ and ¢; denote the instantaneous orientation of the right and left wheels (e.g., the angle
from the world z-axis to some identifiable mark on the wheel.

* The angular speeds of the wheels are therefore given by qu and g[SL.

7 A
As we saw with the omni-directional robot, the relationship between
forward speed of the wheel and its angular speed is given by
d :
—X =T
dt ¢
br
and therefore, since the wheel rolls without slipping, and v, = 0, we
o
have
. Uy
r ¢ = r




Wheel Actuation and DDR Velocity

When the two wheels turn with the same angular speed, ¢» = ¢@;, the robot moves with pure translation.

Vieft .
ef In this case,

(% * Vieft = Vright

* Both vierr and vyigpe are parallel to
the steering direction.

 The robot’s angular velocity is zero
(i.e., w = 0).

 The angular wheel speed is related

" to the robot’s linear velocity by
right




otal DDR Velocity

When the two wheels turn with the opposite angular velocity, qu = —gbL, the robot moves with pure rotation.
In this case,
* Vieft = —r¢; and Uright = ror
* Both vies and vyigpe are tangent to the circle centered
v at the origin of the body-attached frame w/radius 0.5L.
 The robot’s angular velocity satisfies the eqn for circular
motion:
L :
Ew = VUright = ror
and
’ L .
left VUright Ea) — —Uleftz _T¢L

e Rearranging terms, we obtain:

Lw . Lw

S d —-
R~ 57 an oL




Wheel Actuation and DDR Velocity

All other velocities are linear combinations of these two cases, and therefore we can apply superposition.

vleft

Uright

For pure translation we have:

For pure rotation we have:

Lw : Lw

S d -
R~ 57 an 0]}

Combining (adding) the two equations for ¢ and ¢;
we obtain:

: La)_l_vx 4 d La)_l_vx
=——+— an = ———+4 =
Pr 21r T P 21r T

These two equations tell us how to choose ¢ and ¢;
to achieve a desired velocity v, w.




Wheel Actuation and DDR Velocity

All other velocities are linear combinations of these two cases, and therefore we can apply superposition.

vleft

Uright

 The equations

: La)_l_vx 4 d La)_l_vx
=——+— an = ———4 =
Pr 271 r P 27T r

are sometimes called inverse equations, since they
solve the inverse problem: “what wheel speed (input)
to | need to achieve a desired robot behavior
(output)?”
* We can easily compute the forward mapping, from qu
and ¢; to v, w using simple algebra:

: . Vy ro . .
¢R+¢L=27:>vx:§(¢R+¢L)
Lw r

¢R—¢L=T=>wzz(d)R—€bL)




“Forward Kinematics”, in vector-form

vleft

vright

We can express these equations relative to the body-

attached frame or the world frame:

_vx_
vbOdyz Uy =
_a)_
and
U, COS 07

pworld — 1. sinf | =

o, -
5 (Pr + ¢1)
0

o
7 (Pr— L)

g (g + P1) cos 0]

g(qSR + ¢,) sin 6

r . .
T (Pr — b1)




Forward Kinematics Jacobians

vleft

vright

We can express these equations relative to the body-
attached frame or the world frame:

and

pbody —

world _—

- _body -
Uy

body
Vy

LyPoay |

N =

1
0

_Z/L —_

1

Al

| A

b1

These are 3x2 Jacobians

-vzvorld .

N =

cos @
sin @

%/

Ccos 0 |
sin @

_Z/L_

W




“Inverse Kinematics” Jacobians

Forward:
vady
1 1 1,.
pbody — | body | = % 0 0 QI?R]
y
Z/L _ Z/L_ 0
v _wbody_
: Lw v, . Lw v,
Inverse: Or =5+ and ¢, = —S—+—
vleft
qs 1 L/ body
VUright R = 2 [
¢L r 1 body

Inverse is 2x2: no side-slip allowed!

Both Jacobians are constant in body frame |



“Inverse Kinematics” Jacobians in world frame

vleft

vright

Forward: Nonlinear in 6
-vzvorld _ _
cos@ cosf
pworld _ | world | — "|sing sing
y
2 2/ _ 2/
/L L]
_wworld
Inverse:

Does not exist!

Not all world velocities
can be realized using a DDR!
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