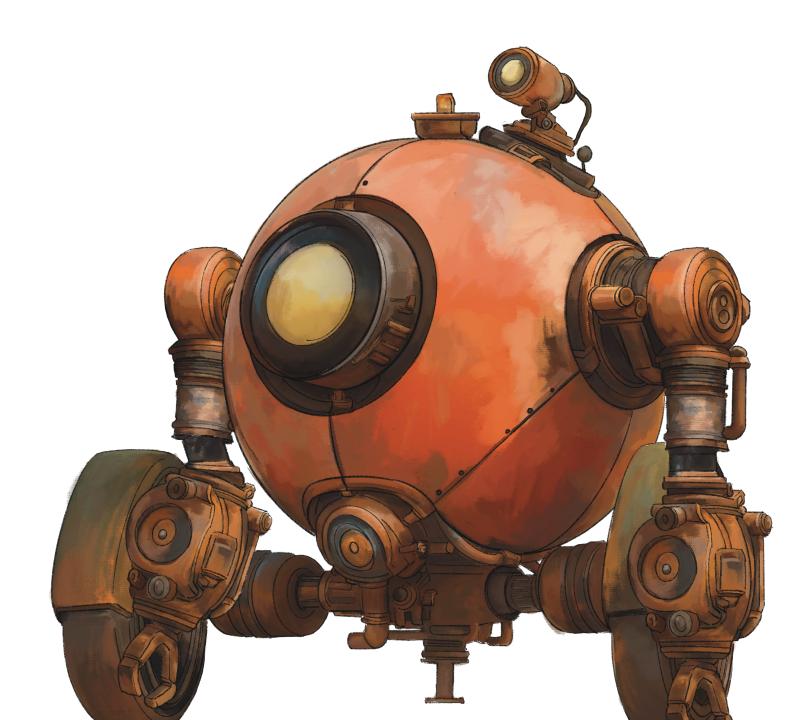
CS 3630, Fall 2025

Lecture 11:

An omnidirectional Logistics Robot



What exactly is logistics?

- Logistics is the management of the flow of things from point of origin to point of consumption [Wikipedia].
- This typically involves multiple stages of packaging, routing, transport.
- There are plenty of robotics applications:
 - Loading/unloading
 - Palletizing
 - Cargo container transport
 - Packaging
 - Last mile delivery
 - Warehouse operations
- For now, we will consider the narrow problem of warehouse operations, in particular, the problem of moving inventory from Point A to Point B in a warehouse.

Robots in Warehouses

A Few Warehouse Robots

Autoguide Mobile Robots

GreyOrange Inc.

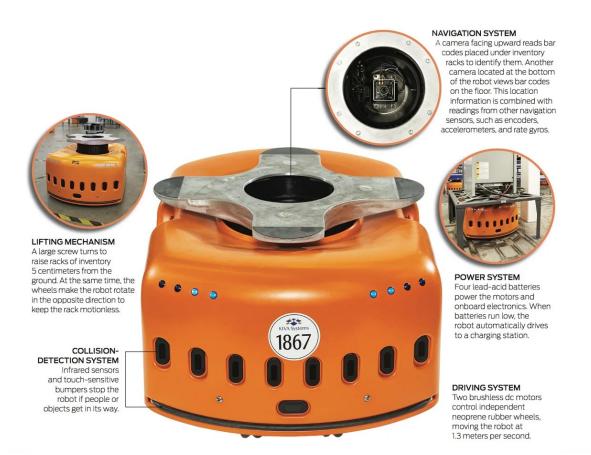
Tompkins Robotics

Milvus Robotics

A few mobile robots whose purpose in life is to move inventory from place to place in large warehouses.

