
CS 3630, Fall
2025
Lecture 11:
An omnidirectional
Logistics Robot

Logistics Robots

What exactly is logistics?
• Logistics is the management of the flow of things from point of origin to point of

consumption [Wikipedia].
• This typically involves multiple stages of packaging, routing, transport.
• There are plenty of robotics applications:

• Loading/unloading
• Palletizing
• Cargo container transport
• Packaging
• Last mile delivery
• Warehouse operations

Ø For now, we will consider the narrow problem of warehouse operations, in particular, the
problem of moving inventory from Point A to Point B in a warehouse.

Robots in Warehouses

A Few Warehouse Robots

Autoguide Mobile Robots GreyOrange Inc. Tompkins Robotics Milvus Robotics

A few mobile robots whose purpose in life is to move inventory from place to place in large warehouses.

From Kiva to Amazon Robotics

Peter Wurman, Mick Mountz, Raff D’Andrea

• 2003: Kiva Systems founded
• 2009: Rank #6 in Inc. 500 list of fastest growing co’s in America
• 2012: Acquired by Amazon for $775M
• 2015: Name change: Amazon Robotics LLC
• 2019: More than 200,000 robots deployed in Amazon warehouses

IEEE Spectrum, Jul 2008

Amazon’s Warehouse Robots

Fetch Robotics
• Cloud robotics platform (claim to be the first)
• Mobile manipulation
• Sponsored competition at ICRA (GT won, and took home a shiny new robot).
• 2014: Founded (after Willow Garage ended)
• 2019: AI Breakthrough Award (best overall robotics company)
• 2021: Acquired by Zebra for $305M

CEO, Melonee Wise

Autonomous Mobile Robots
In the world of warehouse robotics, we there are two main categories or mobile robot
platform:
• Automated Guided Vehicles (AGVs)

• Follow fixed routes
• Rely on wires or magnets embedded in the floor to track routes
• Simple sensing to avoid collisions (typically, simply stop when an obstacle appears)
• Rely on predictable and known environment
• Train the humans to avoid the robots

• Autonomous Mobile Robots (AMRs)
• Capable of planning general motion
• Typically require a map of the environment
• Can navigate based on obstacles (i.e., more than simple collision avoidance)
• Robots know how to avoid the humans

In this chapter…
• Omnidirectional mobile robots

• Can move in arbitrary directions
• Control input is wheel angular velocity
• Easy to convert wheel angular velocity to robot velocity
• Forces and torques aren’t important

• Continuous state space
• Robot position is specified by x-y coordinates
• Coordinates are real numbers, not discrete grid points or names of rooms

• Discrete time system
• No real need for continuous time
• Provides access to nice tools from Bayesian inference

• Fairly simple sensors
• Proximity (binary sensor that detects obstacles)
• Range (using RFID tags)
• Pseudo-GPS (mainly to introduce conditional Gaussian models)

Continuous
State

In this chapter, we level up to continuous state for the very
first time.
The question: how to represent knowledge? Three options:
- Gaussian density
- Finite elements
- Sampling-based

Continuous state

• Part of the 2D plane:

• No orientation yet:
• omni-directional movement

• Remember 1D:

• Just a quadratic inside!
• Rewrite as:

• Generalize to:

Gaussian Densities

Multivariate Gaussians
• An 𝑛-dimensional Gaussian density:

𝑓! 𝑥⃗ 	 = 	
1

2𝜋 " Σ
𝑒#

$
% '⃗#(!)"# '⃗#(

• As usual, the action is in the exponent; the constant 2𝜋 ! Σ is merely to scale the pdf so that ∫𝑓" 𝑥⃗ 𝑑𝑥⃗ = 1.

• The value of 𝒇𝑿 𝒙 decreases exponentially with the square of the scaled distance 𝒙 − 𝝁 𝜮!𝟏.

