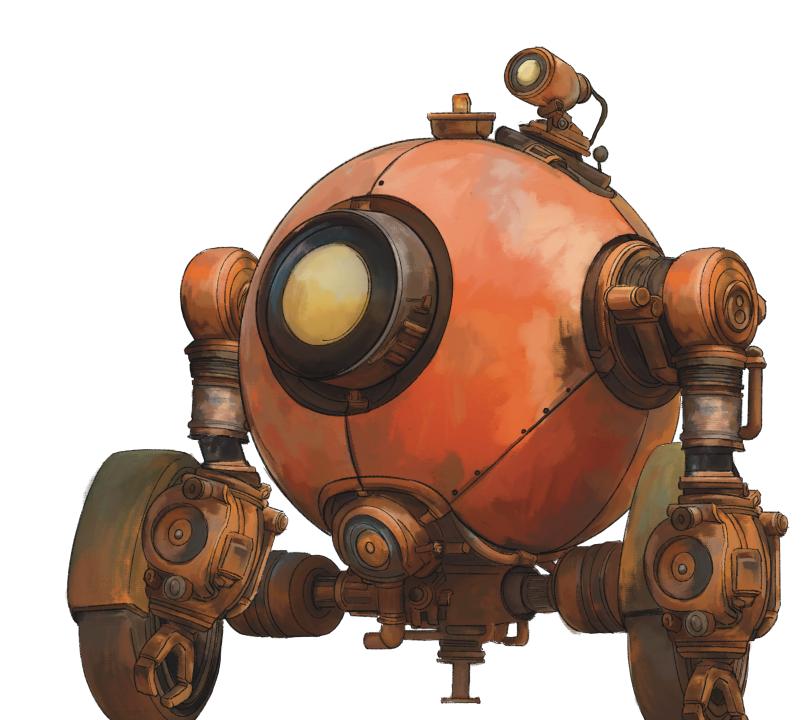
CS 3630, Fall 2025

Lecture 13:

A Logistics Robot:

Sensing



Sensing

So far, we've seen simple sensor models:

- Discrete measurements (conductivity, light)
- Univariate Gaussians (weight/scale)

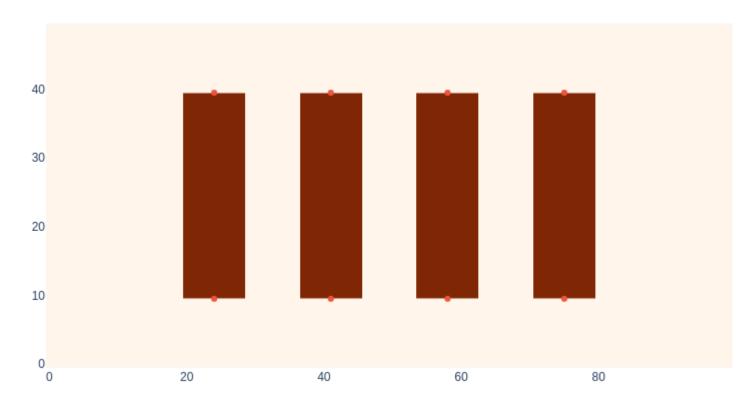
In this chapter, we'll see more realistic sensor models:

- Proximity (object detection, binary)
- Range (distance to a beacon, Gaussian)
- Pseudo-GPS (2D coordinates, bi-variate Gaussian)

For Perception, we'll require more sophisticated computational tools that exploit efficient and effective approximation schemes.

Warehouse Environment

- Sensors measure various features of the environment.
 - Geometric aspects of the environment (e.g., location of obstacles)
 - Artifacts placed in the environment (e.g., QR Code, RFID transmitters, GPS)
 - Visual features in the environment.



Environment:

- Warehouse is an enclosed 100x50m space
- Four shelving units
- Eight beacons (for range sensor)

Sensors:

- Proximity sensor detects walls and shelves
- Range sensor measures distance to the nearest beacon
- Pseudo-GPS sensor gives 2D coordinates of the robot in the warehouse.

An Ideal Proximity Sensor

- Binary sensor that detects obstacles.
- Sensor returns measurement $z_k \in \{ON, OFF\}$
- Denote by X_{obs} the obstacle region (includes shelves and walls)
- Distance to nearest obstacle is defined by

$$d(x) = \min_{x' \in X_{obs}} ||x - x'||^{\frac{1}{2}}$$

• If $d(x_k) \le d_0$ (for some predetermined distance d_0), the sensor triggers:

$$z_k = ON$$

• If $d(x_k) > d_0$, $z_k = OFF$.