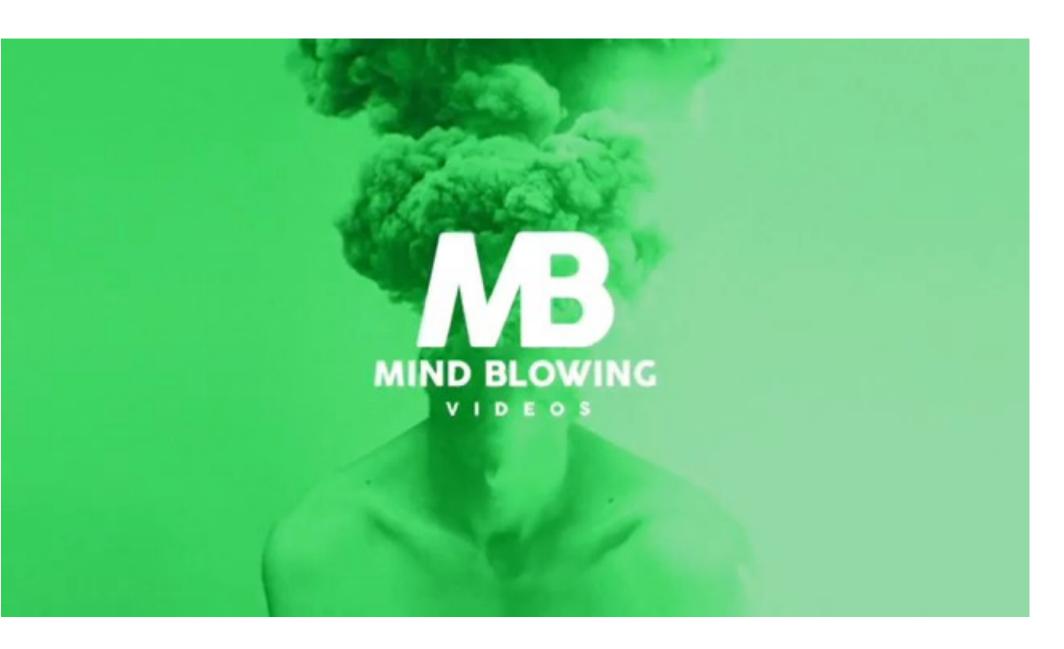
From Kiva to Amazon Robotics

- 2003: Kiva Systems founded
- 2009: Rank #6 in Inc. 500 list of fastest growing co's in America
- 2012: Acquired by Amazon for \$775M
- 2015: Name change: Amazon Robotics LLC
- 2019: More than 200,000 robots deployed in Amazon warehouses



Peter Wurman, Mick Mountz, Raff D'Andrea

Amazon's Warehouse Robots



Fetch Robotics

- Cloud robotics platform (claim to be the first)
- Mobile manipulation
- Sponsored competition at ICRA (GT won, and took home a shiny new robot).
- 2014: Founded (after Willow Garage ended)
- 2019: Al Breakthrough Award (best overall robotics company)
- 2021: Acquired by Zebra for \$305M

CEO, Melonee Wise

Autonomous Mobile Robots

In the world of warehouse robotics, we there are two main categories or mobile robot platform:

- Automated Guided Vehicles (AGVs)
 - Follow fixed routes
 - Rely on wires or magnets embedded in the floor to track routes
 - Simple sensing to avoid collisions (typically, simply stop when an obstacle appears)
 - Rely on predictable and known environment
 - Train the humans to avoid the robots
- Autonomous Mobile Robots (AMRs)
 - Capable of planning general motion
 - Typically require a map of the environment
 - Can navigate based on obstacles (i.e., more than simple collision avoidance)
 - Robots know how to avoid the humans

In this chapter...

- Omnidirectional mobile robots
 - Can move in arbitrary directions
 - Control input is wheel angular velocity
 - Easy to convert wheel angular velocity to robot velocity
 - Forces and torques aren't important
- Continuous state space
 - Robot position is specified by x-y coordinates
 - Coordinates are real numbers, not discrete grid points or names of rooms
- Discrete time system
 - No real need for continuous time
 - Provides access to nice tools from Bayesian inference
- Fairly simple sensors
 - Proximity (binary sensor that detects obstacles)
 - Range (using RFID tags)
 - Pseudo-GPS (mainly to introduce conditional Gaussian models)

Continuous State

In this chapter, we level up to continuous state for the very first time.

The question: how to represent knowledge? Three options:

- Gaussian density
- Finite elements
- Sampling-based

Continuous state

• Part of the 2D plane:

$$x \in \mathcal{D} \subset \mathbb{R}^2$$

- No orientation yet:
 - omni-directional movement

Gaussian Densities

• Remember 1D:

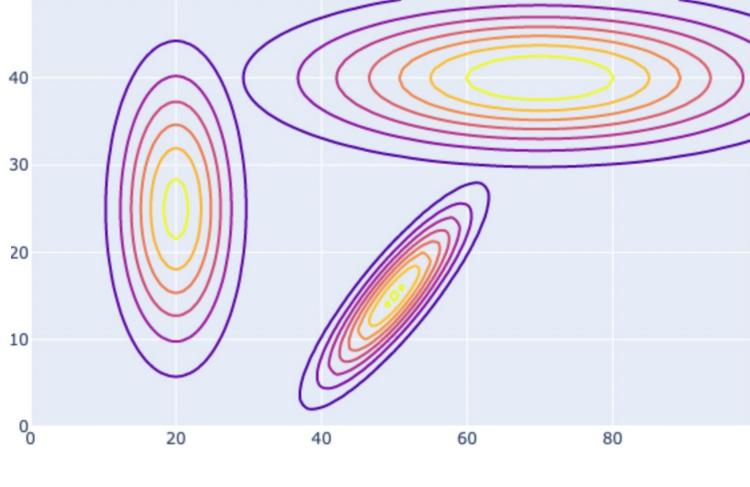
$$\mathcal{N}(x;\mu,\sigma^2) \doteq rac{1}{k} \mathrm{exp}\{-rac{1}{2} rac{\|x-\mu\|^2}{\sigma^2}\}$$

