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Sensing

So far, we’ve seen simple sensor models:
* Discrete measurements (conductivity, light)

* Univariate Gaussians (weight/scale)

In this chapter, we’ll see more realistic sensor models:
* Proximity (object detection, binary)
* Range (distance to a beacon, Gaussian)

* Pseudo-GPS (2D coordinates, bi-variate Gaussian)

For Perception, we’ll require more sophisticated
computational tools that exploit efficient and effective
approximation schemes.



Warehouse Environment

e Sensors measure various features of the environment.
* Geometric aspects of the environment (e.g., location of obstacles)
 Artifacts placed in the environment (e.g., QR Code, RFID transmitters, GPS)
* Visual features in the environment.

Environment:
* Warehouse is an enclosed 100x50m space

* Four shelving units

* Eight beacons (for range sensor)

Sensors:

* Proximity sensor detects walls and shelves
e Range sensor measures distance to the

nearest beacon
* Pseudo-GPS sensor gives 2D coordinates of
0 the robot in the warehouse.
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An |deal Proximity Sensor

Binary sensor that detects obstacles.
Sensor returns measurement z;, € {ON, OFF}

Denote by X, the obstacle region (includes shelves and
walls)

Distance to nearest obstacle is defined by
1

d(x) = min [|x —x'||2
x’EXObS

If d(x;) < dg (for some predetermined distance d;), the

sensor triggers:
Zi = ON

Ifd(xk) > do, Zi = OFF.




|[deal Proximity Sensor

40 In this example,

'Z1=0N
« 2, = OFF
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e This figure illustrates how the proximity sensor works for one of the shelves.
e Similar blue regions exist for all four shelves and the four walls.



Likelihood for the Ideal Proximity Sensor

* We can model an ideal proximity sensor using the measurement model:
R R OR O
* The likelihood for this sensor is given by:
tn=om={} = () eo

0 d <d
L(xy; z;, = OFF) = {1 o(t);lke)rwisg @ @® OFF




Likelihood for the Ideal Proximity Sensor

* We can plot the likelihood for each possible value of z.

1 d(xk) < do
0 otherwise
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» The likelihood is a function of x;. It is not a probability distribution!
» The specific form of the likelihood depends on which value of z; was observed.

0 d(xk) < dO

LCx; i = ON) = { 1 otherwise

L(xk;Zk = OFF) — {




An ldeal Range Sensor

* Eight beacons, at locations b, ..., bs.

* The range sensor returns the distance to the beacons:

h(xi; b)) = llxg — bill = / G — b)T (g — by)
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This sensor can be realized using RFID
technology.

Of course the beacon range is finite, so
when ||x; — b;|| > dpax  for all i, we set

h(xy; b;) = inf



A Noisy Range Sensor

* We often assume that sensor measurements are corrupted by additive noise. In
this case, our range sensor returns a noisy measurement:

zx = h(xy; by) + wi = |l — bl + wy

in which wy, is the noise term.

2
1 Yk
e 202

* We'll assume i.i.d. zero-mean Gaussian noise, fy,, (wy) = oy

* The resulting conditional pdf for the measurement (given x; and b;) is given by

_(Zk_h(xkibi))z

e 202
oV 2T

ka(Zklxk’ bl) —

» Given the state and the beacon ID, the range measurement is a Gaussian R.V.
whose mean is equal to the true range.




Measurement Model

* The sensor measurement model is a conditional pdf: Q

( ) 1 _(Zk_h(xk}bi))z
Zr | X, b;) = e 202 Q
ka kl k» Vi O'\/E

* This pdf describes the behavior the a r.v. z;, when x;, and b; are known.

* As such, we can expect f; to behave like any other pdf, e.g.,

j fz,(Zi|xk, b)dz, = 1



Measurement Likelihood

* The measurement likelihood is a function of xj,

" _(Zk—h(xkibi))z

e 202
O\2TT

L(xy; z, b;) =

* This likelihood is not a probability. For example,
J L(Xk; Zi, bi)dxk * 1

* The likelihood tells us something about how likely it would be to see various values
for x;, but it does not tell us probabilities.



Measurement Likelihood

* For a given measurement z;, and specific beacon b;,
we can plot the likelihood function on our
warehouse map.

* For the case b; = by and z;, = 4.03, we obtain the
plot for L(xy; 4.03, by) shown below (and in book).

* The likelihood achieves its maximum
4 : : : . on the circle of radius 4.03, centered
on beacon by,
* The value of L(xy;4.03, by) looks
like a Gaussian curve along any radial
line extended from beacon b,.
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Out-of-range Measurements

* If in range, sensor provides distance to a specific beacon.
* If all beacons out of range, i.e., ||x;, — b;|| > dpyqy foralli = h(xy; b;) = inf.
* We can construct a likelihood for this case: L(xy; z;, = inf, b; = NONE)

L(Xk;Zk — inf, bi = NONE)

_ 1 h(xg; b)) >dmge, i =0..7
0 otherwise




A Pseudo-GPS Sensor

GPS-like sensors return the coordinates in a global frame.

In the simplest case, we have z;, = h(x;) = x.

Not unusual to have different units, e.g., centimeters.

In these cases, we scale the measurement: z;,, = h(x;) = Cxy

Consider additive noise, then our measurement model is:

Zi = h(xk) + Wy = ka + Wy

* If wy is zero-mean Gaussian noise (as usual), we again have a
conditional Gaussian probability density:

T { 2( ) 1( )} M
exp Z X Z X
|2 2| k k k k

fzk (Z|xg) =



GPS-style Likelihoods

* The likelihood for our GPS-like sensor is given by

1
|2mX|

1
L(xy; zx) = exp {_E (z — Cx) 271 (2, — ka)}

* Let’s work on the exponent: (z;, — Cxy)7

(zx — Cxy) = C(C™ 1z — x) = (21, — Cxp)" = [C(CT 1z — x)]" = (CThz —x )" CT

* Therefore, we can write the likelihood as:

1 1
L(Xk; Zk) — exp {——(xk — C_le)TCTZ_l(:(Xk — C"lzk)}
J12mE] 2

which has the form of a Gaussian with mean C ™z, and inverse covariance CTZ1C.




Simulating States and Measurements

* Given a control tape u4, ..., u,,—1 and a prior distribution for Xy, it’s easy to
generate a sample trajectory x4, ..., X, along with a sample measurement
history z4, ..., Zy,.

1. Generate a sample for x; by sampling from
the prior P(X; = x1).

2. Generate a sample measurement z; by sampling from
the measurement model p(Z;|x,)

COLDLDLOLD >
1. Generate a sample for x; by sampling from the

transition distribution p(X;|x;_1, u;_1)
2. Generate a measurement sample z; by sampling

DO®®E® @ I

ul u2 u3 ud




Next Time...

Perception
* Bayes Filter
* Markov Localization

e Monte Carlo Localization