Ideal Proximity Sensor



In this example,

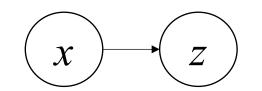
- $z_1 = ON$
- $z_2 = OFF$

- This figure illustrates how the proximity sensor works for one of the shelves.
- Similar blue regions exist for all four shelves and the four walls.

Likelihood for the Ideal Proximity Sensor

• We can model an ideal proximity sensor using the measurement model:

$$P(z_k = ON \mid x_k) = \begin{cases} 1 & d(x_k) \le d_0 \\ 0 & otherwise \end{cases}$$



• The <u>likelihood</u> for this sensor is given by:

$$\mathcal{L}(x_k; z_k = ON) = \begin{cases} 1 & d(x_k) \le d_0 \\ 0 & otherwise \end{cases}$$

$$x$$
 ON

$$\mathcal{L}(x_k; z_k = OFF) = \begin{cases} 0 & d(x_k) \le d_0 \\ 1 & otherwise \end{cases}$$

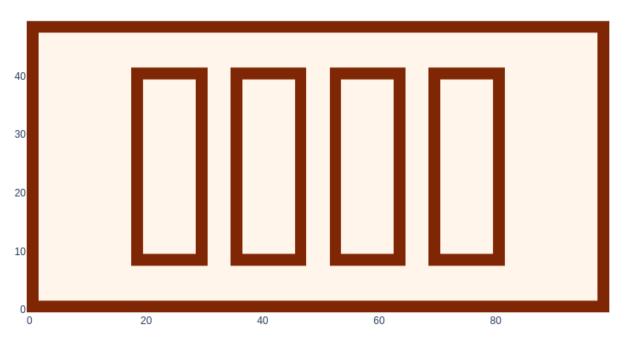
$$x$$
 OFF

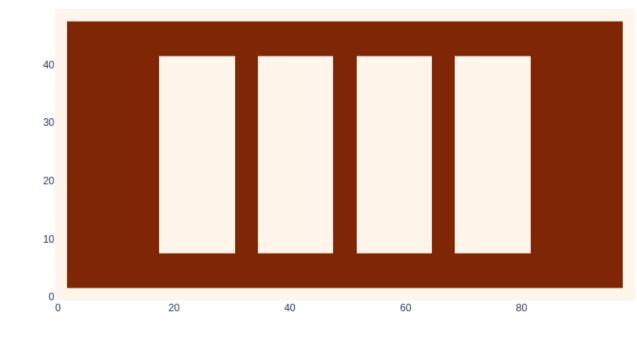
Likelihood for the Ideal Proximity Sensor

• We can plot the <u>likelihood</u> for each possible value of z_k .

$$\mathcal{L}(x_k; z_k = ON) = \begin{cases} 1 & d(x_k) \le d_0 \\ 0 & otherwise \end{cases}$$

$$\mathcal{L}(x_k; z_k = OFF) = \begin{cases} 0 & d(x_k) \le d_0 \\ 1 & otherwise \end{cases}$$



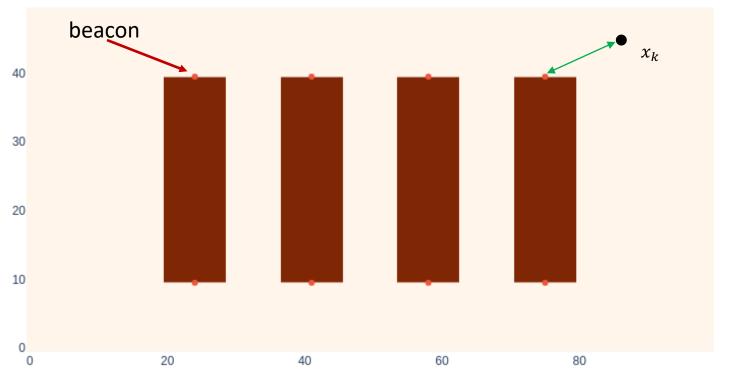


- \succ The likelihood is a function of x_k . It is <u>not</u> a probability distribution!
- \triangleright The specific form of the likelihood depends on which value of z_k was observed.