- Just a quadratic inside!
- Rewrite as:

$$\mathcal{E}(x;\mu,\sigma^2) \doteq rac{1}{2}(x-\mu)\sigma^{-2}(x-\mu)$$

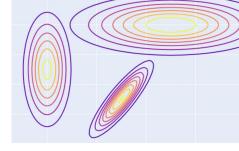
• Generalize to:

$$\mathcal{E}(x;\mu,\Sigma) \doteq rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)^T$$



$$\mathcal{E}(x;\mu,\Sigma) \doteq rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu) \qquad \mathcal{N}(x;\mu,\Sigma) \doteq rac{1}{k} \exp\{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

Multivariate Gaussians



• An *n*-dimensional Gaussian density:

$$f_{\vec{X}}(\vec{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\mu)^T \Sigma^{-1}(\vec{x}-\mu)}$$

- As usual, the action is in the exponent; the constant $\sqrt{(2\pi)^n|\Sigma|}$ is merely to scale the pdf so that $\int f_{\vec{X}}(\vec{x})d\vec{x}=1$.
- The value of $f_{\overrightarrow{X}}(\overrightarrow{x})$ decreases exponentially with the square of the scaled distance $\|\overrightarrow{x} \mu\|_{\Sigma^{-1}}$.
- The matrix Σ is called the *covariance matrix*. In the two-dimensional case, it is defined as:

$$\Sigma = \begin{bmatrix} E[(X - \mu_x)^2] & E[(X - \mu_x)(Y - \mu_y)] \\ E[(X - \mu_x)(Y - \mu_y)] & E[(Y - \mu_y)^2] \end{bmatrix}$$

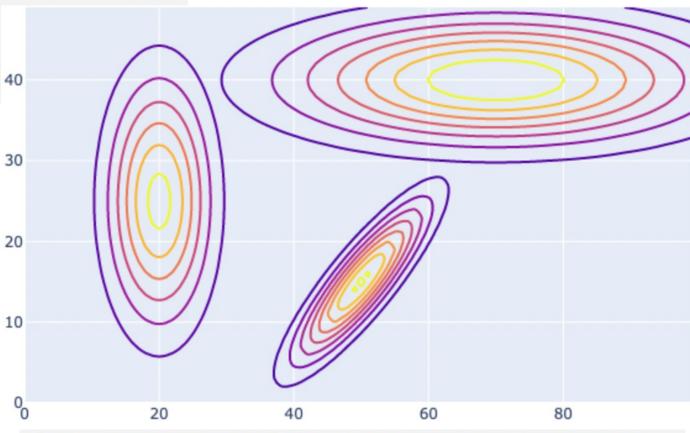
• If a matrix Σ is positive definite, then Σ^{-1} exists, and $\vec{x}^T \Sigma^{-1} \vec{x} = k$ defines an ellipse, for k > 0.

Multivariate Gaussians in code:

```
def gaussian(x:np.array, mean=np.zeros((2,)), cov=np.eye(2)):
"""Evaluate multivariate Gaussian at x of shape(m,n), yields (m,) vector."""
assert x.shape[-1]==2, f"error: x has shape {x.shape}"
k = math.sqrt(np.linalg.det(2*math.pi*cov))
e = x - mean
E = np.sum(0.5 * (e @ np.linalg.inv(cov) * e), axis=-1)
return np.exp(-E)/k
```

$$\mathcal{N}(x;\mu,\Sigma) \doteq rac{1}{k} \mathrm{exp}\{-rac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\}$$

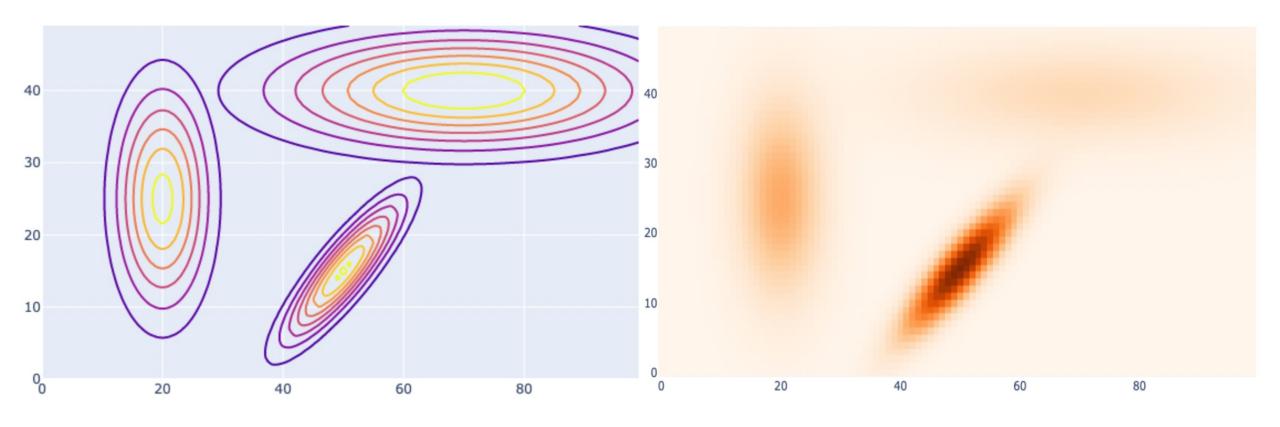
$$k=\sqrt{(2\pi)^n|\Sigma|}=\sqrt{|2\pi\Sigma|}.$$



means = [gtsam.Point2(x,y) for x,y in [(20,25),(70,40),(50,15)]]covariances = [np.diag([sx**2,sy**2]) for sx,sy in [(5,10),(20,5)]]covariances.append(np.array([[40,35],[35,40]]))

