CS 3630,
Fall 2025

Lecture 14:
A Logistics Robot:
Perception

Motion uncertainty accumulates like dice sum

Probability distribution of sum of two 6-sided dice

0.16
0.14

0.12}
= 0.10}

3 0.08}

o

% 0.06}
0.04}

0.02

0.00

Sum

PMF 1 PMF 2 PMF 3 PMF 4 PMF 5

0.25}]
0.20}] . s
Yoist[]]]]
>
e
0.10}
0.05 | D | H H | HH _|_' H HH |] |
0.00 1 I:ll:l:l) — — f |:||_||H |_|| ||_||:| 1 ﬂ) f — |’_||_||:I
: 25 50 7.5 100 25 50 75 10.0 25 50 75 10.0 25 50 7.5 100 25 50 7.5 10.0
k k K k K

Even crazier....

PMF of the sum of 5 independent variables on {1,...,10}

0.06
If we take 5 arbitrary PMFs (crazy dice) on the 0.05}
numbers 1..10, and look at the PMF on the sum, we zooaf
get something already very close to a Gaussian: go.os-
Mean? il
0.01
0.00 1I0 2I0 3IO 4I0 5|0

Sum

Bivariate Gaussians

For our motion model, we’ll use

Xk4+1 = X + U T N

with Xik+1) Xk, Uk, Nk €]Rz and T]k"’N(O, Z)

Xy 10is a bivariate Gaussian,
Xier2~N (g + ug + Uy, 21 + Z2)

N
T

X

4+ Mm+p2=(6,1)

Convolution of Independent Gaussians: Z=X+Y
L Z=Ha+M2, 2 Z=21+2>

M1=(3,3)
M2=(3,—2)

10

Likelihood for the Ideal Proximity Sensor

* We can plot the likelihood for each possible value of z.

1 d(xk) < do
0 otherwise

40 40
30 30
20 20
10 10

» The likelihood is a function of x;. It is not a probability distribution!
» The specific form of the likelihood depends on which value of z; was observed.

0 d(xk) < dO

LCx; i = ON) = { 1 otherwise

L(xk;Zk = OFF) — {

Measurement Likelihood

* For the case b; = by and z;, = 4.03, we obtain the
plot for L(x;; 4.03, by) shown below (and in book).

40

30

20

10

In this chapter, the role of perception is to solve the
localization problem, i.e., to determine an estimate of

X¢, the robot’s state at time ¢.

* Mathematically, the problem is to estimate the state
X¢, given the action history 14 ... u,, and sensing

history z4 ...z,

Perception

Bel(x;) = P(x¢|ug, 21, Uy o Zg—q, Up—1, Zt)

* Computationally, this is a difficult problem.

 We'll see two approaches:
* Particle Filtering
* Markov Localization

* The Bayes filter is the workhorse in these.

The Bayes Filter

The Bayes filter is the culmination of all the work

we’ve done in applying probability theory to the
representation of uncertainty in state, actions, and
sensing.

* Prior: probabilistic description of uncertainty in the
state (before acting or sensing at time t).

* Motion model: conditional probability that describes
uncertainty in the actions.

* Sensor model. conditional probability model that
describes uncertainty in the sensor measurements.

» The output of the Bayes filter at time t is Bel(x;).

The Bayes Filter

* Two phases: a. Prediction Phase (uncertainty grows)
b. Measurement Phase (uncertainty reduction)

B B

Bel(xe-1) P(x¢|up—1,xe—1) Bel(x;)

P(xpyq1lue, xt)

Bayes Filters: Framework

* Let x be the state of the robot (e.g., its location)

* Given:
* Stream of observations z and action data u: {u4,z{ ..., Us_1, Z¢}
* Sensor model P(z[x) -> likelihood function L(x;z) when z is given.
* Motion model P(x¢|ue_q1, X¢—1).
* Prior probability of the system state P(x).

 Wanted:
e Estimate of the state X of a dynamical system.
* The posterior of the state is also, as before, sometimes called the Belief:

Bel(xt) = P(xt|u1,Zl ...,ut_l,Zt)

* We can put all of this into our nice Bayes net formalism, for modeling purposes.

* The robot’s state at time t is stochastically dependent on its state at time ¢t — 1 and the
control input u;. The measurement z; depends stochastically on the state at time t.

* Gray elements are observable and white are hidden.

(This model is known as a hidden Markov model (HMM) or dynamic Bayesian network (DBN).