An Ideal Range Sensor

- Eight beacons, at locations b_0, \dots, b_7 .
- The range sensor returns the distance to the beacons:

$$h(x_k; b_i) = ||x_k - b_i|| = \sqrt{(x_k - b_i)^T (x_k - b_i)}$$



- This sensor can be realized using RFID technology.
- Of course the beacon range is finite, so when $\|x_k b_i\| > d_{\max}$ for all i, we set

$$h(x_k; b_i) = \inf$$

A Noisy Range Sensor

 We often assume that sensor measurements are corrupted by additive noise. In this case, our range sensor returns a noisy measurement:

$$z_k = h(x_k; b_i) + w_k = ||x_k - b_i|| + w_k$$

in which w_k is the noise term.

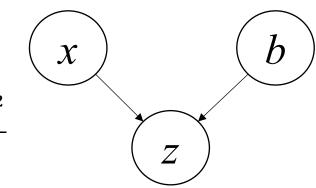
- We'll assume i.i.d. zero-mean Gaussian noise, $f_{W_k}(w_k) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{w_k^2}{2\sigma^2}}$
- The resulting conditional pdf for the measurement (given x_k and b_i) is given by

$$f_{Z_k}(z_k|x_k,b_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(z_k-h(x_k;b_i))^2}{2\sigma^2}}$$

➤ Given the state and the beacon ID, the range measurement is a Gaussian R.V. whose mean is equal to the true range.

Measurement Model

• The sensor measurement model is a conditional pdf:



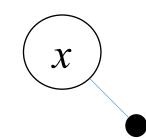
$$f_{Z_k}(z_k|x_k,b_i) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(z_k-h(x_k;b_i))^2}{2\sigma^2}}$$

- This pdf describes the behavior the a r.v. z_k when x_k and b_i are known.
- As such, we can expect f_{Z_k} to behave like any other pdf, e.g.,

$$\int_{-\infty}^{\infty} f_{Z_k}(z_k|x_k,b_i)dz_k = 1$$

Measurement Likelihood

• The measurement *likelihood* is a function of x_k



$$\mathcal{L}(x_k; z_k, b_i) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{\left(z_k - h(x_k; b_i)\right)^2}{2\sigma^2}}$$

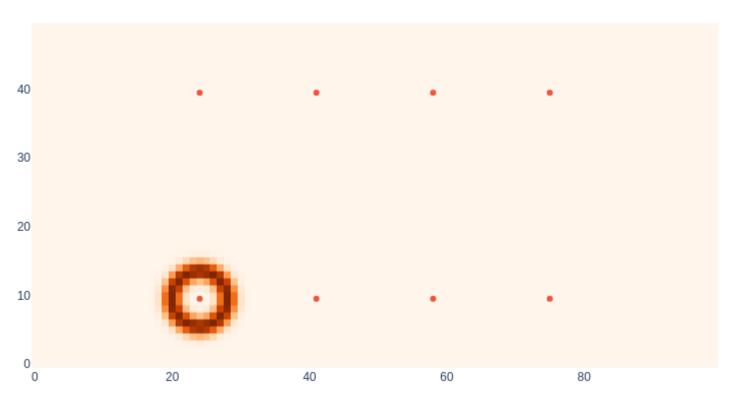
This likelihood is <u>not</u> a probability. For example,

$$\int_{-\infty}^{\infty} \mathcal{L}(x_k; z_k, b_i) dx_k \neq 1$$

• The likelihood tells us something about how likely it would be to see various values for x_k , but it does not tell us probabilities.

Measurement Likelihood

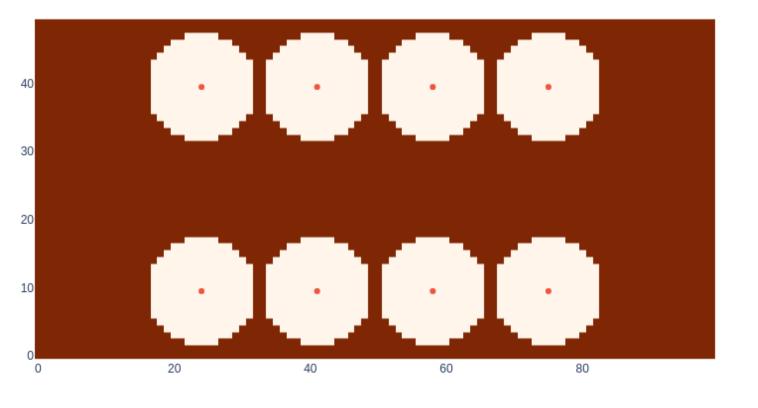
- For a given measurement z_k and specific beacon b_i , we can plot the likelihood function on our warehouse map.
- For the case $b_i = b_0$ and $z_k = 4.03$, we obtain the plot for $\mathcal{L}(x_k; 4.03, b_0)$ shown below (and in book).