• The matrix Σ is called the covariance matrix. In the two-dimensional case, it is defined as:

Σ =
𝐸[𝑋 − 𝜇% &] 𝐸 (𝑋 − 𝜇%)(𝑌 − 𝜇')

𝐸 (𝑋 − 𝜇%)(𝑌 − 𝜇') 𝐸[𝑌 − 𝜇'
&]

• If a matrix Σ is positive definite, then Σ() exists, and 𝑥⃗*Σ()𝑥⃗ = 𝑘 defines an ellipse, for 𝑘 > 0.

Multivariate Gaussians in code:

Finite Elements
• Just chop up 2D spaces into a 2D grid of finite cells or “elements”
• How does this scale with dimension?

Sampling-based Representation

• Simple, efficient alternative
• Scales with “typical set”

Actions

Until this point, we have ignored the issues related to robot
motion:
• The trash sorting robot had built-in sorting actions.
• The vacuuming robot had built-in motion primitives to

navigate from room to room.
• We modeled uncertainty, but we really didn’t do any

work to develop these models, which really should be
related to reliability of the robot’s actions/motions.

In this chapter, we’ll take a first look at robot motion:
• Rolling wheels induce motion of a mobile platform.
• Uncertainty in the effects of actions is modeled directly

in terms of the robot’s motion.

Ø We’ll start with the kinematics of omni wheels…

Omni Wheels

Typical wheel:
• Rolls forward (the driving direction) without slipping
• Cannot slide perpendicular to the steering direction
• Wheel velocity is therefore always in the driving direction
• The inability to slide is a nonholonomic constraint

Omni wheel:
• Rolls forward (the driving direction) without slipping
• Can slide perpendicular to the steering direction
• Wheel velocity not constrained to be in the driving direction!
• Sliding is passive, just the right amount to accommodate the

wheel velocity.

Typical Omni-Wheel robot

The reason for three wheels:
• Steering directions of the three wheels positively spans the plane, plus stability.
• Can move in any direction instantaneously by an appropriate choice of wheel speed.

Wheel Kinematics
• Here we consider only pure translations (we’ll consider orientation and rotation later).

• With a pure translational velocity, then every point on the robot moves with the same velocity.

• Define the translational velocity of the robot to be

𝑣 =
𝑣%
𝑣'

The velocity of each wheel can be decomposed into two
components:	𝑣∥	and	𝑣,.

• 𝑣∥ is the component of wheel velocity that is parallel to the
driving direction.

• 𝑣, is the component of the wheel velocity that is perpendicular
to the driving direction.

Decomposing Robot Velocity

𝜃

𝑢∥ 𝑢@
𝑢@𝑢∥

𝜃

𝜃

𝑢! =
cos 𝜃
sin 𝜃 𝑢∥ =

−sin 𝜃
cos 𝜃

Decomposing Robot Velocity

𝜃

𝑢∥ 𝑢@

𝑣 =
𝑣#
𝑣$

𝑢! =
cos 𝜃
sin 𝜃 𝑢∥ =

−sin 𝜃
cos 𝜃

• We can now decompose 𝑣 into the components parallel
to and perpendicular to the steering direction.

• This is done by projecting 𝑣 onto 𝑢∥ and 𝑢,

𝑣 = 𝑣 ⋅ 𝑢∥ 𝑢∥ + (𝑣 ⋅ 𝑢,)𝑢,

 which can be written as

𝑣 = 𝑣∥𝑢∥ + 𝑣,𝑢,

 where
𝑣∥ = −𝑣% sin 𝜃 + 𝑣' cos 𝜃
𝑣, = 𝑣% cos 𝜃 + 𝑣' sin 𝜃

Note that 𝒗∥ and 𝒗!are scalars!

Three Uniformly Positioned Wheels
𝜃% = 0
 𝜃& = 120
 𝜃' = 240

𝑢∥ =
−sin 𝜃
cos 𝜃

𝑢∥% =
0
1

 𝑢∥& =
−0.8660
−0.5

 𝑢∥' =
0.866
−0.5

𝑣∥%

𝑣∥&

𝑣∥'
=

0 1
−0.866 −0.5
0.866 −0.5

𝑣#
𝑣$

Example
𝑣 = 0

1

𝑣∥%

𝑣∥&

𝑣∥'
=

0 1
−0.866 −0.5
0.866 −0.5

0
1 =

1
−0.5
−0.5

Example

𝑣 = 1
0

𝑣∥%

𝑣∥&

𝑣∥'
=

0 1
−0.866 −0.5
0.866 −0.5

1
0 =

0
−0.866
0.866

Wheel Jacobian
• A Jacobian matrix maps velocities in one coordinate system to velocities in another coordinate system.