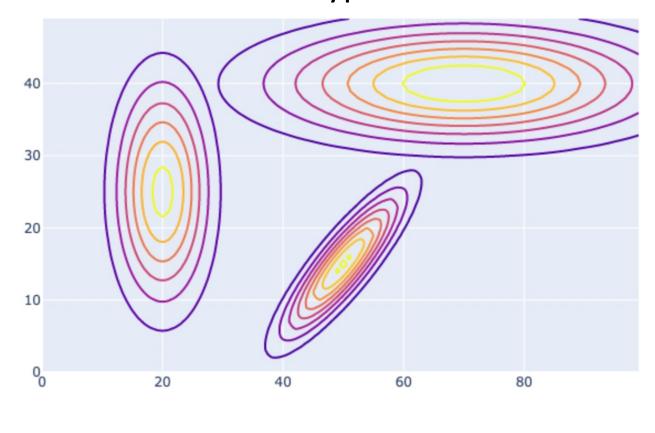
Finite Elements

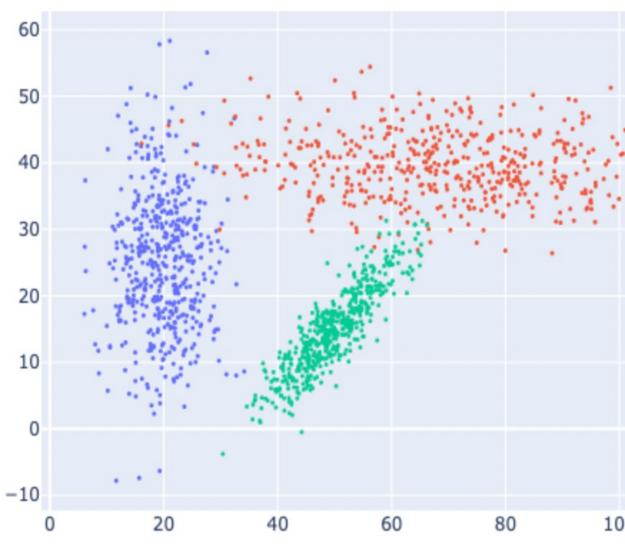
- Just chop up 2D spaces into a 2D grid of finite cells or "elements"
- How does this scale with dimension?



Sampling-based Representation

- Simple, efficient alternative
- Scales with "typical set"





Actions

Until this point, we have ignored the issues related to robot motion:

- The trash sorting robot had built-in sorting actions.
- The vacuuming robot had built-in motion primitives to navigate from room to room.
- We modeled uncertainty, but we really didn't do any work to develop these models, which really should be related to reliability of the robot's actions/motions.

In this chapter, we'll take a first look at robot motion:

- Rolling wheels induce motion of a mobile platform.
- Uncertainty in the effects of actions is modeled directly in terms of the robot's motion.

We'll start with the kinematics of omni wheels...

Omni Wheels

Typical wheel:

- Rolls forward (the driving direction) without slipping
- Cannot slide perpendicular to the steering direction
- Wheel velocity is therefore always in the driving direction
- The inability to slide is a nonholonomic constraint

Omni wheel:

- Rolls forward (the driving direction) without slipping
- Can slide perpendicular to the steering direction
- Wheel velocity not constrained to be in the driving direction!
- Sliding is passive, just the right amount to accommodate the wheel velocity.

Typical Omni-Wheel robot

The reason for three wheels:

- Steering directions of the three wheels positively spans the plane, plus stability.
- Can move in any direction instantaneously by an appropriate choice of wheel speed.

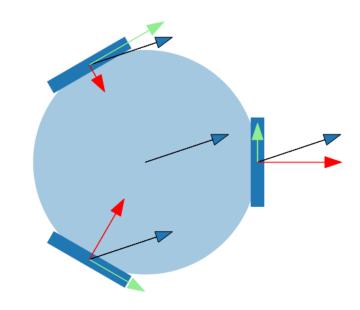
Wheel Kinematics

- Here we consider only *pure translations* (we'll consider orientation and rotation later).
- With a pure translational velocity, then every point on the robot moves with the same velocity.
- Define the translational velocity of the robot to be

