
CS 3630, 
Fall 2025
Lecture 12: 
A Logistics Robot:               
Uncertainty in Actions



Recap



Multivariate Gaussians and Finite Elements
• Just chop up 2D spaces into a 2D grid of finite cells or “elements”



Sampling-based Representation

• Simple, efficient alternative
• Scales with “typical set”



Omniwheels: simple 2x3 Jacobians!
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Control 
Uncertainty

• Now that we have model for omni-wheel robot 
kinematics, we can develop a model for uncertainty  
in the robot’s motion.
• We’ll start with a 1-D robot, and develop the 

necessary probability theory to model and propagate 
various types of uncertainty (uniform and Gaussian 
noise in the motion)
• Once we understand the basics, we’ll extend the 

results to the 2-D case (motion in the plane).
• We’ll use multivariate Gaussian random variables to 

model noise/disturbances in the motion model.



Discrete Time Motion Model
• The control input for our robot is a linear velocity 𝑣.
• This is converted to angular velocities for each wheel.
• We could model the motion of the robot using a differential equation:  𝒙̇ = 𝑓(𝒙, 𝒖)

𝑥̇
𝑦̇ =

𝑣!
𝑣"  

• It’s much simpler to use a discrete time model for the position of the robot:
𝑥#$%
𝑦#$% =

𝑥# + 𝑣!Δ𝑇
𝑦# + 𝑣"Δ𝑇

=
𝑥# + 𝑢!
𝑦# + 𝑢"

• If the motion of the robot happened to be deterministic and error-free, this would be all we need.
• We’ll assume that the motion model is stochastic and show how to model uncertainty using 

continuous probability density functions.



Motion Model – the 1-D Case.
• Wheeled mobile robot that is constrained to move along a single line (e.g., a robot on a 

track, or a robot following a magnetic guidewire in the floor).
• We will define the control input as 𝑢$ = 𝑣Δ𝑇, i.e., we command the robot to move along 

the track with velocity 𝑣 for an amount of time Δ𝑇.
• In the absence of uncertainty, the state equation is simple: 𝑥$%! = 𝑥$ + 𝑢$
• If we execute a sequence of actions, 𝑢$, 𝑢$%! we arrive to 𝑥$%" = 𝑥$ + 𝑢$ + 𝑢$%!

𝑥! 𝑥!"# 𝑥!"$

𝑢! 𝑢!"#

Ø  If there’s no uncertainty in the motion model, predicting future states is pretty easy.



Motion Model – the 1-D Case.
• Consider the motion model  𝑥!"# = 𝑥! + 𝑢! + 𝜂!, and let 𝜂!~	𝑈(0,1)
• Suppose 𝑥! is known.

• What can we say about 𝑥!"#?

𝑥! 𝑋!"#

𝑢!

The next state is a random variable with uniform distribution

𝑋!"#~	𝑈(𝑥! + 𝑢!, 𝑥! + 𝑢! + 1)



Motion Model – the 1-D Case.
• That was so simple!!

• What happens after two time steps?

𝑥!"$ = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#
𝑢!

• The term 𝑥! + 𝑢! + 𝑢!"#is completely deterministic (and easy to compute).

• The term 𝜂! + 𝜂!"# is completely stochastic, and somewhat mysterious.

• We need to determine the probability distribution of a sum of random variables.

𝑢! + 1
???????



Might help to think about sum of two dice



Might help to think about two n-sided dice



Might help to think about two n-sided dice



Sum of Two Random Variables
For  𝑠 = 𝑑! + 𝑑" if 𝑑$~	𝑈(0,1), the probability density function for 𝜂+"is:

For  𝜂+" = 𝜂! + 𝜂" if 𝜂$~	𝑈(0,1), the probability density function for 𝜂+"is:

𝑓,!" 𝛼 = 	< 𝛼 0 ≤ 𝛼 ≤ 1
2 − 𝛼 1 ≤ 𝛼 ≤ 2



Motion Model – the 1-D Case.
After two time steps,   𝑥!"$ = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#

𝑢! = 3 𝑢!"# = 3

𝑋!"$

Ø Both of 𝑋!"# and 𝑋!"$ are random variables.
Ø They do not have the same probability distribution!!!