• For our case, we want to map the velocity of the robot 𝑣 to wheel rotation, specified as angular
velocities 𝜔- for 𝑖 = 1,2,3.

• The desired relationship is given by:
𝜔)
𝜔&
𝜔.

= 𝐽
𝑣%
𝑣'

• We’ll need to relate rotation of the wheel to translation in the driving direction.

Rolling Without Slipping

𝑥

Because the wheel rolls without
slipping, the linear distance 𝑥
travelled by the wheel center is
equal to the length of the section ℓ.

ℓ

Suppose a wheel rolls without slipping a linear distance 𝑥.

Rolling Without Slipping

𝑥

Using basic geometry, we know that 𝑥 = ℓ = 𝑟𝜃.

ℓ

𝜃

Differentiating both sides, we
obtain

 v =)
)* 𝑥 = 𝑟 +

+, 𝜃 = 𝑟𝜔

and therefore,

𝜔 =
1
𝑟
𝑣

Mapping Robot Velocity to Wheel Rotation
Combining these results, we obtain our final, Jacobian relationship:

𝜔%
𝜔&
𝜔'

=
1
𝑟

0 1
−0.866 −0.5
0.866 −0.5

𝑣#
𝑣$

𝑣∥- = −𝑣# sin 𝜃- + 𝑣$ cos 𝜃-

𝑣!- = 𝑣# cos 𝜃- + 𝑣$ sin 𝜃-

𝜔- =
1
𝑟
𝑣∥-

𝜔%
𝜔&
𝜔'

=
1
𝑟

− sin 𝜃% cos 𝜃%
−sin 𝜃& cos 𝜃&
−sin 𝜃' cos 𝜃'

𝑣#
𝑣$

This is the Jacobian matrix, 𝐽

Limitations of our Model
The model we developed for omni-wheeled robots made several simplifications to what we
might find in real applications:
• We conveniently aligned the robot’s coordinate system to a global world coordinate frame.

Specifying the angle 𝜃- was simple, because it was specified in a coordinate frame that was
fixed w.r.t. to the robot.
• Real robots sometimes rotate. We could accomplish this with the exact same robot by adding

a rotational component to the robot velocity (i.e., robot angular velocity):

𝑣 = 𝜔/0102 𝑣% 𝑣'
3

• If the robot rotates, then we’ll need to represent its orientation w.r.t. the global coordinate
frame, since the steering directions of the wheels will change if the robot rotates.

Mecanum Wheels
• We can make the wheels a bit more interesting by changing the orientation of the “roller” wheels that allow

sliding – Mecanum Wheels.

• The math is (only) slightly more complex, but we won’t go further in this course.

Bonus:
Multivariate
Gaussians in

detail

Multivariate Gaussians, the detail…

• Until now, we have considered Gaussian distributions for scalar random variables.
• For univariate Gaussians, 𝜂 is a scalar, and it appears in the exponent:

𝑓. 𝜂 =
1

𝜎 2𝜋
𝑒/

0/1 !

&2!

• For a multivariate Gaussian, the random variable is a vector:

𝜂 =
𝜂#
𝜂$

• How do we put a vector in an exponent??

Multivariate Gaussians
• Let’s look at the exponent in the Gaussian distribution:

1. The term 𝑥 − 𝜇 is the distance from 𝑥 to the mean.
2. The term 𝑥 − 𝜇 & is the squared distance to the mean.
3. The term 𝜎/& 𝑥 − 𝜇 & is a scaled squared distance to the mean.

Ø This idea – computing a scaled squared distance to the mean – is the key to extending
Gaussians to the multivariate case.