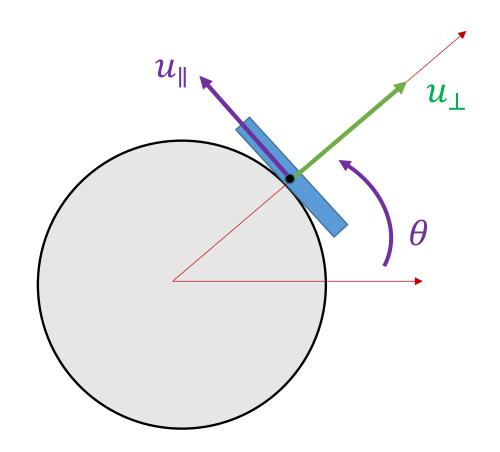
$$v = \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

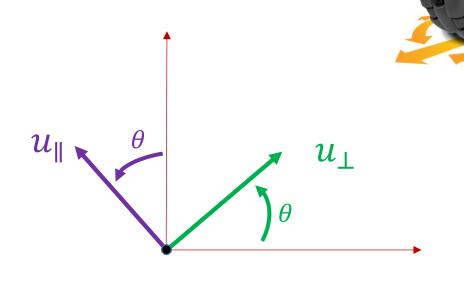
The velocity of each wheel can be decomposed into two components: v_{\parallel} and v_{\perp} .

- v_{\parallel} is the component of wheel velocity that is parallel to the driving direction.
- v_{\perp} is the component of the wheel velocity that is perpendicular to the driving direction.



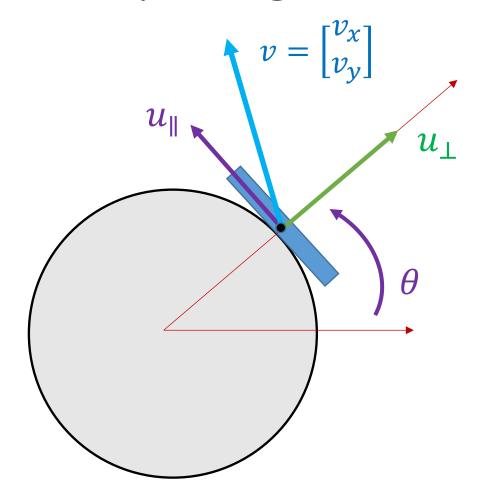
Decomposing Robot Velocity





$$u_{\perp} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$
 $u_{\parallel} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$

Decomposing Robot Velocity



$$u_{\perp} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$

$$u_{\perp} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix} \qquad u_{\parallel} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$$

- We can now decompose v into the components parallel to and perpendicular to the steering direction.
- This is done by projecting v onto u_{\parallel} and u_{\perp}

$$v = (v \cdot u_{\parallel})u_{\parallel} + (v \cdot u_{\perp})u_{\perp}$$

which can be written as

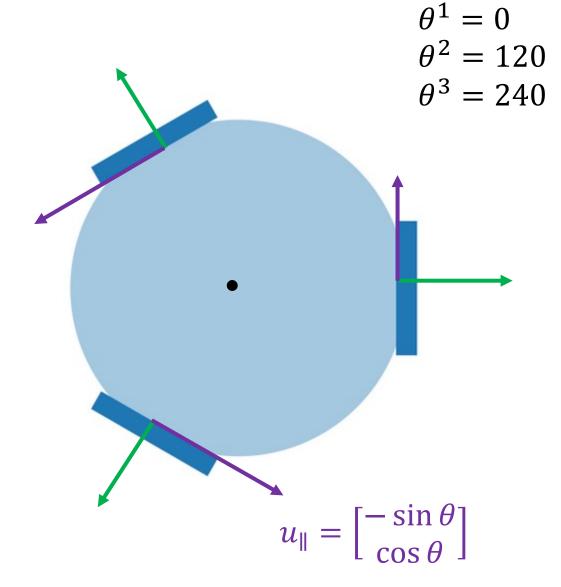
$$v = v_{\parallel}u_{\parallel} + v_{\perp}u_{\perp}$$

where

$$v_{\parallel} = -v_{x} \sin \theta + v_{y} \cos \theta$$
$$v_{\perp} = v_{x} \cos \theta + v_{y} \sin \theta$$

Note that v_{\parallel} and v_{\perp} are scalars!

Three Uniformly Positioned Wheels



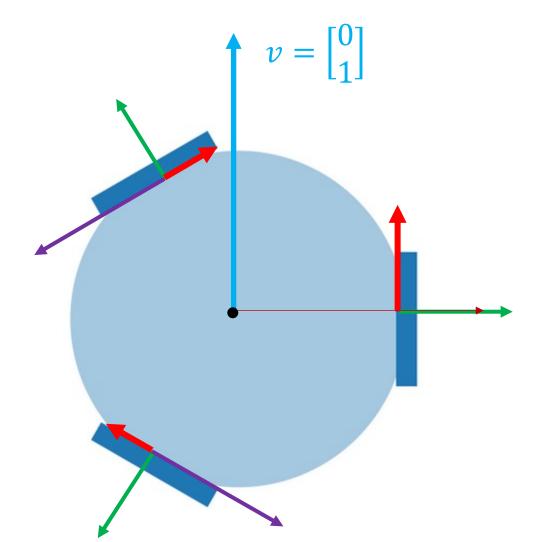
$$u_{\parallel}^{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$u_{\parallel}^2 = \begin{bmatrix} -0.8660 \\ -0.5 \end{bmatrix}$$