Markov Assumption

P(Zelx1.t) Z1.6— 1, Uqe) = D(Z¢]xt)

D(Xe|X1. 61, Z1.0— 1, Uq.e) = D(Xe| X1, Up)

Underlying Assumptions
"The future is independent of

* Static world the past given the present."

* Independent noise

Bayes Rule

P(x|z) < L(x; z)P(x) = likelihood - prior

X is robot pose and z is sensor data

p(xlz) S Posterior probability of x given z
L(x;z) > Likelihood function of state x given measurement z

p(x) > Prior probability distribution on state x

Z = observation
u = action

Bayes Filters

Bel(x¢) = P(x¢t|uq,z1 ooy Up—1q, Z¢)

Bayes =17 P(Z¢|xt, uq,2q, oo ueq) P(Xe|Ug, 25, ooy Upq)

Markov/Likelihood o L(x;;z;) P(x¢|uq, Z1, ooy Ui_q)

Total prOb. o8 L(Xt; Zt) jP(xt|u1,Z1, ...,ut_l,xt_l) P(xt_1|u1, Z1, ...,ut_l) dxt_l

Markov < L(x¢; Z¢) jp(xtlut—l:xt—l) P(x¢_qug, 21, o Upoq) dXp_q

o< L (%55 2¢) j P(telttgr Xo—) Bel(xe—r) dir_y

Let’s see how it works using a simple

example:

* The robot moves from left to right. Bel(s)

 From time to time, it takes a sensor i
reading.

How is the state estimate updated?? [p@@

Bel(s)
Bel(s)
P(ols)

A P(ols)
F 3
Bel(s)

() ~ o ()
S | |zs 5= S L

v) 3 + O 2 n Q 3

rm H e cC o 9V 7 - H et

~ Q

e 3 : 2| |ec288 ||8:¢
) © < g O 0 © & C S < g
o S © E o C bt c 5 E 0 <
yo) C 4= | ¥ & o € 3 Q | © &
— eo ~ o ba ~
S c o c €% %rna| c €%
o) o < 9 o =0 g 2 O o 7
@) - O N mn.wry = . ©

S & O 5 C -~ 0 O35 o5
bnoo. o v © g E s g2s5||®2aE
S- \)- —
0 ¢ ® £ c o > Sw ST o=o c o >
O v re) Y >3 c S 9 0T||l& =5
o 3 o O O+ O v € £ 0 oll © = o
2 > ~ O o < o X O ©® = o O o < 0
'c € © = X 0 = cT O WYV c o X W0
£ © - o W = a — & © 2 % un W = a

Bayes Filters

If | was in state x;_;and | Weight this
Belief that robot executed action u;_qwhat is probability by the
isinstate X = x; the probability that | arrive belief that | was
attime step ¢t to state x; actually in state x;_4

Bel(x;) o< L(x;; 2) | PCxplue—q, xe—1)Bel(xp_1)dx;—4

How likely is the
state x; given

that | saw the . .
. Integrate over all possible previous states, x;_4
observation z;

Zz = observation
u = action
X = state

Markov

Localization

Markov localization approximates the state space using
a discrete grid.

At time t, the value in the grid cell xY represent the
probability that x; = x!.

At time t + 1, every grid cell updates its probability
value based on:

* Prediction from the motion model

 Observation from sensors

This is a grid-cell-centric view of probability updating.

Instead of keeping track of moving probability mass
(e.g., particles), each grid cell pays attention to the
probability mass that arrives to its specific location.

Markov Localization

* Perception (or sensing) model: represents likelihood that robot senses
a particular reading at a particular position.

Likelihood of position x given the measurement z,
times the prior probability the robot is in position x

P(x) o L(x;z)P(x)

* Action (or motion) model: represents movements of robot

Probability that action u from position x’ moves the robot to position x,
P(x) = Z P(x|u, x’)P(x’) weighted by the probability that the robot is in position x’, summed over all
possible x” where the robot might have been.

» Perform these computations at every grid cell, at each time t.

Markov Localization: a 1D Example

Prediction
P(S)

100 } | | | | | ' ' ' l -
Likelihood

0r .Il ll. 1 L(S;0)

Posterior
P(S|o)

Each bin in the histogram is
updated in each step.

Remember: propagation without sensor

* Uncertainty grows without bounds:

40
30
20

10

Recall: Likelihood images for the Proximity Sensor

* We can plot the likelihood for for each possible value of z.

