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Logistics Robots



Sensing
So far, we’ve seen simple sensor models:

• Discrete measurements (conductivity, light)

• Univariate Gaussians (weight/scale)

In this chapter, we’ll see more realistic sensor models:
• Proximity (object detection, binary)

• Range (distance to a beacon, Gaussian)

• Pseudo-GPS (2D coordinates, bi-variate Gaussian)

For Perception, we’ll require more sophisticated 
computational tools that exploit efficient and effective 
approximation schemes.



Warehouse Environment
• Sensors measure various features of the environment.

• Geometric aspects of the environment (e.g., location of obstacles)
• Artifacts placed in the environment (e.g., QR Code, RFID transmitters, GPS)
• Visual features in the environment.

Environment:
• Warehouse is an enclosed 100x50m space
• Four shelving units 
• Eight beacons (for range sensor)

Sensors:
• Proximity sensor detects walls and shelves
• Range sensor measures distance to the 

nearest beacon
• Pseudo-GPS sensor gives 2D coordinates of 

the robot in the warehouse.



An Ideal Proximity Sensor
• Binary sensor that detects obstacles.
• Sensor returns measurement 𝑧! ∈ 𝑂𝑁,𝑂𝐹𝐹
• Denote by 𝑋"#$ the obstacle region (includes shelves and 

walls)
• Distance to nearest obstacle is defined by

𝑑 𝑥 = min
%!∈'"#$

𝑥 − 𝑥(
)
*

• If 𝑑 𝑥! ≤ 𝑑+ (for some predetermined distance 𝑑+), the 
sensor triggers:

𝑧! = 𝑂𝑁
• If 𝑑 𝑥! > 𝑑+, 𝑧! = 𝑂𝐹𝐹.



Ideal Proximity Sensor

In this example, 
• 𝑧) = 𝑂𝑁 
• 𝑧* = 𝑂𝐹𝐹 

𝑑!

𝑑!

𝑥"

𝑥#

• This figure illustrates how the proximity sensor works for one of the shelves.
• Similar blue regions exist for all four shelves and the four walls.



Likelihood for the Ideal Proximity Sensor
• We can model an ideal proximity sensor using the measurement model:

𝑃 𝑧! = 𝑂𝑁	 𝑥!) = 41 𝑑 𝑥! ≤ 𝑑+
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

• The likelihood for this sensor is given by:

ℒ 𝑥!; 𝑧! = 𝑂𝑁 = 41 𝑑 𝑥! ≤ 𝑑+
0 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

ℒ 𝑥!; 𝑧! = 𝑂𝐹𝐹 = 40 𝑑 𝑥! ≤ 𝑑+
1 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Likelihood for the Ideal Proximity Sensor
• We can plot the likelihood for each possible value of 𝑧!.

ℒ 𝑥!; 𝑧! = 𝑂𝐹𝐹 = 40 𝑑 𝑥! ≤ 𝑑"
1 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒ℒ 𝑥!; 𝑧! = 𝑂𝑁 = 41 𝑑 𝑥! ≤ 𝑑"

0 	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Ø The likelihood is a function of 𝒙𝒌.  It is not a probability distribution! 
Ø The specific form of the likelihood depends on which value of 𝒛𝒌 was observed.



An Ideal Range Sensor
• Eight beacons, at locations 𝑏+, … , 𝑏D.
• The range sensor returns the distance to the beacons:

 ℎ 𝑥!; 𝑏E = 𝑥! − 𝑏E = 𝑥! − 𝑏E F 𝑥! − 𝑏E

𝑥$

• This sensor can be realized using RFID 
technology.

• Of course the beacon range is finite, so 
when 𝑥! − 𝑏" > 𝑑#$%  for all 𝑖, we set 

ℎ 𝑥!; 𝑏" = 𝐢𝐧𝐟

beacon



A Noisy Range Sensor
• We often assume that sensor measurements are corrupted by additive noise. In 

this case, our range sensor returns a noisy measurement:

𝑧! = ℎ 𝑥!; 𝑏" +𝑤! = 𝑥! − 𝑏" +𝑤!

  in which 𝑤! is the noise term.

• We’ll assume i.i.d. zero-mean Gaussian noise, 𝑓#$ 𝑤! = $
% &'

𝑒(
%$
&

&'&

• The resulting conditional pdf for the measurement (given 𝑥! and 𝑏") is given by

𝑓)$ 𝑧!|𝑥! , 𝑏" =
1

𝜎 2𝜋
𝑒(

*$(+ ,$;.(
&

&%&

  
ØGiven the state and the beacon ID, the range measurement is a Gaussian R.V. 

whose mean is equal to the true range.