$$u_{\parallel}^3 = \begin{bmatrix} 0.866 \\ -0.5 \end{bmatrix}$$

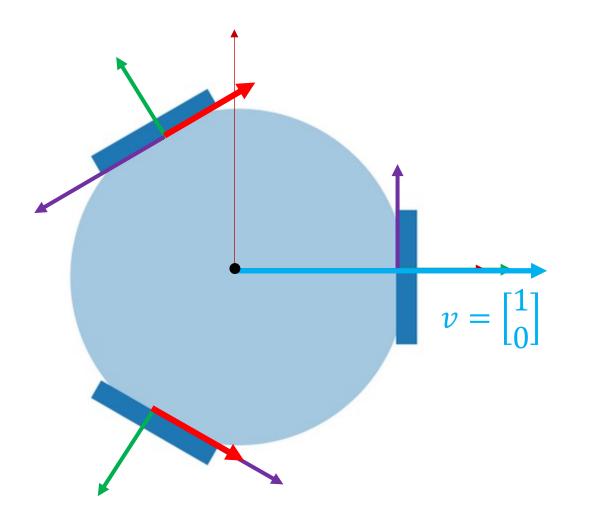
$$\begin{bmatrix} v_{\parallel}^{1} \\ v_{\parallel}^{2} \\ v_{\parallel}^{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.866 & -0.5 \\ 0.866 & -0.5 \end{bmatrix} \begin{bmatrix} v_{\chi} \\ v_{y} \end{bmatrix}$$

Example



$$\begin{bmatrix} v_{\parallel}^{1} \\ v_{\parallel}^{2} \\ v_{\parallel}^{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.866 & -0.5 \\ 0.866 & -0.5 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -0.5 \\ -0.5 \end{bmatrix}$$

Example



$$\begin{bmatrix} v_{\parallel}^{1} \\ v_{\parallel}^{2} \\ v_{\parallel}^{3} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -0.866 & -0.5 \\ 0.866 & -0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -0.866 \\ 0.866 \end{bmatrix}$$

Wheel Jacobian

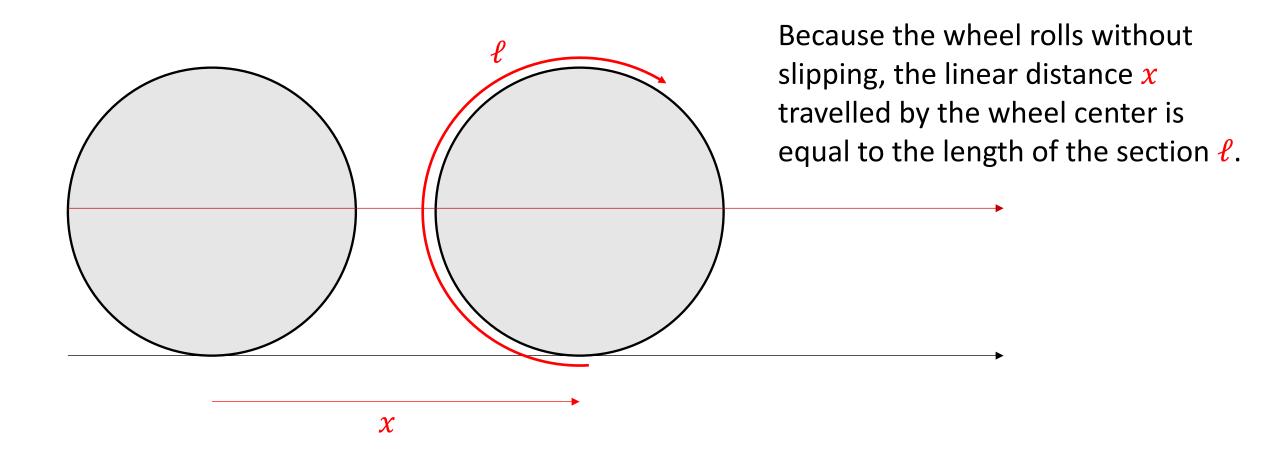
- A Jacobian matrix maps velocities in one coordinate system to velocities in another coordinate system.
- For our case, we want to map the velocity of the robot v to wheel rotation, specified as angular velocities ω^i for i=1,2,3.
- The desired relationship is given by:

$$\begin{bmatrix} \omega^1 \\ \omega^2 \\ \omega^3 \end{bmatrix} = J \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

• We'll need to relate rotation of the wheel to translation in the driving direction.