1 d(xk) < dO
0 otherwise

40 40
30 30
20 20
10 10

» The likelihood is a function of x;. It is not a probability distribution!
» The specific form of the likelihood depends on which value of z; was observed.

0 d(xk) < dO

L(xy; 2z, = ON) = { 1 otherwise

L(xk;Zk = OFF) = {

Markov Localization

The robot moves through the world, and each cell in the grid updates its probability
estimate after each motion model step, by multiplying with the likelihood image.

40
30
20

10

Implementing Markov Localization

P(Xe| 255Uy = Y . P(Xa|2ii, i) P(zii | 251, U5,

P(Xi|Z%,U%) o« L(X; z1) P(X| 251, U5).

* |In practice, many grid cells have very small probability values.

* We can speed computation by ignoring these cells, with little risk of going astray in our
state estimation.

* If we care about the robot’s orientation, then we need to add a 6 dimension to our grid.

The Particle Filter

Particle filters represent a probability density function
as a set of weighted samples.

The weighted samples are

1. Pushed through the motion model (including
uncertainty)

2. Reweighted based on sensor measurements (using
the sensor model)

3. Resampled using the new weights to define a
probability distribution on the sample set.

* The approach is easy to implement, and has low
computational overhead.

 Complexity does not grow exponentially with
dimension of the state space.

Two localization problems

* “Global” localization
* Figure out where the robot is, but we don’t know where the robot started
* Sometimes called the “kidnapped robot problem”

» “Position tracking”
* Figure out where the robot is, given that we know where the robot started

» To solve these problems at time t, we estimate

Bel(x;) = P(x¢|luq,z,uy ..., 2Z;)

» The hard part: it’s not feasible to exactly calculate or represent Bel(x,).

Sampling to Approximate Densities

Pose2 random-walk samples — pronounced banana distribution

* Densities can become arbitrarily
complex, even with Gaussian noise.

1.5 theta

* One issue is nonlinear measurement ; . .
and noise models. |

* A second issue is the curse of i ;
dimensionality (for grid-based :
methods). - . 0

* One way out: sampling!

Probability of Robot Location

P(Robot Location)

State space = 2D, infinite #states

P(X;_ |21

Sampling as Representation

P(Robot Location)

Particle Filter

* Represent p(x) by set of N weighted, random samples, called particles, of
the form: < (x;, y;), w; >

(x;,y;) represents robot’s pose
w; represents a weight, where), w; = 1

* A.K.A. Monte Carlo Localization (MCL)
* Refers to techniques that are stochastic (random / non-deterministic)
* Used in many modeling and simulation approaches

Sampling Advantages

e Arbitrary densities
 Memory = O(#samples)
* Only in “Typical Set”

* Great visualization tool !

* minus: Approximate

)

e
A e S

(using sonar

101

lter Localizat

icle Fi

1C

Part

tions/global-floor-start.gif

_Robotics//mcl/anima

ton.edu/ai/Mobile

ing

//www.cs.wash

http

Particles

* You can think of each particle as a guess about where the robot might be

v

Monte Carlo Localization steps

* Prediction Phase
e Measurement Phase
* Resampling Step

= . =
000000 u 000000 5555 III-

P(Xt|.,l\17 P(Z|x)
o

Motion Model

— Q00 o o0 Sensor Model

OM)

1. Prediction Phase

_rr =
— u —
L iy
P(x|@,u)
—@ @
Motion Model
—Qo0 © @

|| ||
oooooo u
L1 L
P(x,|@,u)
O O
Motion Model
—C00D O Q0

Motion Model for a Car-Like Robot

Start

o
Motion Model

© o0

10 meters

2. Measurement Phase

Sensor

P(Z|xy)

|
|

P(Zlx,

odel

probability

Sensor Model

0.125 ' ' ' ' N
Approximated ——
Measured —
0.1fF !
0.075 L
0.05 1
0.025 i
Q 1 | L

100 200 300 400 500
measured distance [cm]

Laser sensor

Sensor Model

o.115 | 1 1 1 I |
Approximated +——
Measured —
0.1 §
0.075 .
%‘
B
005} R
b
Q.
0.015 / }
0 1 -\: 1 L L
100 100 300 400 500

measured distance [cm)]

Sonar sensor

3. Resampling Step

41

om)

e
u so0000

P(x|®,u)

@
Motion Model

© @

43

om)

45

o
Motion Model
© @

46

Sensor Model

om)

48

@
Motion Model
o] @

49

Sensor Model

om)

51

o
Motion Model
© @

52

Prediction Phase

* When the command u;_1 is executed, each particle is updated to
approximate the robot’s movement by sampling from p (x| x¢—1, Ur—1).