Ø Instead of scalar scaling, we can apply scaling along different axes, e.g., we can treat motion in
the direction of the 𝑥-axis as being more uncertain than motion in the direction of the 𝑦-axis.

Multivariate Gaussians
First let’s define the relevant vectors:

𝜇 =
𝜇#
𝜇$, 	 𝑥⃗ =

𝑥
𝑦

NOTE:
• For the next few slides, we’ll use 𝑥⃗ to denote a vector in ℝ&.
• There’s a possibility of confusion, because most of the time use 𝑥 to denote a vector 𝑥 ∈ ℝ&.
• For the next derivations, we will use x, y, ∈ ℝ to denote the scalar coordinates of the point 𝑥⃗.
• Don’t lose track of this!

Quadratic Forms
• The squared distance between vectors 𝑥⃗ and 𝜇 can be conveniently written as:

𝑥⃗ − 𝜇 3 𝑥⃗ − 𝜇 = 𝑥 − 𝜇% 𝑦 − 𝜇'
𝑥 − 𝜇%
𝑦 − 𝜇' = 𝑥 − 𝜇% & + 𝑦 − 𝜇'

&

• Note that this term evaluates to a scalar value!

• The term 𝑥 − 𝜇% & gives the squared distance along the 𝑥-axis, and the term 𝑦 − 𝜇'
&

gives the squared
distance along the 𝑦-axis.

• We can scale these simply by multiplying each by a scalar coefficients, say 𝑘% and 𝑘':
𝑘% 𝑥 − 𝜇% & + 𝑘' 𝑦 − 𝜇'

&

• We can incorporate these scaling values directly into a nice matrix equation:

𝑥 − 𝜇% 𝑦 − 𝜇'
𝑘% 0
0 𝑘'

𝑥 − 𝜇%
𝑦 − 𝜇' = 𝑘% 𝑥 − 𝜇% & + 𝑘' 𝑦 − 𝜇'

&

Ø If you understand this, multivariate Gaussians are easy!

Quadratic Forms
• Let’s generalize this just a bit

𝑥⃗ − 𝜇 3"#
& = 𝑥⃗ − 𝜇 4Σ/% 𝑥⃗ − 𝜇 = 𝑥 − 𝜇# 𝑦 − 𝜇$ 𝑎 𝑏

𝑏 𝑐
𝑥 − 𝜇#
𝑦 − 𝜇$

• If you multiply this out (a bit tedious), you’ll arrive to the general equation for an ellipse:
• Center of the ellipse is at 𝜇
• The matrix Σ()encodes the major and minor axes (direction and length).
• Check back to your old geometry books to refresh your memory.

Comments:
• We say that the matrix Σ is positive definite if 𝑥⃗4𝛴𝑥⃗ > 0 for all 𝑥⃗ ≠ 0.
• If a matrix Σ is positive definite, then Σ/% exists, and 𝑥⃗5Σ/%𝑥⃗ = 𝑘 defines an ellipse, for 𝑘 > 0.

Multivariate Gaussians
• We can use this idea to build an 𝑛-dimensional Gaussian distribution:

𝑓! 𝑥⃗ 	 = 	
1

2𝜋 " Σ
𝑒#

$
% '⃗#($"#

%
	 = 	

1
2𝜋 " Σ

𝑒#
$
% '⃗#(!)"# '⃗#(

• As usual, the action is in the exponent; the constant 2𝜋 ! Σ is merely to scale the pdf so that ∫𝑓" 𝑥⃗ 𝑑𝑥⃗ = 1.

• The value of 𝒇𝑿 𝒙 decreases exponentially with the square of the scaled distance 𝒙 − 𝝁 𝜮!𝟏.

• The matrix Σ is called the covariance matrix. In the two-dimensional case, it is defined as:

Σ =
𝐸[𝑋 − 𝜇% &] 𝐸 (𝑋 − 𝜇%)(𝑌 − 𝜇')

𝐸 (𝑋 − 𝜇%)(𝑌 − 𝜇') 𝐸[𝑌 − 𝜇'
&]