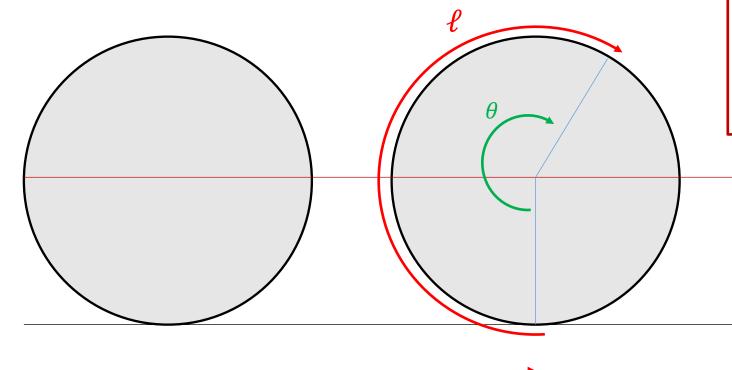
Rolling Without Slipping

Suppose a wheel rolls without slipping a linear distance x.



Rolling Without Slipping

Using basic geometry, we know that $x = \ell = r\theta$.



 χ

Differentiating both sides, we obtain

$$v = \frac{d}{dt}x = r\frac{d}{dt}\theta = r\omega$$

and therefore,

$$\omega = \frac{1}{r}v$$

Mapping Robot Velocity to Wheel Rotation

Combining these results, we obtain our final, Jacobian relationship:

$$v_{\parallel}^{i} = -v_{x} \sin \theta^{i} + v_{y} \cos \theta^{i}$$
$$v_{\perp}^{i} = v_{x} \cos \theta^{i} + v_{y} \sin \theta^{i}$$

$$\omega^i = \frac{1}{r} v_{\parallel}^i$$

$$\begin{bmatrix} \omega^1 \\ \omega^2 \\ \omega^3 \end{bmatrix} = \frac{1}{r} \begin{bmatrix} -\sin\theta^1 & \cos\theta^1 \\ -\sin\theta^2 & \cos\theta^2 \\ -\sin\theta^3 & \cos\theta^3 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \end{bmatrix}$$

This is the Jacobian matrix, J

$$\begin{bmatrix} \omega^{1} \\ \omega^{2} \\ \omega^{3} \end{bmatrix} = \frac{1}{r} \begin{bmatrix} 0 & 1 \\ -0.866 & -0.5 \\ 0.866 & -0.5 \end{bmatrix} \begin{bmatrix} v_{\chi} \\ v_{y} \end{bmatrix}$$

Limitations of our Model

The model we developed for omni-wheeled robots made several simplifications to what we might find in real applications:

- We conveniently aligned the robot's coordinate system to a global world coordinate frame. Specifying the angle θ^i was simple, because it was specified in a coordinate frame that was fixed w.r.t. to the robot.
- Real robots sometimes rotate. We could accomplish this with the exact same robot by adding a rotational component to the robot velocity (i.e., robot angular velocity):

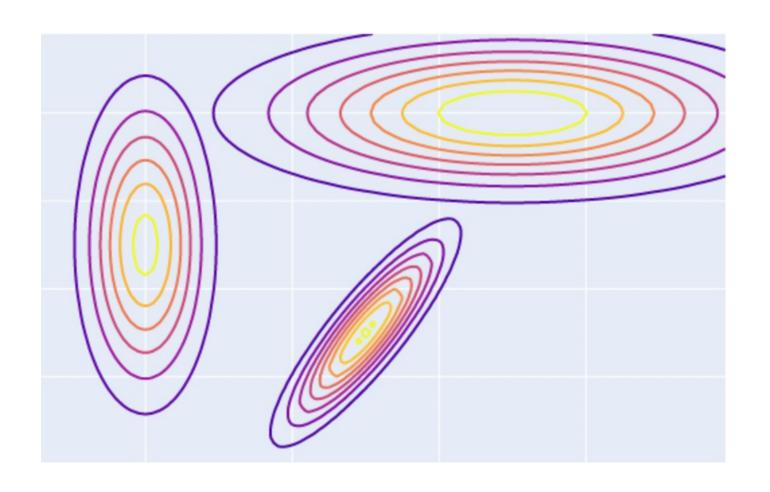
$$v = \begin{bmatrix} \omega^{robot} & v_x & v_y \end{bmatrix}^T$$

• If the robot rotates, then we'll need to represent its orientation w.r.t. the global coordinate frame, since the steering directions of the wheels will change if the robot rotates.

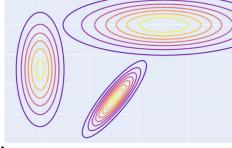
Mecanum Wheels

- We can make the wheels a bit more interesting by changing the orientation of the "roller" wheels that allow sliding *Mecanum Wheels*.
- The math is (only) slightly more complex, but we won't go further in this course.

Bonus: Multivariate Gaussians in detail



Multivariate Gaussians, the detail...