The Sum of 𝑛 i.i.d. Uniform Random Variables 
Let the random variable  𝜂+/ = 𝜂! +…+ 𝜂/ be the sum of 𝑛 random variables.
The pdf for 𝜂+/is called the Irwin-Hall distribution.

[wikipedia] 



The Sum of 𝑛 i.i.d. Uniform Random Variables 
This is a nice piece of trivia, but should we really care about this?
YES! As 𝑛 becomes large, 𝑓,!#  approaches a Gaussian distribution.

Even for 𝑛 = 3 we can start to see the similarity. 

In general, when we add together a bunch of i.i.d. random variables, things start to look Gaussian before long.



1D Motion Model with Gaussian Noise
• Consider again the motion model  𝑥!"# = 𝑥! + 𝑢! + 𝜂!, but now let 𝜂!~	𝑁 0, 𝜎$ , with all 𝜂! independent.

• Suppose 𝑥! is known.

• What can we say about 𝑥!"#?

𝑥! 𝑋!"#

𝑢!

• The next state is a random variable with Gaussian distribution  𝑋!"#~	𝑁(𝑥! + 𝑢!, 𝜎$).
• 𝐸[𝑋!"#] = 𝑥! + 𝑢!
• The variance of 𝑋!"# is exactly the variance in the noise.



1D Motion Model with Gaussian Noise
• Not too difficult…

• What happens after two time steps?
𝑥!"$ = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#

𝑢!

• The term 𝑥! + 𝑢! + 𝑢!"#is completely deterministic (and easy to compute).

• The term 𝜂! + 𝜂!"# is completely stochastic, and somewhat mysterious.

• We need to determine the probability distribution of a sum of Gaussian random variables.

𝑢! + 1
???????



1D Motion Model with Gaussian Noise
After two time steps,   𝑥!"$ = 𝑥! + 𝑢! + 𝜂! + 𝑢!"# + 𝜂!"# = (𝑥!+𝑢! + 𝑢!"#) + (𝜂!+𝜂!"#)

𝑥! 𝑋!"#

𝑢! = 3 𝑢!"# = 3

𝑋!"$

Ø Both of 𝑋!"# and 𝑋!"$ are Gaussian random variables.
Ø The do not have the same variance!!!



Bivariate Gaussians
For our motion model, we’ll use

𝑥$%! = 𝑥$ + 𝑢$ + 𝜂$

with 𝑥$%!, 𝑥$, 𝑢$, 𝜂$ ∈ ℝ" and 𝜂$~𝑁 0, Σ .
𝑋!"#

𝑋!"#is a bivariate Gaussian,  
𝑋!"#~𝑁 𝑥! + 𝑢!, Σ

𝑢!

𝑥!



Bivariate Gaussians
For our motion model, we’ll use

𝑥$%! = 𝑥$ + 𝑢$ + 𝜂$

with 𝑥$%!, 𝑥$, 𝑢$, 𝜂$ ∈ ℝ" and 𝜂$~𝑁 0, Σ .

𝑋!"#

𝑢!"#

𝑢!

𝑥!

𝑋!"$is a bivariate Gaussian,  
𝑋!"$~𝑁 𝑥! + 𝑢! + 𝑢!"#, Σ# + Σ$

𝑋!"$

𝑢!"#



Multiple Time Steps
Conceptually, there’s nothing new here.
Ø  Each time step adds a bit of Gaussian noise to the control input, introducing uncertainty 

that increases with the number of steps.

Mathematically, things are just as easy: add the covariance matrices!

We will use two numerical methods to propagate uncertainty, and both will be applicable to 
the case of Gaussian noise in our motion model:
• Markov Localization: Divide the world into a grid and keep track of the probability mass 

that arrives to each grid cell as the robot moves.
• Monte Carlo Localization: Simulate lots of robots (generate samples from the noise 

distributions to simulate the motion model). The distribution of the simulated robots give 
insight to the probability distribution associated to the robot’s location.



An example (ground truth) trajectory

• Robot starts out in bottom-left, goes right, then up in ”aisle 2”:



Propagation of uncertainty
• Finite elements version:



Next Time…
• Sensor models
• Markov Localization
• Monte Carlo Localization


