CS 3630,
Fall 2025

Lecture 12:
A Logistics Robot:
Uncertainty in Actions
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Multivariate Gaussians and Finite Elements

e Just chop up 2D spaces into a 2D grid of finite cells or “elements”
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Sampling-based Representation

* Simple, efficient alternative
 Scales with “typical set”
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Omniwheels: simple 2x3 Jacobians!
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Control

Uncertainty

Now that we have model for omni-wheel robot
kinematics, we can develop a model for uncertainty
in the robot’s motion.

We'll start with a 1-D robot, and develop the
necessary probability theory to model and propagate
various types of uncertainty (uniform and Gaussian
noise in the motion)

Once we understand the basics, we’ll extend the
results to the 2-D case (motion in the plane).

We'll use multivariate Gaussian random variables to
model noise/disturbances in the motion model.



Discrete Time Motion Model

* The control input for our robot is a linear velocity v.
e This is converted to angular velocities for each wheel.

* We could model the motion of the robot using a differential equation: x = f(x, u)
X Ux
[5’] - [vy]

* It’s much simpler to use a discrete time model for the position of the robot:

xt+1] _ [xt + vaT] _ [xt + ux]
Yi+1 Ve + U, AT Vi T Uy

* If the motion of the robot happened to be deterministic and error-free, this would be all we need.

* We’ll assume that the motion model is stochastic and show how to model uncertainty using
continuous probability density functions.



Motion Model —the 1-D Case.

Wheeled mobile robot that is constrained to move along a single line (e.g., a robot on a
track, or a robot following a magnetic guidewire in the floor).

We will define the control input as u;,, = vAT, i.e., we command the robot to move along
the track with velocity v for an amount of time AT.

In the absence of uncertainty, the state equation is simple: X471 = X + U
* If we execute a sequence of actions, Uy, U1 We arrive to X, = Xp + U + Up41q

Ur Uk +1

» If there’s no uncertainty in the motion model, predicting future states is pretty easy.



Motion Model —the 1-D Case.

* Consider the motion model x4 = x}, + u; + 1y, and letn,~ U(0,1)

* Suppose xj is known.

* What can we say about xj,1?

X+1

The next state is a random variable with uniform distribution

Xk+1~ U(xk + Up, X + Uy, + 1)



Motion Model —the 1-D Case.

e That was so simple!!

 What happens after two time steps?

X2 = X+ Ui + Mg + Upsq + e = (Fug + Ugsr) + M HNk+1)

* The term xj, + uy + u441is completely deterministic (and easy to compute).
* The term 1, + N1 is completely stochastic, and somewhat mysterious.

* We need to determine the probability distribution of a sum of random variables.
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Might help to think about sum of two dice

Probability distribution of sum of two 6-sided dice
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Might help to think about two n-sided dice

Probability distribution of sum of two 20-sided dice
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Might help to think about two n-sided dice

Probability distribution of sum of two 100-sided dice
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Sum of Two Random Variables

For s =dq + d, ifd,~ U(0,1), the probability density function for ng,is:
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For ng, = nq +n, if n,~ U(0,1), the probability density function for ng,is:
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Motion Model —the 1-D Case.

After two time steps, Xgyo = X + Uy + N + U + Nepr = (et Ug + Ugpr) + M HNk41)

» Both of X}, 1 and X, are random variables.
» They do not have the same probability distribution!!!



The Sum of n i.i.d. Uniform Random Variables

Let the random variable ng, =11 + ... + n,, be the sum of n random variables.
The pdf for ngy,is called the Irwin-Hall distribution.

The Irwin—Hall distribution is the continuous probability distribution for the sum of n independent and identically distributed U(0, 1) random variables:

x-S
k=1

AT
00 BN

The probability density function (pdf) is given by T —
fx(z;n) = ! i( 1)* (n) (z — k)" ' sgn(z — k)
AN 2(n — 1)! & k) &

where sgn(x — k) denotes the sign function:

-1 z<k
sgn(z ~k)=<0 xz=k

1 z > k.
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The Sum of n i.i.d. Uniform Random Variables

This is a nice piece of trivia, but should we really care about this?

YES! As n becomes large, f,,. . approaches a Gaussian distribution.
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Figure 1

Irwin-Hall distribution with # = 3 and the matching normal distribution with mean 3/2 and variance 1/4.
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Even for n = 3 we can start to see the similarity.

In general, when we add together a bunch of i.i.d. random variables, things start to look Gaussian before longq.




1D Motion Model with Gaussian Noise

* Consider again the motion model x,,1 = x} + uy + 1%, but now let n,,~ N(0,5?), with all n; independent.
* Suppose xj is known.

* What can we say about xj,1?

* The next state is a random variable with Gaussian distribution Xj.{~ N(xy + Uy, o2).
* E[Xk+1] = xp +ug

* The variance of X .1 is exactly the variance in the noise.



1D Motion Model with Gaussian Noise

* Not too difficult...

* What happens after two time steps?
X2 = X+ U + 0 + Upqq + M1 = (et Ui + Ugsq) + M Nie41)

* The term xj, + uy + u441is completely deterministic (and easy to compute).
* The term 1, + N1 is completely stochastic, and somewhat mysterious.

* We need to determine the probability distribution of a sum of Gaussian random variables.
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1D Motion Model with Gaussian Noise

After two time steps, Xgyo = X + Uy + N + U + Nepr = (et Ug + Ugpr) + M HNk41)

» Both of X;,,1 and X}, are Gaussian random variables.
» The do not have the same variance!!!
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Bivariate Gaussians

Convolution of Independent Gaussians: Z=X+Y

i Z=p1+y2, I Z=31+4%
For our motion model, we’ll use & b £THIT e, 2 LTeTha2

H1=(3,3)
X H2=(3,-2)
+  t+p2=(6,1)

Xk+1 = X T Uk TN

with Xk+1) X, Uk, Nk € ]Rz and T]k"’N(O, Z)

X 111s a bivariate Gaussian, >
Xer1~N (g + ug, Z)




Bivariate Gaussians

Convolution of Independent Gaussians: Z=X+Y
MW Z=H1+M2, 2 Z=21+2>

For our motion model, we’ll use [
X He=(3,-2)
+  t+p2=(6,1)
Xk+1 = X + Uk T g af

with Xk+1) X, Uk, Nk € ]Rz and T]k"’N(O, Z)

N
T

Xy 10is a bivariate Gaussian, >
Xier2~N (g + ug + Uy, 21 + Z2)
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Multiple Time Steps

Conceptually, there’s nothing new here.

» Each time step adds a bit of Gaussian noise to the control input, introducing uncertainty
that increases with the number of steps.

Mathematically, things are just as easy: add the covariance matrices!

We will use two numerical methods to propagate uncertainty, and both will be applicable to
the case of Gaussian noise in our motion model:

* Markov Localization: Divide the world into a grid and keep track of the probability mass
that arrives to each grid cell as the robot moves.

 Monte Carlo Localization: Simulate lots of robots (generate samples from the noise
distributions to simulate the motion model). The distribution of the simulated robots give
insight to the probability distribution associated to the robot’s location.




An example (ground truth) trajectory

* Robot starts out in bottom-left, goes right, then up in "aisle 2”:
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Propagation of uncertainty

* Finite elements version:
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Next Time...

* Sensor models
* Markov Localization
* Monte Carlo Localization