Measurement Model
• The sensor measurement model is a conditional pdf:

𝑓G' 𝑧!|𝑥!, 𝑏E =
1

𝜎 2𝜋
𝑒H

I'HJ %';#(
)

*K)

• This pdf describes the behavior the a r.v. 𝑧! when 𝑥! and 𝑏E are known.
• As such, we can expect 𝑓G'  to behave like any other pdf, e.g.,

H
HL

L
𝑓G' 𝑧!|𝑥!, 𝑏E 𝑑𝑧! = 1

x

z

b



• The measurement likelihood is a function of 𝑥!

                                   ℒ 𝑥!; 𝑧!, 𝑏E = )
K *M 𝑒

H
*'+, -';#(

)

)/)

• This likelihood is not a probability. For example,

H
HL

L
ℒ 𝑥!; 𝑧!, 𝑏E 𝑑𝑥! ≠ 1

• The likelihood tells us something about how likely it would be to see various values 
for 𝑥!, but it does not tell us probabilities.

Measurement Likelihood

x



Measurement Likelihood
• For a given measurement 𝑧! and specific beacon 𝑏E, 

we can plot the likelihood function on our 
warehouse map.
• For the case 𝑏E = 𝑏+ and 𝑧! = 4.03, we obtain the 

plot for ℒ 𝑥!; 4.03, 𝑏+  shown below (and in book).

• The likelihood achieves its maximum 
on the circle of radius 4.03, centered 
on beacon 𝑏+.

• The value of ℒ 𝑥!; 4.03, 𝑏+  looks 
like a Gaussian curve along any radial 
line extended from beacon 𝑏+.



Out-of-range Measurements
• If in range, sensor provides distance to a specific beacon.
• If all beacons out of range, i.e., 𝑥! − 𝑏E > 𝑑NO% for all 𝑖	 →	 ℎ 𝑥!; 𝑏E = 𝐢𝐧𝐟.
• We can construct a likelihood for this case: ℒ 𝑥!; 𝑧! = inf, 𝑏E = NONE

ℒ 𝑥!; 𝑧! = inf, 𝑏E = NONE

= 41 ℎ 𝑥!; 𝑏E > 𝑑NO%, 𝑖 = 0…7
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒



A Pseudo-GPS Sensor
• GPS-like sensors return the coordinates in a global frame.
• In the simplest case, we have 𝑧! = ℎ 𝑥! = 𝑥!.
• Not unusual to have different units, e.g.,  centimeters.
• In these cases, we scale the measurement: 𝑧! = ℎ 𝑥! = 𝐶𝑥!
• Consider additive noise, then our measurement model is:

𝑧! = ℎ 𝑥! +𝑤! = 𝐶𝑥! +𝑤!

• If 𝑤! is zero-mean Gaussian noise (as usual), we again have a 
conditional Gaussian probability density:

𝑓&! 𝑧! 𝑥!) =
1
|2𝜋Σ|

𝑒𝑥𝑝 −
1
2
𝑧! − 𝐶𝑥! 'Σ()(𝑧! − 𝐶𝑥!) x z



GPS-style Likelihoods
• The likelihood for our GPS-like sensor is given by

ℒ(𝑥!; 𝑧!) =
1
|2𝜋Σ|

𝑒𝑥𝑝 −
1
2 𝑧! − 𝐶𝑥! 'Σ()(𝑧! − 𝐶𝑥!)

• Let’s work on the exponent: 𝑧! − 𝐶𝑥! '

𝑧! − 𝐶𝑥! = 𝐶 𝐶()𝑧! − 𝑥! → 𝑧! − 𝐶𝑥! ' = 𝐶 𝐶()𝑧! − 𝑥! ' = 𝐶()𝑧! − 𝑥! '𝐶'

• Therefore, we can write the likelihood as:

ℒ(𝑥!; 𝑧!) =
1
|2𝜋Σ|

𝑒𝑥𝑝 −
1
2
𝑥! − 𝐶()𝑧! '𝐶'Σ()𝐶(𝑥! − 𝐶()𝑧!)

    which has the form of a Gaussian with mean 𝐶()𝑧! and inverse covariance 𝐶'Σ()𝐶.

x

x



Simulating States and Measurements
• Given a control tape 𝑢), … , 𝑢PH) and a prior distribution for 𝑋), it’s easy to 

generate a sample trajectory 𝑥), … , 𝑥P along with a sample measurement 
history 𝑧), … , 𝑧P.

1. Generate a sample for 𝑥)by sampling from
the prior 𝑃(𝑋) = 	𝑥)).

2. Generate a sample measurement 𝑧) by sampling from
the measurement model 𝑝(𝑍) 𝑥)

3. For each 𝑖:
1. Generate a sample for 𝑥*  by sampling from the 

transition distribution 𝑝(𝑋* 𝑥*+), 𝑢*+)
2. Generate a measurement sample 𝑧*  by sampling 

from the measurement model 𝑝(𝑍* 𝑥*



Next Time…
Perception
• Bayes Filter
• Markov Localization
• Monte Carlo Localization