* At this stage, typically all particles have equal weight (w = %).

(] Qs%
o °© ONQ
o
° ° a
-\
o oo) oﬁﬁ/%
° q

v

n particles n particles

P(Zlx,

Measurement Phase

Sensor Model

* Re-weight sample set, according to the likelihood that robot’s current sensors
match what would be seen at a given location

e Let < x,w > be asample.
* Then, w < nP(z|x)

e zisthe sensor measurement;
* 7 anormalization constant to enforce the sum of w’s equaling 1

P(Z[x,)

Measurement Phase

nsor Model

v

Measurement Phase

v

Sensor Model

Difference between the

and the
estimated measurement

\ 4

Importance weight

Measurement Phase

v

OoM)

Resampling Step v oo

* After applying the motion update and sensing update, we end up with new
positions and weights for particles

* We want to eliminate particles that have very low weight (unlikely to
represent robot position) and generate more particles in the more likely areas
of the state space.

* Resample, according to latest weights

* Add a few uniformly distributed, random samples
* Very helpful in case robot completely loses track of its location

om)

Resampling Step e

noriginal |mportance Weight
particles w(x;)

° 0.2
O 0.6
o 0.2

‘ 0.8

‘ 0.8
@

0.2

Resampling Step

n original Importance Weight
w(x;)

particles

0.2

0.6

0.2

0.8

0.8

0.2

2.8

Normalized Probability
p(x;)

0.07

0.21

0.07

0.29

0.29

0.07

om

Resampling Step

n original Importance Weight
w(x;)

particles

0.2

0.6

0.2

0.8

0.8

0.2

2.8

Normalized Probability
p(x;)

0.07

0.21

0.07

0.29

0.29

0.07

om

Sample n new particles from the

previous set.

e Each particle is chosen with
probability p(x;), with
replacement. Add a little random
noise to each resampled particle
to avoid identical duplicates.

Is it possible that one of the particles is never chosen?

Resampling Step Yes

Is it possible that one of the particles is chosen more than once?

Yes!

n original Importance Weight ~ Normalized Probability

particles w(x;) p(x;)
® 0.2 0.07
O 0.6 0.21

PS 0.2 0.07
‘ 0.8 0.29
‘ 0.8 0.29
) 0.2 0.07

Sample n new particles from the
previous set.
Z — 28 * Each particle is chosen with
probability p(x;), with
replacement.

Particle Filter Algorithm

* Algorithm particle_filter(X;_,, u;_4, z;):

* X;=0,n=0
* Input:
* u;_41s the action that was executed at time t — 1
* Xi_q = {< x,{_l, W; >} is the set of weighted particles at time t — 1
j=1..N

* Z; is the sensor measurement at time ¢t — 1

* Qutput:

 X; = {< xtj, W; >} is a set of weighted particles at time t
j=1..N

4.".7
Particle Filter Algorithm v ee
* Algorithm particle_filter(X;_,, u;_4, z;): it Px/® u)
° Xt — @,T] =0 —° Moton Model
* Forj=1..N Generate new samples — -

Sample index j from discrete index set {1, ... N} based on w;_4

Jj
'xt—l'ut—l)

Sample xg from p(x,{

NOTES:

* j indicates a randomly chosen particle based on weights at time t — 1

J

. xtj is determined using only motion model for action, u,_; applied in state x;_,

Particle Filter Algorithm

|
|

: iP(ZXt)
Sensor Model

Algorithm particle_filter(X;_;, u;_1, z;):

* Xe=0,n=0

* Forj=1..N Generate new samples

. Sample index j from discrete index set {1, ... N} based on w;_4
. Sample x,{ from p(x,{ ,x,{_l,ut_l)

. Wtj = p(zt|xg) Compute importance weight
. n=n+ wtj Update normalization factor

. X; =X U{< x,{ wtj >} Add to set of new particles

Particle Filter Algorithm

|
|

: iP(ZXt)
Sensor Model

Algorithm particle_filter(X;_;, u;_1, z;):

* X, =0,n=0

* Forj=1..N Generate new samples

. Sample index j from discrete index set {1, ... N} based on w;_4
o Sample x] | x)_ L uey)

. Wt] = p(ztlxt) Compute importance weight
. n=n-+ Wt Update normalization factor
. X; =X U< x,{ Wtj >} Add to set of new particles

* Forj=1..N

w! =w//n Normalize weights