- The likelihood achieves its maximum on the circle of radius 4.03, centered on beacon b_0 .
- The value of $\mathcal{L}(x_k; 4.03, b_0)$ looks like a Gaussian curve along any radial line extended from beacon b_0 .

Out-of-range Measurements

- If in range, sensor provides distance to a specific beacon.
- If all beacons out of range, i.e., $||x_k b_i|| > d_{max}$ for all $i \to h(x_k; b_i) = \inf$.
- We can construct a likelihood for this case: $\mathcal{L}(x_k; z_k = \inf, b_i = \text{NONE})$



$$\mathcal{L}(x_k; z_k = \inf, b_i = \text{NONE})$$

$$= \begin{cases} 1 & h(x_k; b_i) > d_{max}, i = 0 \dots 7 \\ 0 & otherwise \end{cases}$$

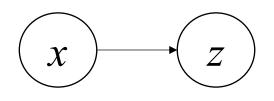
A Pseudo-GPS Sensor

- GPS-like sensors return the coordinates in a global frame.
- In the simplest case, we have $z_k = h(x_k) = x_k$.
- Not unusual to have different units, e.g., centimeters.
- In these cases, we scale the measurement: $z_k = h(x_k) = Cx_k$
- Consider additive noise, then our measurement model is:

$$z_k = h(x_k) + w_k = Cx_k + w_k$$

• If w_k is zero-mean Gaussian noise (as usual), we again have a conditional Gaussian probability density:

$$f_{Z_k}(z_k|x_k) = \frac{1}{\sqrt{|2\pi\Sigma|}} exp\left\{-\frac{1}{2}(z_k - Cx_k)^T \Sigma^{-1}(z_k - Cx_k)\right\}$$



GPS-style Likelihoods

• The likelihood for our GPS-like sensor is given by

$$\mathcal{L}(x_k; z_k) = \frac{1}{\sqrt{|2\pi\Sigma|}} exp\left\{-\frac{1}{2}(z_k - Cx_k)^T \Sigma^{-1}(z_k - Cx_k)\right\}$$

• Let's work on the exponent: $(z_k - Cx_k)^T$

$$(z_k - Cx_k) = C(C^{-1}z_k - x_k) \to (z_k - Cx_k)^T = [C(C^{-1}z_k - x_k)]^T = (C^{-1}z_k - x_k)^T C^T$$

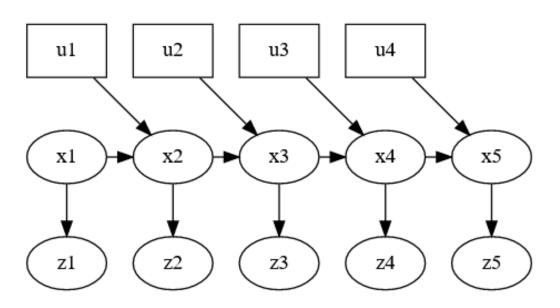
• Therefore, we can write the likelihood as:

$$\mathcal{L}(x_k; z_k) = \frac{1}{\sqrt{|2\pi\Sigma|}} exp\left\{ -\frac{1}{2} (x_k - C^{-1} z_k)^T C^T \Sigma^{-1} C(x_k - C^{-1} z_k) \right\} \qquad (\chi)$$

which has the form of a Gaussian with mean $C^{-1}z_k$ and inverse covariance $C^T\Sigma^{-1}C$.

Simulating States and Measurements

• Given a control tape u_1, \ldots, u_{n-1} and a prior distribution for X_1 , it's easy to generate a sample trajectory x_1, \ldots, x_n along with a sample measurement history z_1, \ldots, z_n .



- 1. Generate a sample for x_1 by sampling from the prior $P(X_1 = x_1)$.
- 2. Generate a sample measurement z_1 by sampling from the measurement model $p(Z_1|x_1)$
- 3. For each *i*:
 - 1. Generate a sample for x_i by sampling from the transition distribution $p(X_i|x_{i-1},u_{i-1})$
 - 2. Generate a measurement sample z_i by sampling from the measurement model $p(Z_i|x_i)$

Next Time...

Perception

- Bayes Filter
- Markov Localization
- Monte Carlo Localization