- Until now, we have considered Gaussian distributions for scalar random variables.
- For univariate Gaussians, η is a scalar, and it appears in the exponent:

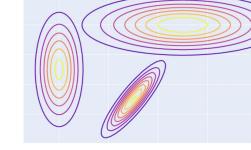
$$f_{\rm H}(\eta) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(\eta-\mu)^2}{2\sigma^2}}$$

• For a multivariate Gaussian, the random variable is a vector:

$$\eta = \begin{bmatrix} \eta_x \\ \eta_y \end{bmatrix}$$

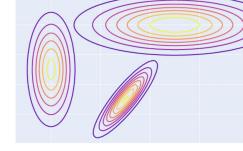
How do we put a vector in an exponent??

Multivariate Gaussians



- Let's look at the exponent in the Gaussian distribution:
 - 1. The term $|x \mu|$ is the distance from x to the mean.
 - 2. The term $(x \mu)^2$ is the squared distance to the mean.
 - 3. The term $\sigma^{-2}(x-\mu)^2$ is a scaled squared distance to the mean.
- ➤ This idea computing a scaled squared distance to the mean is the key to extending Gaussians to the multivariate case.
- \triangleright Instead of scalar scaling, we can apply scaling along different axes, e.g., we can treat motion in the direction of the x-axis as being more uncertain than motion in the direction of the y-axis.

Multivariate Gaussians



First let's define the relevant vectors:

$$\mu = \begin{bmatrix} \mu_x \\ \mu_y \end{bmatrix}, \qquad \vec{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$

NOTE:

- For the next few slides, we'll use \vec{x} to denote a vector in \mathbb{R}^2 .
- There's a possibility of confusion, because most of the time use x to denote a vector $x \in \mathbb{R}^2$.
- For the next derivations, we will use $x, y \in \mathbb{R}$ to denote the scalar coordinates of the point \vec{x} .
- Don't lose track of this!

Quadratic Forms

• The squared distance between vectors \vec{x} and μ can be conveniently written as:

$$(\vec{x} - \mu)^T (\vec{x} - \mu) = [x - \mu_x \quad y - \mu_y] \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix} = (x - \mu_x)^2 + (y - \mu_y)^2$$

- Note that this term evaluates to a scalar value!
- The term $(x \mu_x)^2$ gives the squared distance along the x-axis, and the term $(y \mu_y)^2$ gives the squared distance along the y-axis.
- We can scale these simply by multiplying each by a scalar coefficients, say k_x and k_y :

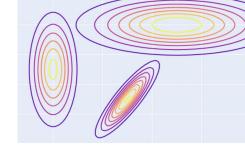
$$k_x(x - \mu_x)^2 + k_y(y - \mu_y)^2$$

• We can incorporate these scaling values directly into a nice matrix equation:

$$[x - \mu_x \quad y - \mu_y] \begin{bmatrix} k_x & 0 \\ 0 & k_y \end{bmatrix} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix} = k_x (x - \mu_x)^2 + k_y (y - \mu_y)^2$$

> If you understand this, multivariate Gaussians are easy!

Quadratic Forms



Let's generalize this just a bit

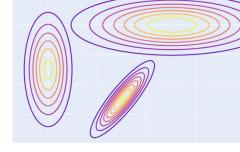
$$\|\vec{x} - \mu\|_{\Sigma^{-1}}^2 = (\vec{x} - \mu)^T \Sigma^{-1} (\vec{x} - \mu) = [x - \mu_x \quad y - \mu_y] \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} x - \mu_x \\ y - \mu_y \end{bmatrix}$$

- If you multiply this out (a bit tedious), you'll arrive to the general equation for an ellipse:
 - Center of the ellipse is at μ
 - The matrix Σ^{-1} encodes the major and minor axes (direction and length).
 - Check back to your old geometry books to refresh your memory.

Comments:

- We say that the matrix Σ is positive definite if $\vec{x}^T \Sigma \vec{x} > 0$ for all $\vec{x} \neq 0$.
- If a matrix Σ is positive definite, then Σ^{-1} exists, and $\vec{x}^T \Sigma^{-1} \vec{x} = k$ defines an ellipse, for k > 0.

Multivariate Gaussians



• We can use this idea to build an n-dimensional Gaussian distribution:

$$f_{\vec{X}}(\vec{x}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2} ||\vec{x} - \mu||_{\Sigma^{-1}}^2} = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{1}{2} (\vec{x} - \mu)^T \Sigma^{-1} (\vec{x} - \mu)}$$

- As usual, the action is in the exponent; the constant $\sqrt{(2\pi)^n|\Sigma|}$ is merely to scale the pdf so that $\int f_{\vec{X}}(\vec{x})d\vec{x}=1$.
- The value of $f_{\overrightarrow{X}}(\overrightarrow{x})$ decreases exponentially with the square of the scaled distance $\|\overrightarrow{x} \mu\|_{\Sigma^{-1}}$.
- The matrix Σ is called the covariance matrix. In the two-dimensional case, it is defined as:

$$\Sigma = \begin{bmatrix} E[(X - \mu_x)^2] & E[(X - \mu_x)(Y - \mu_y)] \\ E[(X - \mu_x)(Y - \mu_y)] & E[(Y - \mu_y)^2] \end{bmatrix}$$